You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			1259 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1259 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This package is an SSL implementation written
 | |
|  * by Eric Young (eay@cryptsoft.com).
 | |
|  * The implementation was written so as to conform with Netscapes SSL.
 | |
|  *
 | |
|  * This library is free for commercial and non-commercial use as long as
 | |
|  * the following conditions are aheared to.  The following conditions
 | |
|  * apply to all code found in this distribution, be it the RC4, RSA,
 | |
|  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 | |
|  * included with this distribution is covered by the same copyright terms
 | |
|  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 | |
|  *
 | |
|  * Copyright remains Eric Young's, and as such any Copyright notices in
 | |
|  * the code are not to be removed.
 | |
|  * If this package is used in a product, Eric Young should be given attribution
 | |
|  * as the author of the parts of the library used.
 | |
|  * This can be in the form of a textual message at program startup or
 | |
|  * in documentation (online or textual) provided with the package.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. All advertising materials mentioning features or use of this software
 | |
|  *    must display the following acknowledgement:
 | |
|  *    "This product includes cryptographic software written by
 | |
|  *     Eric Young (eay@cryptsoft.com)"
 | |
|  *    The word 'cryptographic' can be left out if the rouines from the library
 | |
|  *    being used are not cryptographic related :-).
 | |
|  * 4. If you include any Windows specific code (or a derivative thereof) from
 | |
|  *    the apps directory (application code) you must include an acknowledgement:
 | |
|  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  * The licence and distribution terms for any publically available version or
 | |
|  * derivative of this code cannot be changed.  i.e. this code cannot simply be
 | |
|  * copied and put under another distribution licence
 | |
|  * [including the GNU Public Licence.]
 | |
|  */
 | |
| /* ====================================================================
 | |
|  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *
 | |
|  * 3. All advertising materials mentioning features or use of this
 | |
|  *    software must display the following acknowledgment:
 | |
|  *    "This product includes software developed by the OpenSSL Project
 | |
|  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 | |
|  *
 | |
|  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 | |
|  *    endorse or promote products derived from this software without
 | |
|  *    prior written permission. For written permission, please contact
 | |
|  *    openssl-core@openssl.org.
 | |
|  *
 | |
|  * 5. Products derived from this software may not be called "OpenSSL"
 | |
|  *    nor may "OpenSSL" appear in their names without prior written
 | |
|  *    permission of the OpenSSL Project.
 | |
|  *
 | |
|  * 6. Redistributions of any form whatsoever must retain the following
 | |
|  *    acknowledgment:
 | |
|  *    "This product includes software developed by the OpenSSL Project
 | |
|  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 | |
|  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 | |
|  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 | |
|  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
|  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 | |
|  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 | |
|  * OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  * ====================================================================
 | |
|  *
 | |
|  * This product includes cryptographic software written by Eric Young
 | |
|  * (eay@cryptsoft.com).  This product includes software written by Tim
 | |
|  * Hudson (tjh@cryptsoft.com). */
 | |
| 
 | |
| #include <openssl/bn.h>
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include <openssl/cpu.h>
 | |
| #include <openssl/err.h>
 | |
| #include <openssl/mem.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| 
 | |
| #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
 | |
| #define OPENSSL_BN_ASM_MONT5
 | |
| #define RSAZ_ENABLED
 | |
| 
 | |
| #include "rsaz_exp.h"
 | |
| 
 | |
| void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
 | |
|                          const BN_ULONG *np, const BN_ULONG *n0, int num,
 | |
|                          int power);
 | |
| void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power);
 | |
| void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
 | |
| void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table,
 | |
|                const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
 | |
| int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
 | |
|                        const BN_ULONG *not_used, const BN_ULONG *np,
 | |
|                        const BN_ULONG *n0, int num);
 | |
| #endif
 | |
| 
 | |
| int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
 | |
|   int i, bits, ret = 0;
 | |
|   BIGNUM *v, *rr;
 | |
| 
 | |
|   if ((p->flags & BN_FLG_CONSTTIME) != 0) {
 | |
|     /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
 | |
|     OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   BN_CTX_start(ctx);
 | |
|   if (r == a || r == p) {
 | |
|     rr = BN_CTX_get(ctx);
 | |
|   } else {
 | |
|     rr = r;
 | |
|   }
 | |
| 
 | |
|   v = BN_CTX_get(ctx);
 | |
|   if (rr == NULL || v == NULL) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   if (BN_copy(v, a) == NULL) {
 | |
|     goto err;
 | |
|   }
 | |
|   bits = BN_num_bits(p);
 | |
| 
 | |
|   if (BN_is_odd(p)) {
 | |
|     if (BN_copy(rr, a) == NULL) {
 | |
|       goto err;
 | |
|     }
 | |
|   } else {
 | |
|     if (!BN_one(rr)) {
 | |
|       goto err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (i = 1; i < bits; i++) {
 | |
|     if (!BN_sqr(v, v, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
|     if (BN_is_bit_set(p, i)) {
 | |
|       if (!BN_mul(rr, rr, v, ctx)) {
 | |
|         goto err;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (r != rr && !BN_copy(r, rr)) {
 | |
|     goto err;
 | |
|   }
 | |
|   ret = 1;
 | |
| 
 | |
| err:
 | |
|   BN_CTX_end(ctx);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /* maximum precomputation table size for *variable* sliding windows */
 | |
| #define TABLE_SIZE 32
 | |
| 
 | |
| typedef struct bn_recp_ctx_st {
 | |
|   BIGNUM N;  /* the divisor */
 | |
|   BIGNUM Nr; /* the reciprocal */
 | |
|   int num_bits;
 | |
|   int shift;
 | |
|   int flags;
 | |
| } BN_RECP_CTX;
 | |
| 
 | |
| static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
 | |
|   BN_init(&recp->N);
 | |
|   BN_init(&recp->Nr);
 | |
|   recp->num_bits = 0;
 | |
|   recp->shift = 0;
 | |
|   recp->flags = 0;
 | |
| }
 | |
| 
 | |
| static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
 | |
|   if (recp == NULL) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   BN_free(&recp->N);
 | |
|   BN_free(&recp->Nr);
 | |
| }
 | |
| 
 | |
| static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
 | |
|   if (!BN_copy(&(recp->N), d)) {
 | |
|     return 0;
 | |
|   }
 | |
|   BN_zero(&recp->Nr);
 | |
|   recp->num_bits = BN_num_bits(d);
 | |
|   recp->shift = 0;
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* len is the expected size of the result We actually calculate with an extra
 | |
|  * word of precision, so we can do faster division if the remainder is not
 | |
|  * required.
 | |
|  * r := 2^len / m */
 | |
| static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
 | |
|   int ret = -1;
 | |
|   BIGNUM *t;
 | |
| 
 | |
|   BN_CTX_start(ctx);
 | |
|   t = BN_CTX_get(ctx);
 | |
|   if (t == NULL) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   if (!BN_set_bit(t, len)) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   if (!BN_div(r, NULL, t, m, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   ret = len;
 | |
| 
 | |
| err:
 | |
|   BN_CTX_end(ctx);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
 | |
|                        BN_RECP_CTX *recp, BN_CTX *ctx) {
 | |
|   int i, j, ret = 0;
 | |
|   BIGNUM *a, *b, *d, *r;
 | |
| 
 | |
|   BN_CTX_start(ctx);
 | |
|   a = BN_CTX_get(ctx);
 | |
|   b = BN_CTX_get(ctx);
 | |
|   if (dv != NULL) {
 | |
|     d = dv;
 | |
|   } else {
 | |
|     d = BN_CTX_get(ctx);
 | |
|   }
 | |
| 
 | |
|   if (rem != NULL) {
 | |
|     r = rem;
 | |
|   } else {
 | |
|     r = BN_CTX_get(ctx);
 | |
|   }
 | |
| 
 | |
|   if (a == NULL || b == NULL || d == NULL || r == NULL) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   if (BN_ucmp(m, &recp->N) < 0) {
 | |
|     BN_zero(d);
 | |
|     if (!BN_copy(r, m)) {
 | |
|       goto err;
 | |
|     }
 | |
|     BN_CTX_end(ctx);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   /* We want the remainder
 | |
|    * Given input of ABCDEF / ab
 | |
|    * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
 | |
| 
 | |
|   /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
 | |
|   i = BN_num_bits(m);
 | |
|   j = recp->num_bits << 1;
 | |
|   if (j > i) {
 | |
|     i = j;
 | |
|   }
 | |
| 
 | |
|   /* Nr := round(2^i / N) */
 | |
|   if (i != recp->shift) {
 | |
|     recp->shift =
 | |
|         BN_reciprocal(&(recp->Nr), &(recp->N), i,
 | |
|                       ctx); /* BN_reciprocal returns i, or -1 for an error */
 | |
|   }
 | |
| 
 | |
|   if (recp->shift == -1) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
 | |
|    * BN_num_bits(N)))|
 | |
|    *    = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
 | |
|    * BN_num_bits(N)))|
 | |
|    *   <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
 | |
|    *    = |m/N| */
 | |
|   if (!BN_rshift(a, m, recp->num_bits)) {
 | |
|     goto err;
 | |
|   }
 | |
|   if (!BN_mul(b, a, &(recp->Nr), ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
|   if (!BN_rshift(d, b, i - recp->num_bits)) {
 | |
|     goto err;
 | |
|   }
 | |
|   d->neg = 0;
 | |
| 
 | |
|   if (!BN_mul(b, &(recp->N), d, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
|   if (!BN_usub(r, m, b)) {
 | |
|     goto err;
 | |
|   }
 | |
|   r->neg = 0;
 | |
| 
 | |
|   j = 0;
 | |
|   while (BN_ucmp(r, &(recp->N)) >= 0) {
 | |
|     if (j++ > 2) {
 | |
|       OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
 | |
|       goto err;
 | |
|     }
 | |
|     if (!BN_usub(r, r, &(recp->N))) {
 | |
|       goto err;
 | |
|     }
 | |
|     if (!BN_add_word(d, 1)) {
 | |
|       goto err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   r->neg = BN_is_zero(r) ? 0 : m->neg;
 | |
|   d->neg = m->neg ^ recp->N.neg;
 | |
|   ret = 1;
 | |
| 
 | |
| err:
 | |
|   BN_CTX_end(ctx);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
 | |
|                                  BN_RECP_CTX *recp, BN_CTX *ctx) {
 | |
|   int ret = 0;
 | |
|   BIGNUM *a;
 | |
|   const BIGNUM *ca;
 | |
| 
 | |
|   BN_CTX_start(ctx);
 | |
|   a = BN_CTX_get(ctx);
 | |
|   if (a == NULL) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   if (y != NULL) {
 | |
|     if (x == y) {
 | |
|       if (!BN_sqr(a, x, ctx)) {
 | |
|         goto err;
 | |
|       }
 | |
|     } else {
 | |
|       if (!BN_mul(a, x, y, ctx)) {
 | |
|         goto err;
 | |
|       }
 | |
|     }
 | |
|     ca = a;
 | |
|   } else {
 | |
|     ca = x; /* Just do the mod */
 | |
|   }
 | |
| 
 | |
|   ret = BN_div_recp(NULL, r, ca, recp, ctx);
 | |
| 
 | |
| err:
 | |
|   BN_CTX_end(ctx);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
 | |
|  * functions
 | |
|  *
 | |
|  * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
 | |
|  * multiplications is a constant plus on average
 | |
|  *
 | |
|  *    2^(w-1) + (b-w)/(w+1);
 | |
|  *
 | |
|  * here 2^(w-1)  is for precomputing the table (we actually need entries only
 | |
|  * for windows that have the lowest bit set), and (b-w)/(w+1)  is an
 | |
|  * approximation for the expected number of w-bit windows, not counting the
 | |
|  * first one.
 | |
|  *
 | |
|  * Thus we should use
 | |
|  *
 | |
|  *    w >= 6  if        b > 671
 | |
|  *     w = 5  if  671 > b > 239
 | |
|  *     w = 4  if  239 > b >  79
 | |
|  *     w = 3  if   79 > b >  23
 | |
|  *    w <= 2  if   23 > b
 | |
|  *
 | |
|  * (with draws in between).  Very small exponents are often selected
 | |
|  * with low Hamming weight, so we use  w = 1  for b <= 23. */
 | |
| #define BN_window_bits_for_exponent_size(b) \
 | |
| 		((b) > 671 ? 6 : \
 | |
| 		 (b) > 239 ? 5 : \
 | |
| 		 (b) >  79 ? 4 : \
 | |
| 		 (b) >  23 ? 3 : 1)
 | |
| 
 | |
| static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
 | |
|                         const BIGNUM *m, BN_CTX *ctx) {
 | |
|   int i, j, bits, ret = 0, wstart, window;
 | |
|   int start = 1;
 | |
|   BIGNUM *aa;
 | |
|   /* Table of variables obtained from 'ctx' */
 | |
|   BIGNUM *val[TABLE_SIZE];
 | |
|   BN_RECP_CTX recp;
 | |
| 
 | |
|   if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
 | |
|     /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
 | |
|     OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   bits = BN_num_bits(p);
 | |
| 
 | |
|   if (bits == 0) {
 | |
|     /* x**0 mod 1 is still zero. */
 | |
|     if (BN_is_one(m)) {
 | |
|       BN_zero(r);
 | |
|       return 1;
 | |
|     }
 | |
|     return BN_one(r);
 | |
|   }
 | |
| 
 | |
|   BN_CTX_start(ctx);
 | |
|   aa = BN_CTX_get(ctx);
 | |
|   val[0] = BN_CTX_get(ctx);
 | |
|   if (!aa || !val[0]) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   BN_RECP_CTX_init(&recp);
 | |
|   if (m->neg) {
 | |
|     /* ignore sign of 'm' */
 | |
|     if (!BN_copy(aa, m)) {
 | |
|       goto err;
 | |
|     }
 | |
|     aa->neg = 0;
 | |
|     if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
 | |
|       goto err;
 | |
|     }
 | |
|   } else {
 | |
|     if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
 | |
|       goto err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!BN_nnmod(val[0], a, m, ctx)) {
 | |
|     goto err; /* 1 */
 | |
|   }
 | |
|   if (BN_is_zero(val[0])) {
 | |
|     BN_zero(r);
 | |
|     ret = 1;
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   window = BN_window_bits_for_exponent_size(bits);
 | |
|   if (window > 1) {
 | |
|     if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
 | |
|       goto err; /* 2 */
 | |
|     }
 | |
|     j = 1 << (window - 1);
 | |
|     for (i = 1; i < j; i++) {
 | |
|       if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
 | |
|           !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
 | |
|         goto err;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   start = 1; /* This is used to avoid multiplication etc
 | |
|               * when there is only the value '1' in the
 | |
|               * buffer. */
 | |
|   wstart = bits - 1; /* The top bit of the window */
 | |
| 
 | |
|   if (!BN_one(r)) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   for (;;) {
 | |
|     int wvalue; /* The 'value' of the window */
 | |
|     int wend; /* The bottom bit of the window */
 | |
| 
 | |
|     if (BN_is_bit_set(p, wstart) == 0) {
 | |
|       if (!start) {
 | |
|         if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
 | |
|           goto err;
 | |
|         }
 | |
|       }
 | |
|       if (wstart == 0) {
 | |
|         break;
 | |
|       }
 | |
|       wstart--;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* We now have wstart on a 'set' bit, we now need to work out
 | |
|      * how bit a window to do.  To do this we need to scan
 | |
|      * forward until the last set bit before the end of the
 | |
|      * window */
 | |
|     wvalue = 1;
 | |
|     wend = 0;
 | |
|     for (i = 1; i < window; i++) {
 | |
|       if (wstart - i < 0) {
 | |
|         break;
 | |
|       }
 | |
|       if (BN_is_bit_set(p, wstart - i)) {
 | |
|         wvalue <<= (i - wend);
 | |
|         wvalue |= 1;
 | |
|         wend = i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* wend is the size of the current window */
 | |
|     j = wend + 1;
 | |
|     /* add the 'bytes above' */
 | |
|     if (!start) {
 | |
|       for (i = 0; i < j; i++) {
 | |
|         if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
 | |
|           goto err;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* wvalue will be an odd number < 2^window */
 | |
|     if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
| 
 | |
|     /* move the 'window' down further */
 | |
|     wstart -= wend + 1;
 | |
|     start = 0;
 | |
|     if (wstart < 0) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   ret = 1;
 | |
| 
 | |
| err:
 | |
|   BN_CTX_end(ctx);
 | |
|   BN_RECP_CTX_free(&recp);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
 | |
|                BN_CTX *ctx) {
 | |
|   if (BN_is_odd(m)) {
 | |
|     return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
 | |
|   }
 | |
| 
 | |
|   return mod_exp_recp(r, a, p, m, ctx);
 | |
| }
 | |
| 
 | |
| int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
 | |
|                     const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
 | |
|   int i, j, bits, ret = 0, wstart, window;
 | |
|   int start = 1;
 | |
|   BIGNUM *d, *r;
 | |
|   const BIGNUM *aa;
 | |
|   /* Table of variables obtained from 'ctx' */
 | |
|   BIGNUM *val[TABLE_SIZE];
 | |
|   BN_MONT_CTX *new_mont = NULL;
 | |
| 
 | |
|   if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
 | |
|     return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, mont);
 | |
|   }
 | |
| 
 | |
|   if (!BN_is_odd(m)) {
 | |
|     OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
 | |
|     return 0;
 | |
|   }
 | |
|   bits = BN_num_bits(p);
 | |
|   if (bits == 0) {
 | |
|     /* x**0 mod 1 is still zero. */
 | |
|     if (BN_is_one(m)) {
 | |
|       BN_zero(rr);
 | |
|       return 1;
 | |
|     }
 | |
|     return BN_one(rr);
 | |
|   }
 | |
| 
 | |
|   BN_CTX_start(ctx);
 | |
|   d = BN_CTX_get(ctx);
 | |
|   r = BN_CTX_get(ctx);
 | |
|   val[0] = BN_CTX_get(ctx);
 | |
|   if (!d || !r || !val[0]) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   /* Allocate a montgomery context if it was not supplied by the caller. */
 | |
|   if (mont == NULL) {
 | |
|     new_mont = BN_MONT_CTX_new();
 | |
|     if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
|     mont = new_mont;
 | |
|   }
 | |
| 
 | |
|   if (a->neg || BN_ucmp(a, m) >= 0) {
 | |
|     if (!BN_nnmod(val[0], a, m, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
|     aa = val[0];
 | |
|   } else {
 | |
|     aa = a;
 | |
|   }
 | |
| 
 | |
|   if (BN_is_zero(aa)) {
 | |
|     BN_zero(rr);
 | |
|     ret = 1;
 | |
|     goto err;
 | |
|   }
 | |
|   if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
 | |
|     goto err; /* 1 */
 | |
|   }
 | |
| 
 | |
|   window = BN_window_bits_for_exponent_size(bits);
 | |
|   if (window > 1) {
 | |
|     if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
 | |
|       goto err; /* 2 */
 | |
|     }
 | |
|     j = 1 << (window - 1);
 | |
|     for (i = 1; i < j; i++) {
 | |
|       if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
 | |
|           !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
 | |
|         goto err;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   start = 1; /* This is used to avoid multiplication etc
 | |
|               * when there is only the value '1' in the
 | |
|               * buffer. */
 | |
|   wstart = bits - 1; /* The top bit of the window */
 | |
| 
 | |
|   j = m->top; /* borrow j */
 | |
|   if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
 | |
|     if (bn_wexpand(r, j) == NULL) {
 | |
|       goto err;
 | |
|     }
 | |
|     /* 2^(top*BN_BITS2) - m */
 | |
|     r->d[0] = (0 - m->d[0]) & BN_MASK2;
 | |
|     for (i = 1; i < j; i++) {
 | |
|       r->d[i] = (~m->d[i]) & BN_MASK2;
 | |
|     }
 | |
|     r->top = j;
 | |
|     /* Upper words will be zero if the corresponding words of 'm'
 | |
|      * were 0xfff[...], so decrement r->top accordingly. */
 | |
|     bn_correct_top(r);
 | |
|   } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   for (;;) {
 | |
|     int wvalue; /* The 'value' of the window */
 | |
|     int wend; /* The bottom bit of the window */
 | |
| 
 | |
|     if (BN_is_bit_set(p, wstart) == 0) {
 | |
|       if (!start && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
 | |
|         goto err;
 | |
|       }
 | |
|       if (wstart == 0) {
 | |
|         break;
 | |
|       }
 | |
|       wstart--;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* We now have wstart on a 'set' bit, we now need to work out how bit a
 | |
|      * window to do.  To do this we need to scan forward until the last set bit
 | |
|      * before the end of the window */
 | |
|     wvalue = 1;
 | |
|     wend = 0;
 | |
|     for (i = 1; i < window; i++) {
 | |
|       if (wstart - i < 0) {
 | |
|         break;
 | |
|       }
 | |
|       if (BN_is_bit_set(p, wstart - i)) {
 | |
|         wvalue <<= (i - wend);
 | |
|         wvalue |= 1;
 | |
|         wend = i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* wend is the size of the current window */
 | |
|     j = wend + 1;
 | |
|     /* add the 'bytes above' */
 | |
|     if (!start) {
 | |
|       for (i = 0; i < j; i++) {
 | |
|         if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
 | |
|           goto err;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* wvalue will be an odd number < 2^window */
 | |
|     if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
| 
 | |
|     /* move the 'window' down further */
 | |
|     wstart -= wend + 1;
 | |
|     start = 0;
 | |
|     if (wstart < 0) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!BN_from_montgomery(rr, r, mont, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
|   ret = 1;
 | |
| 
 | |
| err:
 | |
|   BN_MONT_CTX_free(new_mont);
 | |
|   BN_CTX_end(ctx);
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
 | |
|  * layout so that accessing any of these table values shows the same access
 | |
|  * pattern as far as cache lines are concerned. The following functions are
 | |
|  * used to transfer a BIGNUM from/to that table. */
 | |
| static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
 | |
|                           int window) {
 | |
|   int i, j;
 | |
|   const int width = 1 << window;
 | |
|   BN_ULONG *table = (BN_ULONG *) buf;
 | |
| 
 | |
|   if (top > b->top) {
 | |
|     top = b->top; /* this works because 'buf' is explicitly zeroed */
 | |
|   }
 | |
| 
 | |
|   for (i = 0, j = idx; i < top; i++, j += width)  {
 | |
|     table[j] = b->d[i];
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
 | |
|                             int window) {
 | |
|   int i, j;
 | |
|   const int width = 1 << window;
 | |
|   volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
 | |
| 
 | |
|   if (bn_wexpand(b, top) == NULL) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (window <= 3) {
 | |
|     for (i = 0; i < top; i++, table += width) {
 | |
|       BN_ULONG acc = 0;
 | |
| 
 | |
|       for (j = 0; j < width; j++) {
 | |
|         acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
 | |
|       }
 | |
| 
 | |
|       b->d[i] = acc;
 | |
|     }
 | |
|   } else {
 | |
|     int xstride = 1 << (window - 2);
 | |
|     BN_ULONG y0, y1, y2, y3;
 | |
| 
 | |
|     i = idx >> (window - 2); /* equivalent of idx / xstride */
 | |
|     idx &= xstride - 1;      /* equivalent of idx % xstride */
 | |
| 
 | |
|     y0 = (BN_ULONG)0 - (constant_time_eq_int(i, 0) & 1);
 | |
|     y1 = (BN_ULONG)0 - (constant_time_eq_int(i, 1) & 1);
 | |
|     y2 = (BN_ULONG)0 - (constant_time_eq_int(i, 2) & 1);
 | |
|     y3 = (BN_ULONG)0 - (constant_time_eq_int(i, 3) & 1);
 | |
| 
 | |
|     for (i = 0; i < top; i++, table += width) {
 | |
|       BN_ULONG acc = 0;
 | |
| 
 | |
|       for (j = 0; j < xstride; j++) {
 | |
|         acc |= ((table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) |
 | |
|                 (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3)) &
 | |
|                ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1));
 | |
|       }
 | |
| 
 | |
|       b->d[i] = acc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   b->top = top;
 | |
|   bn_correct_top(b);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
 | |
|  * line width of the target processor is at least the following value. */
 | |
| #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
 | |
| #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
 | |
|   (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
 | |
| 
 | |
| /* Window sizes optimized for fixed window size modular exponentiation
 | |
|  * algorithm (BN_mod_exp_mont_consttime).
 | |
|  *
 | |
|  * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
 | |
|  * size of the window must not exceed
 | |
|  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). 
 | |
|  *
 | |
|  * Window size thresholds are defined for cache line sizes of 32 and 64, cache
 | |
|  * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
 | |
|  * 7 should only be used on processors that have a 128 byte or greater cache
 | |
|  * line size. */
 | |
| #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
 | |
| 
 | |
| #define BN_window_bits_for_ctime_exponent_size(b) \
 | |
|   ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
 | |
| #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
 | |
| 
 | |
| #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
 | |
| 
 | |
| #define BN_window_bits_for_ctime_exponent_size(b) \
 | |
|   ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
 | |
| #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Given a pointer value, compute the next address that is a cache line
 | |
|  * multiple. */
 | |
| #define MOD_EXP_CTIME_ALIGN(x_)          \
 | |
|   ((unsigned char *)(x_) +               \
 | |
|    (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
 | |
|     (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
 | |
| 
 | |
| /* This variant of BN_mod_exp_mont() uses fixed windows and the special
 | |
|  * precomputation memory layout to limit data-dependency to a minimum
 | |
|  * to protect secret exponents (cf. the hyper-threading timing attacks
 | |
|  * pointed out by Colin Percival,
 | |
|  * http://www.daemonology.net/hyperthreading-considered-harmful/)
 | |
|  */
 | |
| int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
 | |
|                               const BIGNUM *m, BN_CTX *ctx,
 | |
|                               const BN_MONT_CTX *mont) {
 | |
|   int i, bits, ret = 0, window, wvalue;
 | |
|   int top;
 | |
|   BN_MONT_CTX *new_mont = NULL;
 | |
| 
 | |
|   int numPowers;
 | |
|   unsigned char *powerbufFree = NULL;
 | |
|   int powerbufLen = 0;
 | |
|   unsigned char *powerbuf = NULL;
 | |
|   BIGNUM tmp, am;
 | |
| 
 | |
|   if (!BN_is_odd(m)) {
 | |
|     OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   top = m->top;
 | |
| 
 | |
|   bits = BN_num_bits(p);
 | |
|   if (bits == 0) {
 | |
|     /* x**0 mod 1 is still zero. */
 | |
|     if (BN_is_one(m)) {
 | |
|       BN_zero(rr);
 | |
|       return 1;
 | |
|     }
 | |
|     return BN_one(rr);
 | |
|   }
 | |
| 
 | |
|   /* Allocate a montgomery context if it was not supplied by the caller. */
 | |
|   if (mont == NULL) {
 | |
|     new_mont = BN_MONT_CTX_new();
 | |
|     if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
|     mont = new_mont;
 | |
|   }
 | |
| 
 | |
| #ifdef RSAZ_ENABLED
 | |
|   /* If the size of the operands allow it, perform the optimized
 | |
|    * RSAZ exponentiation. For further information see
 | |
|    * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
 | |
|   if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
 | |
|       rsaz_avx2_eligible()) {
 | |
|     if (NULL == bn_wexpand(rr, 16)) {
 | |
|       goto err;
 | |
|     }
 | |
|     RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
 | |
|     rr->top = 16;
 | |
|     rr->neg = 0;
 | |
|     bn_correct_top(rr);
 | |
|     ret = 1;
 | |
|     goto err;
 | |
|   } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
 | |
|     if (NULL == bn_wexpand(rr, 8)) {
 | |
|       goto err;
 | |
|     }
 | |
|     RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
 | |
|     rr->top = 8;
 | |
|     rr->neg = 0;
 | |
|     bn_correct_top(rr);
 | |
|     ret = 1;
 | |
|     goto err;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Get the window size to use with size of p. */
 | |
|   window = BN_window_bits_for_ctime_exponent_size(bits);
 | |
| #if defined(OPENSSL_BN_ASM_MONT5)
 | |
|   if (window >= 5) {
 | |
|     window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
 | |
|     /* reserve space for mont->N.d[] copy */
 | |
|     powerbufLen += top * sizeof(mont->N.d[0]);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Allocate a buffer large enough to hold all of the pre-computed
 | |
|    * powers of am, am itself and tmp.
 | |
|    */
 | |
|   numPowers = 1 << window;
 | |
|   powerbufLen +=
 | |
|       sizeof(m->d[0]) *
 | |
|       (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
 | |
| #ifdef alloca
 | |
|   if (powerbufLen < 3072) {
 | |
|     powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
 | |
|   } else
 | |
| #endif
 | |
|   {
 | |
|     if ((powerbufFree = OPENSSL_malloc(
 | |
|             powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
 | |
|       goto err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
 | |
|   memset(powerbuf, 0, powerbufLen);
 | |
| 
 | |
| #ifdef alloca
 | |
|   if (powerbufLen < 3072) {
 | |
|     powerbufFree = NULL;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* lay down tmp and am right after powers table */
 | |
|   tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
 | |
|   am.d = tmp.d + top;
 | |
|   tmp.top = am.top = 0;
 | |
|   tmp.dmax = am.dmax = top;
 | |
|   tmp.neg = am.neg = 0;
 | |
|   tmp.flags = am.flags = BN_FLG_STATIC_DATA;
 | |
| 
 | |
| /* prepare a^0 in Montgomery domain */
 | |
| /* by Shay Gueron's suggestion */
 | |
|   if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
 | |
|     /* 2^(top*BN_BITS2) - m */
 | |
|     tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
 | |
|     for (i = 1; i < top; i++) {
 | |
|       tmp.d[i] = (~m->d[i]) & BN_MASK2;
 | |
|     }
 | |
|     tmp.top = top;
 | |
|   } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   /* prepare a^1 in Montgomery domain */
 | |
|   if (a->neg || BN_ucmp(a, m) >= 0) {
 | |
|     if (!BN_mod(&am, a, m, ctx) ||
 | |
|         !BN_to_montgomery(&am, &am, mont, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
|   } else if (!BN_to_montgomery(&am, a, mont, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
| #if defined(OPENSSL_BN_ASM_MONT5)
 | |
|   /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
 | |
|    * specifically optimization of cache-timing attack countermeasures
 | |
|    * and pre-computation optimization. */
 | |
| 
 | |
|   /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
 | |
|    * 512-bit RSA is hardly relevant, we omit it to spare size... */
 | |
|   if (window == 5 && top > 1) {
 | |
|     const BN_ULONG *n0 = mont->n0;
 | |
|     BN_ULONG *np;
 | |
| 
 | |
|     /* BN_to_montgomery can contaminate words above .top
 | |
|      * [in BN_DEBUG[_DEBUG] build]... */
 | |
|     for (i = am.top; i < top; i++) {
 | |
|       am.d[i] = 0;
 | |
|     }
 | |
|     for (i = tmp.top; i < top; i++) {
 | |
|       tmp.d[i] = 0;
 | |
|     }
 | |
| 
 | |
|     /* copy mont->N.d[] to improve cache locality */
 | |
|     for (np = am.d + top, i = 0; i < top; i++) {
 | |
|       np[i] = mont->N.d[i];
 | |
|     }
 | |
| 
 | |
|     bn_scatter5(tmp.d, top, powerbuf, 0);
 | |
|     bn_scatter5(am.d, am.top, powerbuf, 1);
 | |
|     bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
 | |
|     bn_scatter5(tmp.d, top, powerbuf, 2);
 | |
| 
 | |
|     /* same as above, but uses squaring for 1/2 of operations */
 | |
|     for (i = 4; i < 32; i *= 2) {
 | |
|       bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|       bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|     }
 | |
|     for (i = 3; i < 8; i += 2) {
 | |
|       int j;
 | |
|       bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
 | |
|       bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|       for (j = 2 * i; j < 32; j *= 2) {
 | |
|         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|         bn_scatter5(tmp.d, top, powerbuf, j);
 | |
|       }
 | |
|     }
 | |
|     for (; i < 16; i += 2) {
 | |
|       bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
 | |
|       bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|       bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|       bn_scatter5(tmp.d, top, powerbuf, 2 * i);
 | |
|     }
 | |
|     for (; i < 32; i += 2) {
 | |
|       bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
 | |
|       bn_scatter5(tmp.d, top, powerbuf, i);
 | |
|     }
 | |
| 
 | |
|     bits--;
 | |
|     for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
 | |
|       wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
 | |
|     }
 | |
|     bn_gather5(tmp.d, top, powerbuf, wvalue);
 | |
| 
 | |
|     /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
 | |
|      * that has not been read yet.) */
 | |
|     assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
 | |
| 
 | |
|     /* Scan the exponent one window at a time starting from the most
 | |
|      * significant bits.
 | |
|      */
 | |
|     if (top & 7) {
 | |
|       while (bits >= 0) {
 | |
|         for (wvalue = 0, i = 0; i < 5; i++, bits--) {
 | |
|           wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
 | |
|         }
 | |
| 
 | |
|         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|         bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
 | |
|         bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
 | |
|       }
 | |
|     } else {
 | |
|       const uint8_t *p_bytes = (const uint8_t *)p->d;
 | |
|       int max_bits = p->top * BN_BITS2;
 | |
|       assert(bits < max_bits);
 | |
|       /* |p = 0| has been handled as a special case, so |max_bits| is at least
 | |
|        * one word. */
 | |
|       assert(max_bits >= 64);
 | |
| 
 | |
|       /* If the first bit to be read lands in the last byte, unroll the first
 | |
|        * iteration to avoid reading past the bounds of |p->d|. (After the first
 | |
|        * iteration, we are guaranteed to be past the last byte.) Note |bits|
 | |
|        * here is the top bit, inclusive. */
 | |
|       if (bits - 4 >= max_bits - 8) {
 | |
|         /* Read five bits from |bits-4| through |bits|, inclusive. */
 | |
|         wvalue = p_bytes[p->top * BN_BYTES - 1];
 | |
|         wvalue >>= (bits - 4) & 7;
 | |
|         wvalue &= 0x1f;
 | |
|         bits -= 5;
 | |
|         bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
 | |
|       }
 | |
|       while (bits >= 0) {
 | |
|         /* Read five bits from |bits-4| through |bits|, inclusive. */
 | |
|         int first_bit = bits - 4;
 | |
|         wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
 | |
|         wvalue >>= first_bit & 7;
 | |
|         wvalue &= 0x1f;
 | |
|         bits -= 5;
 | |
|         bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
 | |
|     tmp.top = top;
 | |
|     bn_correct_top(&tmp);
 | |
|     if (ret) {
 | |
|       if (!BN_copy(rr, &tmp)) {
 | |
|         ret = 0;
 | |
|       }
 | |
|       goto err; /* non-zero ret means it's not error */
 | |
|     }
 | |
|   } else
 | |
| #endif
 | |
|   {
 | |
|     if (!copy_to_prebuf(&tmp, top, powerbuf, 0, window) ||
 | |
|         !copy_to_prebuf(&am, top, powerbuf, 1, window)) {
 | |
|       goto err;
 | |
|     }
 | |
| 
 | |
|     /* If the window size is greater than 1, then calculate
 | |
|      * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
 | |
|      * (even powers could instead be computed as (a^(i/2))^2
 | |
|      * to use the slight performance advantage of sqr over mul).
 | |
|      */
 | |
|     if (window > 1) {
 | |
|       if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx) ||
 | |
|           !copy_to_prebuf(&tmp, top, powerbuf, 2, window)) {
 | |
|         goto err;
 | |
|       }
 | |
|       for (i = 3; i < numPowers; i++) {
 | |
|         /* Calculate a^i = a^(i-1) * a */
 | |
|         if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx) ||
 | |
|             !copy_to_prebuf(&tmp, top, powerbuf, i, window)) {
 | |
|           goto err;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bits--;
 | |
|     for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
 | |
|       wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
 | |
|     }
 | |
|     if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
 | |
|       goto err;
 | |
|     }
 | |
| 
 | |
|     /* Scan the exponent one window at a time starting from the most
 | |
|      * significant bits.
 | |
|      */
 | |
|     while (bits >= 0) {
 | |
|       wvalue = 0; /* The 'value' of the window */
 | |
| 
 | |
|       /* Scan the window, squaring the result as we go */
 | |
|       for (i = 0; i < window; i++, bits--) {
 | |
|         if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
 | |
|           goto err;
 | |
|         }
 | |
|         wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
 | |
|       }
 | |
| 
 | |
|       /* Fetch the appropriate pre-computed value from the pre-buf */
 | |
|       if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
 | |
|         goto err;
 | |
|       }
 | |
| 
 | |
|       /* Multiply the result into the intermediate result */
 | |
|       if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
 | |
|         goto err;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Convert the final result from montgomery to standard format */
 | |
|   if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
|   ret = 1;
 | |
| 
 | |
| err:
 | |
|   BN_MONT_CTX_free(new_mont);
 | |
|   if (powerbuf != NULL) {
 | |
|     OPENSSL_cleanse(powerbuf, powerbufLen);
 | |
|     OPENSSL_free(powerbufFree);
 | |
|   }
 | |
|   return (ret);
 | |
| }
 | |
| 
 | |
| int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
 | |
|                          const BIGNUM *m, BN_CTX *ctx,
 | |
|                          const BN_MONT_CTX *mont) {
 | |
|   BIGNUM a_bignum;
 | |
|   BN_init(&a_bignum);
 | |
| 
 | |
|   int ret = 0;
 | |
| 
 | |
|   if (!BN_set_word(&a_bignum, a)) {
 | |
|     OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
 | |
| 
 | |
| err:
 | |
|   BN_free(&a_bignum);
 | |
| 
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| #define TABLE_SIZE 32
 | |
| 
 | |
| int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
 | |
|                      const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
 | |
|                      BN_CTX *ctx, const BN_MONT_CTX *mont) {
 | |
|   BIGNUM tmp;
 | |
|   BN_init(&tmp);
 | |
| 
 | |
|   int ret = 0;
 | |
|   BN_MONT_CTX *new_mont = NULL;
 | |
| 
 | |
|   /* Allocate a montgomery context if it was not supplied by the caller. */
 | |
|   if (mont == NULL) {
 | |
|     new_mont = BN_MONT_CTX_new();
 | |
|     if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) {
 | |
|       goto err;
 | |
|     }
 | |
|     mont = new_mont;
 | |
|   }
 | |
| 
 | |
|   /* BN_mod_mul_montgomery removes one Montgomery factor, so passing one
 | |
|    * Montgomery-encoded and one non-Montgomery-encoded value gives a
 | |
|    * non-Montgomery-encoded result. */
 | |
|   if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
 | |
|       !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
 | |
|       !BN_to_montgomery(rr, rr, mont, ctx) ||
 | |
|       !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   ret = 1;
 | |
| 
 | |
| err:
 | |
|   BN_MONT_CTX_free(new_mont);
 | |
|   BN_free(&tmp);
 | |
| 
 | |
|   return ret;
 | |
| }
 |