Xamarin Public Jenkins (auto-signing) 94b2861243 Imported Upstream version 4.8.0.309
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
2016-11-10 13:04:39 +00:00

1273 lines
32 KiB
C

/* ====================================================================
* Copyright (c) 2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#include <openssl/base.h>
#include <assert.h>
#include <string.h>
#include <openssl/mem.h>
#include <openssl/cpu.h>
#include "internal.h"
#include "../internal.h"
#if !defined(OPENSSL_NO_ASM) && \
(defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
#define GHASH_ASM
#endif
#if defined(BSWAP4) && STRICT_ALIGNMENT == 1
/* redefine, because alignment is ensured */
#undef GETU32
#define GETU32(p) BSWAP4(*(const uint32_t *)(p))
#undef PUTU32
#define PUTU32(p, v) *(uint32_t *)(p) = BSWAP4(v)
#endif
#define PACK(s) ((size_t)(s) << (sizeof(size_t) * 8 - 16))
#define REDUCE1BIT(V) \
do { \
if (sizeof(size_t) == 8) { \
uint64_t T = UINT64_C(0xe100000000000000) & (0 - (V.lo & 1)); \
V.lo = (V.hi << 63) | (V.lo >> 1); \
V.hi = (V.hi >> 1) ^ T; \
} else { \
uint32_t T = 0xe1000000U & (0 - (uint32_t)(V.lo & 1)); \
V.lo = (V.hi << 63) | (V.lo >> 1); \
V.hi = (V.hi >> 1) ^ ((uint64_t)T << 32); \
} \
} while (0)
// kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four
// bits of a |size_t|.
static const size_t kSizeTWithoutLower4Bits = (size_t) -16;
static void gcm_init_4bit(u128 Htable[16], uint64_t H[2]) {
u128 V;
Htable[0].hi = 0;
Htable[0].lo = 0;
V.hi = H[0];
V.lo = H[1];
Htable[8] = V;
REDUCE1BIT(V);
Htable[4] = V;
REDUCE1BIT(V);
Htable[2] = V;
REDUCE1BIT(V);
Htable[1] = V;
Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;
V = Htable[4];
Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;
Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;
Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;
V = Htable[8];
Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;
Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;
Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;
Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;
Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;
Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;
Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;
#if defined(GHASH_ASM) && defined(OPENSSL_ARM)
/* ARM assembler expects specific dword order in Htable. */
{
int j;
const union {
long one;
char little;
} is_endian = {1};
if (is_endian.little) {
for (j = 0; j < 16; ++j) {
V = Htable[j];
Htable[j].hi = V.lo;
Htable[j].lo = V.hi;
}
} else {
for (j = 0; j < 16; ++j) {
V = Htable[j];
Htable[j].hi = V.lo << 32 | V.lo >> 32;
Htable[j].lo = V.hi << 32 | V.hi >> 32;
}
}
}
#endif
}
#if !defined(GHASH_ASM) || defined(OPENSSL_AARCH64)
static const size_t rem_4bit[16] = {
PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)};
static void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]) {
u128 Z;
int cnt = 15;
size_t rem, nlo, nhi;
const union {
long one;
char little;
} is_endian = {1};
nlo = ((const uint8_t *)Xi)[15];
nhi = nlo >> 4;
nlo &= 0xf;
Z.hi = Htable[nlo].hi;
Z.lo = Htable[nlo].lo;
while (1) {
rem = (size_t)Z.lo & 0xf;
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
Z.hi = (Z.hi >> 4);
if (sizeof(size_t) == 8) {
Z.hi ^= rem_4bit[rem];
} else {
Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
}
Z.hi ^= Htable[nhi].hi;
Z.lo ^= Htable[nhi].lo;
if (--cnt < 0) {
break;
}
nlo = ((const uint8_t *)Xi)[cnt];
nhi = nlo >> 4;
nlo &= 0xf;
rem = (size_t)Z.lo & 0xf;
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
Z.hi = (Z.hi >> 4);
if (sizeof(size_t) == 8) {
Z.hi ^= rem_4bit[rem];
} else {
Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
}
Z.hi ^= Htable[nlo].hi;
Z.lo ^= Htable[nlo].lo;
}
if (is_endian.little) {
#ifdef BSWAP8
Xi[0] = BSWAP8(Z.hi);
Xi[1] = BSWAP8(Z.lo);
#else
uint8_t *p = (uint8_t *)Xi;
uint32_t v;
v = (uint32_t)(Z.hi >> 32);
PUTU32(p, v);
v = (uint32_t)(Z.hi);
PUTU32(p + 4, v);
v = (uint32_t)(Z.lo >> 32);
PUTU32(p + 8, v);
v = (uint32_t)(Z.lo);
PUTU32(p + 12, v);
#endif
} else {
Xi[0] = Z.hi;
Xi[1] = Z.lo;
}
}
/* Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
* details... Compiler-generated code doesn't seem to give any
* performance improvement, at least not on x86[_64]. It's here
* mostly as reference and a placeholder for possible future
* non-trivial optimization[s]... */
static void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len) {
u128 Z;
int cnt;
size_t rem, nlo, nhi;
const union {
long one;
char little;
} is_endian = {1};
do {
cnt = 15;
nlo = ((const uint8_t *)Xi)[15];
nlo ^= inp[15];
nhi = nlo >> 4;
nlo &= 0xf;
Z.hi = Htable[nlo].hi;
Z.lo = Htable[nlo].lo;
while (1) {
rem = (size_t)Z.lo & 0xf;
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
Z.hi = (Z.hi >> 4);
if (sizeof(size_t) == 8) {
Z.hi ^= rem_4bit[rem];
} else {
Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
}
Z.hi ^= Htable[nhi].hi;
Z.lo ^= Htable[nhi].lo;
if (--cnt < 0) {
break;
}
nlo = ((const uint8_t *)Xi)[cnt];
nlo ^= inp[cnt];
nhi = nlo >> 4;
nlo &= 0xf;
rem = (size_t)Z.lo & 0xf;
Z.lo = (Z.hi << 60) | (Z.lo >> 4);
Z.hi = (Z.hi >> 4);
if (sizeof(size_t) == 8) {
Z.hi ^= rem_4bit[rem];
} else {
Z.hi ^= (uint64_t)rem_4bit[rem] << 32;
}
Z.hi ^= Htable[nlo].hi;
Z.lo ^= Htable[nlo].lo;
}
if (is_endian.little) {
#ifdef BSWAP8
Xi[0] = BSWAP8(Z.hi);
Xi[1] = BSWAP8(Z.lo);
#else
uint8_t *p = (uint8_t *)Xi;
uint32_t v;
v = (uint32_t)(Z.hi >> 32);
PUTU32(p, v);
v = (uint32_t)(Z.hi);
PUTU32(p + 4, v);
v = (uint32_t)(Z.lo >> 32);
PUTU32(p + 8, v);
v = (uint32_t)(Z.lo);
PUTU32(p + 12, v);
#endif
} else {
Xi[0] = Z.hi;
Xi[1] = Z.lo;
}
} while (inp += 16, len -= 16);
}
#else /* GHASH_ASM */
void gcm_gmult_4bit(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_4bit(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len);
#endif
#define GCM_MUL(ctx, Xi) gcm_gmult_4bit(ctx->Xi.u, ctx->Htable)
#if defined(GHASH_ASM)
#define GHASH(ctx, in, len) gcm_ghash_4bit((ctx)->Xi.u, (ctx)->Htable, in, len)
/* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
* trashing effect. In other words idea is to hash data while it's
* still in L1 cache after encryption pass... */
#define GHASH_CHUNK (3 * 1024)
#endif
#if defined(GHASH_ASM)
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
#define GHASH_ASM_X86_OR_64
#define GCM_FUNCREF_4BIT
void gcm_init_clmul(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_clmul(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_clmul(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len);
#if defined(OPENSSL_X86)
#define gcm_init_avx gcm_init_clmul
#define gcm_gmult_avx gcm_gmult_clmul
#define gcm_ghash_avx gcm_ghash_clmul
#else
void gcm_init_avx(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_avx(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
size_t len);
#define AESNI_GCM
static int aesni_gcm_enabled(GCM128_CONTEXT *ctx, ctr128_f stream) {
return stream == aesni_ctr32_encrypt_blocks &&
ctx->ghash == gcm_ghash_avx;
}
size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const void *key, uint8_t ivec[16], uint64_t *Xi);
size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
const void *key, uint8_t ivec[16], uint64_t *Xi);
#endif
#if defined(OPENSSL_X86)
#define GHASH_ASM_X86
void gcm_gmult_4bit_mmx(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_4bit_mmx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len);
void gcm_gmult_4bit_x86(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_4bit_x86(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len);
#endif
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
#include <openssl/arm_arch.h>
#if __ARM_ARCH__ >= 7
#define GHASH_ASM_ARM
#define GCM_FUNCREF_4BIT
static int pmull_capable(void) {
return CRYPTO_is_ARMv8_PMULL_capable();
}
void gcm_init_v8(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_v8(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_v8(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len);
#if defined(OPENSSL_ARM)
/* 32-bit ARM also has support for doing GCM with NEON instructions. */
static int neon_capable(void) {
return CRYPTO_is_NEON_capable();
}
void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]);
void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]);
void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len);
#else
/* AArch64 only has the ARMv8 versions of functions. */
static int neon_capable(void) {
return 0;
}
static void gcm_init_neon(u128 Htable[16], const uint64_t Xi[2]) {
abort();
}
static void gcm_gmult_neon(uint64_t Xi[2], const u128 Htable[16]) {
abort();
}
static void gcm_ghash_neon(uint64_t Xi[2], const u128 Htable[16],
const uint8_t *inp, size_t len) {
abort();
}
#endif
#endif
#endif
#endif
#ifdef GCM_FUNCREF_4BIT
#undef GCM_MUL
#define GCM_MUL(ctx, Xi) (*gcm_gmult_p)(ctx->Xi.u, ctx->Htable)
#ifdef GHASH
#undef GHASH
#define GHASH(ctx, in, len) (*gcm_ghash_p)(ctx->Xi.u, ctx->Htable, in, len)
#endif
#endif
void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key,
block128_f block) {
const union {
long one;
char little;
} is_endian = {1};
memset(ctx, 0, sizeof(*ctx));
ctx->block = block;
(*block)(ctx->H.c, ctx->H.c, key);
if (is_endian.little) {
/* H is stored in host byte order */
#ifdef BSWAP8
ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
#else
uint8_t *p = ctx->H.c;
uint64_t hi, lo;
hi = (uint64_t)GETU32(p) << 32 | GETU32(p + 4);
lo = (uint64_t)GETU32(p + 8) << 32 | GETU32(p + 12);
ctx->H.u[0] = hi;
ctx->H.u[1] = lo;
#endif
}
#if defined(GHASH_ASM_X86_OR_64)
if (crypto_gcm_clmul_enabled()) {
if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */
gcm_init_avx(ctx->Htable, ctx->H.u);
ctx->gmult = gcm_gmult_avx;
ctx->ghash = gcm_ghash_avx;
} else {
gcm_init_clmul(ctx->Htable, ctx->H.u);
ctx->gmult = gcm_gmult_clmul;
ctx->ghash = gcm_ghash_clmul;
}
return;
}
gcm_init_4bit(ctx->Htable, ctx->H.u);
#if defined(GHASH_ASM_X86) /* x86 only */
if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */
ctx->gmult = gcm_gmult_4bit_mmx;
ctx->ghash = gcm_ghash_4bit_mmx;
} else {
ctx->gmult = gcm_gmult_4bit_x86;
ctx->ghash = gcm_ghash_4bit_x86;
}
#else
ctx->gmult = gcm_gmult_4bit;
ctx->ghash = gcm_ghash_4bit;
#endif
#elif defined(GHASH_ASM_ARM)
if (pmull_capable()) {
gcm_init_v8(ctx->Htable, ctx->H.u);
ctx->gmult = gcm_gmult_v8;
ctx->ghash = gcm_ghash_v8;
} else if (neon_capable()) {
gcm_init_neon(ctx->Htable,ctx->H.u);
ctx->gmult = gcm_gmult_neon;
ctx->ghash = gcm_ghash_neon;
} else {
gcm_init_4bit(ctx->Htable, ctx->H.u);
ctx->gmult = gcm_gmult_4bit;
ctx->ghash = gcm_ghash_4bit;
}
#else
gcm_init_4bit(ctx->Htable, ctx->H.u);
ctx->gmult = gcm_gmult_4bit;
ctx->ghash = gcm_ghash_4bit;
#endif
}
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
const uint8_t *iv, size_t len) {
const union {
long one;
char little;
} is_endian = {1};
unsigned int ctr;
#ifdef GCM_FUNCREF_4BIT
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#endif
ctx->Yi.u[0] = 0;
ctx->Yi.u[1] = 0;
ctx->Xi.u[0] = 0;
ctx->Xi.u[1] = 0;
ctx->len.u[0] = 0; /* AAD length */
ctx->len.u[1] = 0; /* message length */
ctx->ares = 0;
ctx->mres = 0;
if (len == 12) {
memcpy(ctx->Yi.c, iv, 12);
ctx->Yi.c[15] = 1;
ctr = 1;
} else {
size_t i;
uint64_t len0 = len;
while (len >= 16) {
for (i = 0; i < 16; ++i) {
ctx->Yi.c[i] ^= iv[i];
}
GCM_MUL(ctx, Yi);
iv += 16;
len -= 16;
}
if (len) {
for (i = 0; i < len; ++i) {
ctx->Yi.c[i] ^= iv[i];
}
GCM_MUL(ctx, Yi);
}
len0 <<= 3;
if (is_endian.little) {
#ifdef BSWAP8
ctx->Yi.u[1] ^= BSWAP8(len0);
#else
ctx->Yi.c[8] ^= (uint8_t)(len0 >> 56);
ctx->Yi.c[9] ^= (uint8_t)(len0 >> 48);
ctx->Yi.c[10] ^= (uint8_t)(len0 >> 40);
ctx->Yi.c[11] ^= (uint8_t)(len0 >> 32);
ctx->Yi.c[12] ^= (uint8_t)(len0 >> 24);
ctx->Yi.c[13] ^= (uint8_t)(len0 >> 16);
ctx->Yi.c[14] ^= (uint8_t)(len0 >> 8);
ctx->Yi.c[15] ^= (uint8_t)(len0);
#endif
} else {
ctx->Yi.u[1] ^= len0;
}
GCM_MUL(ctx, Yi);
if (is_endian.little) {
ctr = GETU32(ctx->Yi.c + 12);
} else {
ctr = ctx->Yi.d[3];
}
}
(*ctx->block)(ctx->Yi.c, ctx->EK0.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
}
int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad, size_t len) {
size_t i;
unsigned int n;
uint64_t alen = ctx->len.u[0];
#ifdef GCM_FUNCREF_4BIT
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->ghash;
#endif
#endif
if (ctx->len.u[1]) {
return 0;
}
alen += len;
if (alen > (UINT64_C(1) << 61) || (sizeof(len) == 8 && alen < len)) {
return 0;
}
ctx->len.u[0] = alen;
n = ctx->ares;
if (n) {
while (n && len) {
ctx->Xi.c[n] ^= *(aad++);
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->ares = n;
return 1;
}
}
#ifdef GHASH
i = len & kSizeTWithoutLower4Bits;
if (i != 0) {
GHASH(ctx, aad, i);
aad += i;
len -= i;
}
#else
while (len >= 16) {
for (i = 0; i < 16; ++i) {
ctx->Xi.c[i] ^= aad[i];
}
GCM_MUL(ctx, Xi);
aad += 16;
len -= 16;
}
#endif
if (len) {
n = (unsigned int)len;
for (i = 0; i < len; ++i) {
ctx->Xi.c[i] ^= aad[i];
}
}
ctx->ares = n;
return 1;
}
int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
const unsigned char *in, unsigned char *out,
size_t len) {
const union {
long one;
char little;
} is_endian = {1};
unsigned int n, ctr;
size_t i;
uint64_t mlen = ctx->len.u[1];
block128_f block = ctx->block;
#ifdef GCM_FUNCREF_4BIT
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->ghash;
#endif
#endif
mlen += len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.u[1] = mlen;
if (ctx->ares) {
/* First call to encrypt finalizes GHASH(AAD) */
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
if (is_endian.little) {
ctr = GETU32(ctx->Yi.c + 12);
} else {
ctr = ctx->Yi.d[3];
}
n = ctx->mres;
if (n) {
while (n && len) {
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out) % sizeof(size_t) != 0) {
for (i = 0; i < len; ++i) {
if (n == 0) {
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
}
ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];
n = (n + 1) % 16;
if (n == 0) {
GCM_MUL(ctx, Xi);
}
}
ctx->mres = n;
return 1;
}
#if defined(GHASH) && defined(GHASH_CHUNK)
while (len >= GHASH_CHUNK) {
size_t j = GHASH_CHUNK;
while (j) {
size_t *out_t = (size_t *)out;
const size_t *in_t = (const size_t *)in;
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
for (i = 0; i < 16 / sizeof(size_t); ++i) {
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
}
out += 16;
in += 16;
j -= 16;
}
GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);
len -= GHASH_CHUNK;
}
if ((i = (len & (size_t) - 16))) {
size_t j = i;
while (len >= 16) {
size_t *out_t = (size_t *)out;
const size_t *in_t = (const size_t *)in;
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
for (i = 0; i < 16 / sizeof(size_t); ++i) {
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
}
out += 16;
in += 16;
len -= 16;
}
GHASH(ctx, out - j, j);
}
#else
while (len >= 16) {
size_t *out_t = (size_t *)out;
const size_t *in_t = (const size_t *)in;
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
for (i = 0; i < 16 / sizeof(size_t); ++i) {
ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i];
}
GCM_MUL(ctx, Xi);
out += 16;
in += 16;
len -= 16;
}
#endif
if (len) {
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
while (len--) {
ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
const unsigned char *in, unsigned char *out,
size_t len) {
const union {
long one;
char little;
} is_endian = {1};
unsigned int n, ctr;
size_t i;
uint64_t mlen = ctx->len.u[1];
block128_f block = ctx->block;
#ifdef GCM_FUNCREF_4BIT
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->ghash;
#endif
#endif
mlen += len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.u[1] = mlen;
if (ctx->ares) {
/* First call to decrypt finalizes GHASH(AAD) */
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
if (is_endian.little) {
ctr = GETU32(ctx->Yi.c + 12);
} else {
ctr = ctx->Yi.d[3];
}
n = ctx->mres;
if (n) {
while (n && len) {
uint8_t c = *(in++);
*(out++) = c ^ ctx->EKi.c[n];
ctx->Xi.c[n] ^= c;
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
if (STRICT_ALIGNMENT && ((size_t)in | (size_t)out) % sizeof(size_t) != 0) {
for (i = 0; i < len; ++i) {
uint8_t c;
if (n == 0) {
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
}
c = in[i];
out[i] = c ^ ctx->EKi.c[n];
ctx->Xi.c[n] ^= c;
n = (n + 1) % 16;
if (n == 0) {
GCM_MUL(ctx, Xi);
}
}
ctx->mres = n;
return 1;
}
#if defined(GHASH) && defined(GHASH_CHUNK)
while (len >= GHASH_CHUNK) {
size_t j = GHASH_CHUNK;
GHASH(ctx, in, GHASH_CHUNK);
while (j) {
size_t *out_t = (size_t *)out;
const size_t *in_t = (const size_t *)in;
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
for (i = 0; i < 16 / sizeof(size_t); ++i) {
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
}
out += 16;
in += 16;
j -= 16;
}
len -= GHASH_CHUNK;
}
i = len & kSizeTWithoutLower4Bits;
if (i != 0) {
GHASH(ctx, in, i);
while (len >= 16) {
size_t *out_t = (size_t *)out;
const size_t *in_t = (const size_t *)in;
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
for (i = 0; i < 16 / sizeof(size_t); ++i) {
out_t[i] = in_t[i] ^ ctx->EKi.t[i];
}
out += 16;
in += 16;
len -= 16;
}
}
#else
while (len >= 16) {
size_t *out_t = (size_t *)out;
const size_t *in_t = (const size_t *)in;
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
for (i = 0; i < 16 / sizeof(size_t); ++i) {
size_t c = in_t[i];
out_t[i] = c ^ ctx->EKi.t[i];
ctx->Xi.t[i] ^= c;
}
GCM_MUL(ctx, Xi);
out += 16;
in += 16;
len -= 16;
}
#endif
if (len) {
(*block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
while (len--) {
uint8_t c = in[n];
ctx->Xi.c[n] ^= c;
out[n] = c ^ ctx->EKi.c[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const void *key,
const uint8_t *in, uint8_t *out, size_t len,
ctr128_f stream) {
const union {
long one;
char little;
} is_endian = {1};
unsigned int n, ctr;
uint64_t mlen = ctx->len.u[1];
#ifdef GCM_FUNCREF_4BIT
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->ghash;
#endif
#endif
mlen += len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.u[1] = mlen;
if (ctx->ares) {
/* First call to encrypt finalizes GHASH(AAD) */
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
n = ctx->mres;
if (n) {
while (n && len) {
ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
#if defined(AESNI_GCM)
if (aesni_gcm_enabled(ctx, stream)) {
/* |aesni_gcm_encrypt| may not process all the input given to it. It may
* not process *any* of its input if it is deemed too small. */
size_t bulk = aesni_gcm_encrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u);
in += bulk;
out += bulk;
len -= bulk;
}
#endif
if (is_endian.little) {
ctr = GETU32(ctx->Yi.c + 12);
} else {
ctr = ctx->Yi.d[3];
}
#if defined(GHASH)
while (len >= GHASH_CHUNK) {
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
ctr += GHASH_CHUNK / 16;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
GHASH(ctx, out, GHASH_CHUNK);
out += GHASH_CHUNK;
in += GHASH_CHUNK;
len -= GHASH_CHUNK;
}
#endif
size_t i = len & kSizeTWithoutLower4Bits;
if (i != 0) {
size_t j = i / 16;
(*stream)(in, out, j, key, ctx->Yi.c);
ctr += (unsigned int)j;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
in += i;
len -= i;
#if defined(GHASH)
GHASH(ctx, out, i);
out += i;
#else
while (j--) {
for (i = 0; i < 16; ++i) {
ctx->Xi.c[i] ^= out[i];
}
GCM_MUL(ctx, Xi);
out += 16;
}
#endif
}
if (len) {
(*ctx->block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
while (len--) {
ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const void *key,
const uint8_t *in, uint8_t *out, size_t len,
ctr128_f stream) {
const union {
long one;
char little;
} is_endian = {1};
unsigned int n, ctr;
uint64_t mlen = ctx->len.u[1];
#ifdef GCM_FUNCREF_4BIT
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#ifdef GHASH
void (*gcm_ghash_p)(uint64_t Xi[2], const u128 Htable[16], const uint8_t *inp,
size_t len) = ctx->ghash;
#endif
#endif
mlen += len;
if (mlen > ((UINT64_C(1) << 36) - 32) ||
(sizeof(len) == 8 && mlen < len)) {
return 0;
}
ctx->len.u[1] = mlen;
if (ctx->ares) {
/* First call to decrypt finalizes GHASH(AAD) */
GCM_MUL(ctx, Xi);
ctx->ares = 0;
}
n = ctx->mres;
if (n) {
while (n && len) {
uint8_t c = *(in++);
*(out++) = c ^ ctx->EKi.c[n];
ctx->Xi.c[n] ^= c;
--len;
n = (n + 1) % 16;
}
if (n == 0) {
GCM_MUL(ctx, Xi);
} else {
ctx->mres = n;
return 1;
}
}
#if defined(AESNI_GCM)
if (aesni_gcm_enabled(ctx, stream)) {
/* |aesni_gcm_decrypt| may not process all the input given to it. It may
* not process *any* of its input if it is deemed too small. */
size_t bulk = aesni_gcm_decrypt(in, out, len, key, ctx->Yi.c, ctx->Xi.u);
in += bulk;
out += bulk;
len -= bulk;
}
#endif
if (is_endian.little) {
ctr = GETU32(ctx->Yi.c + 12);
} else {
ctr = ctx->Yi.d[3];
}
#if defined(GHASH)
while (len >= GHASH_CHUNK) {
GHASH(ctx, in, GHASH_CHUNK);
(*stream)(in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);
ctr += GHASH_CHUNK / 16;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
out += GHASH_CHUNK;
in += GHASH_CHUNK;
len -= GHASH_CHUNK;
}
#endif
size_t i = len & kSizeTWithoutLower4Bits;
if (i != 0) {
size_t j = i / 16;
#if defined(GHASH)
GHASH(ctx, in, i);
#else
while (j--) {
size_t k;
for (k = 0; k < 16; ++k) {
ctx->Xi.c[k] ^= in[k];
}
GCM_MUL(ctx, Xi);
in += 16;
}
j = i / 16;
in -= i;
#endif
(*stream)(in, out, j, key, ctx->Yi.c);
ctr += (unsigned int)j;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
out += i;
in += i;
len -= i;
}
if (len) {
(*ctx->block)(ctx->Yi.c, ctx->EKi.c, key);
++ctr;
if (is_endian.little) {
PUTU32(ctx->Yi.c + 12, ctr);
} else {
ctx->Yi.d[3] = ctr;
}
while (len--) {
uint8_t c = in[n];
ctx->Xi.c[n] ^= c;
out[n] = c ^ ctx->EKi.c[n];
++n;
}
}
ctx->mres = n;
return 1;
}
int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag, size_t len) {
const union {
long one;
char little;
} is_endian = {1};
uint64_t alen = ctx->len.u[0] << 3;
uint64_t clen = ctx->len.u[1] << 3;
#ifdef GCM_FUNCREF_4BIT
void (*gcm_gmult_p)(uint64_t Xi[2], const u128 Htable[16]) = ctx->gmult;
#endif
if (ctx->mres || ctx->ares) {
GCM_MUL(ctx, Xi);
}
if (is_endian.little) {
#ifdef BSWAP8
alen = BSWAP8(alen);
clen = BSWAP8(clen);
#else
uint8_t *p = ctx->len.c;
ctx->len.u[0] = alen;
ctx->len.u[1] = clen;
alen = (uint64_t)GETU32(p) << 32 | GETU32(p + 4);
clen = (uint64_t)GETU32(p + 8) << 32 | GETU32(p + 12);
#endif
}
ctx->Xi.u[0] ^= alen;
ctx->Xi.u[1] ^= clen;
GCM_MUL(ctx, Xi);
ctx->Xi.u[0] ^= ctx->EK0.u[0];
ctx->Xi.u[1] ^= ctx->EK0.u[1];
if (tag && len <= sizeof(ctx->Xi)) {
return CRYPTO_memcmp(ctx->Xi.c, tag, len) == 0;
} else {
return 0;
}
}
void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) {
CRYPTO_gcm128_finish(ctx, NULL, 0);
memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));
}
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
int crypto_gcm_clmul_enabled(void) {
#ifdef GHASH_ASM
return OPENSSL_ia32cap_P[0] & (1 << 24) && /* check FXSR bit */
OPENSSL_ia32cap_P[1] & (1 << 1); /* check PCLMULQDQ bit */
#else
return 0;
#endif
}
#endif