94b2861243
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
450 lines
13 KiB
C
450 lines
13 KiB
C
/* Originally written by Bodo Moeller for the OpenSSL project.
|
|
* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The elliptic curve binary polynomial software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
#include <openssl/ec.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "internal.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
/* This file implements the wNAF-based interleaving multi-exponentation method
|
|
* (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
|
|
* */
|
|
|
|
/* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
|
|
* This is an array r[] of values that are either zero or odd with an
|
|
* absolute value less than 2^w satisfying
|
|
* scalar = \sum_j r[j]*2^j
|
|
* where at most one of any w+1 consecutive digits is non-zero
|
|
* with the exception that the most significant digit may be only
|
|
* w-1 zeros away from that next non-zero digit.
|
|
*/
|
|
static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
|
|
int window_val;
|
|
int ok = 0;
|
|
signed char *r = NULL;
|
|
int sign = 1;
|
|
int bit, next_bit, mask;
|
|
size_t len = 0, j;
|
|
|
|
if (BN_is_zero(scalar)) {
|
|
r = OPENSSL_malloc(1);
|
|
if (!r) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
r[0] = 0;
|
|
*ret_len = 1;
|
|
return r;
|
|
}
|
|
|
|
if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute
|
|
values less than 2^7 */
|
|
{
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
bit = 1 << w; /* at most 128 */
|
|
next_bit = bit << 1; /* at most 256 */
|
|
mask = next_bit - 1; /* at most 255 */
|
|
|
|
if (BN_is_negative(scalar)) {
|
|
sign = -1;
|
|
}
|
|
|
|
if (scalar->d == NULL || scalar->top == 0) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
len = BN_num_bits(scalar);
|
|
r = OPENSSL_malloc(
|
|
len +
|
|
1); /* modified wNAF may be one digit longer than binary representation
|
|
* (*ret_len will be set to the actual length, i.e. at most
|
|
* BN_num_bits(scalar) + 1) */
|
|
if (r == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
window_val = scalar->d[0] & mask;
|
|
j = 0;
|
|
while ((window_val != 0) ||
|
|
(j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
|
|
{
|
|
int digit = 0;
|
|
|
|
/* 0 <= window_val <= 2^(w+1) */
|
|
|
|
if (window_val & 1) {
|
|
/* 0 < window_val < 2^(w+1) */
|
|
|
|
if (window_val & bit) {
|
|
digit = window_val - next_bit; /* -2^w < digit < 0 */
|
|
|
|
#if 1 /* modified wNAF */
|
|
if (j + w + 1 >= len) {
|
|
/* special case for generating modified wNAFs:
|
|
* no new bits will be added into window_val,
|
|
* so using a positive digit here will decrease
|
|
* the total length of the representation */
|
|
|
|
digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
|
|
}
|
|
#endif
|
|
} else {
|
|
digit = window_val; /* 0 < digit < 2^w */
|
|
}
|
|
|
|
if (digit <= -bit || digit >= bit || !(digit & 1)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
window_val -= digit;
|
|
|
|
/* now window_val is 0 or 2^(w+1) in standard wNAF generation;
|
|
* for modified window NAFs, it may also be 2^w
|
|
*/
|
|
if (window_val != 0 && window_val != next_bit && window_val != bit) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
r[j++] = sign * digit;
|
|
|
|
window_val >>= 1;
|
|
window_val += bit * BN_is_bit_set(scalar, j + w);
|
|
|
|
if (window_val > next_bit) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (j > len + 1) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
len = j;
|
|
ok = 1;
|
|
|
|
err:
|
|
if (!ok) {
|
|
OPENSSL_free(r);
|
|
r = NULL;
|
|
}
|
|
if (ok) {
|
|
*ret_len = len;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
/* TODO: table should be optimised for the wNAF-based implementation,
|
|
* sometimes smaller windows will give better performance
|
|
* (thus the boundaries should be increased)
|
|
*/
|
|
#define EC_window_bits_for_scalar_size(b) \
|
|
((size_t)((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300 \
|
|
? 4 \
|
|
: (b) >= 70 ? 3 : (b) >= 20 \
|
|
? 2 \
|
|
: 1))
|
|
|
|
int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
|
|
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
|
|
BN_CTX *new_ctx = NULL;
|
|
const EC_POINT *generator = NULL;
|
|
EC_POINT *tmp = NULL;
|
|
size_t total_num;
|
|
size_t i, j;
|
|
int k;
|
|
int r_is_inverted = 0;
|
|
int r_is_at_infinity = 1;
|
|
size_t *wsize = NULL; /* individual window sizes */
|
|
signed char **wNAF = NULL; /* individual wNAFs */
|
|
size_t *wNAF_len = NULL;
|
|
size_t max_len = 0;
|
|
size_t num_val;
|
|
EC_POINT **val = NULL; /* precomputation */
|
|
EC_POINT **v;
|
|
EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
|
|
int ret = 0;
|
|
|
|
if (ctx == NULL) {
|
|
ctx = new_ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* TODO: This function used to take |points| and |scalars| as arrays of
|
|
* |num| elements. The code below should be simplified to work in terms of |p|
|
|
* and |p_scalar|. */
|
|
size_t num = p != NULL ? 1 : 0;
|
|
const EC_POINT **points = p != NULL ? &p : NULL;
|
|
const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
|
|
|
|
total_num = num;
|
|
|
|
if (g_scalar != NULL) {
|
|
generator = EC_GROUP_get0_generator(group);
|
|
if (generator == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
|
|
goto err;
|
|
}
|
|
|
|
++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
|
|
}
|
|
|
|
|
|
wsize = OPENSSL_malloc(total_num * sizeof wsize[0]);
|
|
wNAF_len = OPENSSL_malloc(total_num * sizeof wNAF_len[0]);
|
|
wNAF = OPENSSL_malloc((total_num + 1) *
|
|
sizeof wNAF[0]); /* includes space for pivot */
|
|
val_sub = OPENSSL_malloc(total_num * sizeof val_sub[0]);
|
|
|
|
/* Ensure wNAF is initialised in case we end up going to err. */
|
|
if (wNAF) {
|
|
wNAF[0] = NULL; /* preliminary pivot */
|
|
}
|
|
|
|
if (!wsize || !wNAF_len || !wNAF || !val_sub) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
/* num_val will be the total number of temporarily precomputed points */
|
|
num_val = 0;
|
|
|
|
for (i = 0; i < total_num; i++) {
|
|
size_t bits;
|
|
|
|
bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
|
|
wsize[i] = EC_window_bits_for_scalar_size(bits);
|
|
num_val += (size_t)1 << (wsize[i] - 1);
|
|
wNAF[i + 1] = NULL; /* make sure we always have a pivot */
|
|
wNAF[i] =
|
|
compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
|
|
if (wNAF[i] == NULL) {
|
|
goto err;
|
|
}
|
|
if (wNAF_len[i] > max_len) {
|
|
max_len = wNAF_len[i];
|
|
}
|
|
}
|
|
|
|
/* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
|
|
* a pointer to the subarray for the i-th point. */
|
|
val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
|
|
if (val == NULL) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
val[num_val] = NULL; /* pivot element */
|
|
|
|
/* allocate points for precomputation */
|
|
v = val;
|
|
for (i = 0; i < total_num; i++) {
|
|
val_sub[i] = v;
|
|
for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
|
|
*v = EC_POINT_new(group);
|
|
if (*v == NULL) {
|
|
goto err;
|
|
}
|
|
v++;
|
|
}
|
|
}
|
|
if (!(v == val + num_val)) {
|
|
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (!(tmp = EC_POINT_new(group))) {
|
|
goto err;
|
|
}
|
|
|
|
/* prepare precomputed values:
|
|
* val_sub[i][0] := points[i]
|
|
* val_sub[i][1] := 3 * points[i]
|
|
* val_sub[i][2] := 5 * points[i]
|
|
* ...
|
|
*/
|
|
for (i = 0; i < total_num; i++) {
|
|
if (i < num) {
|
|
if (!EC_POINT_copy(val_sub[i][0], points[i])) {
|
|
goto err;
|
|
}
|
|
} else if (!EC_POINT_copy(val_sub[i][0], generator)) {
|
|
goto err;
|
|
}
|
|
|
|
if (wsize[i] > 1) {
|
|
if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
|
|
goto err;
|
|
}
|
|
for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
|
|
if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
|
|
if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
r_is_at_infinity = 1;
|
|
|
|
for (k = max_len - 1; k >= 0; k--) {
|
|
if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < total_num; i++) {
|
|
if (wNAF_len[i] > (size_t)k) {
|
|
int digit = wNAF[i][k];
|
|
int is_neg;
|
|
|
|
if (digit) {
|
|
is_neg = digit < 0;
|
|
|
|
if (is_neg) {
|
|
digit = -digit;
|
|
}
|
|
|
|
if (is_neg != r_is_inverted) {
|
|
if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
|
|
goto err;
|
|
}
|
|
r_is_inverted = !r_is_inverted;
|
|
}
|
|
|
|
/* digit > 0 */
|
|
|
|
if (r_is_at_infinity) {
|
|
if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
|
|
goto err;
|
|
}
|
|
r_is_at_infinity = 0;
|
|
} else {
|
|
if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (r_is_at_infinity) {
|
|
if (!EC_POINT_set_to_infinity(group, r)) {
|
|
goto err;
|
|
}
|
|
} else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_free(new_ctx);
|
|
EC_POINT_free(tmp);
|
|
OPENSSL_free(wsize);
|
|
OPENSSL_free(wNAF_len);
|
|
if (wNAF != NULL) {
|
|
signed char **w;
|
|
|
|
for (w = wNAF; *w != NULL; w++) {
|
|
OPENSSL_free(*w);
|
|
}
|
|
|
|
OPENSSL_free(wNAF);
|
|
}
|
|
if (val != NULL) {
|
|
for (v = val; *v != NULL; v++) {
|
|
EC_POINT_clear_free(*v);
|
|
}
|
|
|
|
OPENSSL_free(val);
|
|
}
|
|
OPENSSL_free(val_sub);
|
|
return ret;
|
|
}
|