You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			1421 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1421 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #define MINIMAL_STDERR_OUTPUT
 | |
| 
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/ExecutionEngine/MCJIT.h"
 | |
| #include "llvm/ExecutionEngine/SectionMemoryManager.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Support/TargetSelect.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include <cctype>
 | |
| #include <cstdio>
 | |
| #include <map>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lexer
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
| // of these for known things.
 | |
| enum Token {
 | |
|   tok_eof = -1,
 | |
| 
 | |
|   // commands
 | |
|   tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|   // primary
 | |
|   tok_identifier = -4, tok_number = -5,
 | |
| 
 | |
|   // control
 | |
|   tok_if = -6, tok_then = -7, tok_else = -8,
 | |
|   tok_for = -9, tok_in = -10,
 | |
| 
 | |
|   // operators
 | |
|   tok_binary = -11, tok_unary = -12,
 | |
| 
 | |
|   // var definition
 | |
|   tok_var = -13
 | |
| };
 | |
| 
 | |
| static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
| static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
| /// gettok - Return the next token from standard input.
 | |
| static int gettok() {
 | |
|   static int LastChar = ' ';
 | |
| 
 | |
|   // Skip any whitespace.
 | |
|   while (isspace(LastChar))
 | |
|     LastChar = getchar();
 | |
| 
 | |
|   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|     IdentifierStr = LastChar;
 | |
|     while (isalnum((LastChar = getchar())))
 | |
|       IdentifierStr += LastChar;
 | |
| 
 | |
|     if (IdentifierStr == "def") return tok_def;
 | |
|     if (IdentifierStr == "extern") return tok_extern;
 | |
|     if (IdentifierStr == "if") return tok_if;
 | |
|     if (IdentifierStr == "then") return tok_then;
 | |
|     if (IdentifierStr == "else") return tok_else;
 | |
|     if (IdentifierStr == "for") return tok_for;
 | |
|     if (IdentifierStr == "in") return tok_in;
 | |
|     if (IdentifierStr == "binary") return tok_binary;
 | |
|     if (IdentifierStr == "unary") return tok_unary;
 | |
|     if (IdentifierStr == "var") return tok_var;
 | |
|     return tok_identifier;
 | |
|   }
 | |
| 
 | |
|   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|     std::string NumStr;
 | |
|     do {
 | |
|       NumStr += LastChar;
 | |
|       LastChar = getchar();
 | |
|     } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|     NumVal = strtod(NumStr.c_str(), 0);
 | |
|     return tok_number;
 | |
|   }
 | |
| 
 | |
|   if (LastChar == '#') {
 | |
|     // Comment until end of line.
 | |
|     do LastChar = getchar();
 | |
|     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
| 
 | |
|     if (LastChar != EOF)
 | |
|       return gettok();
 | |
|   }
 | |
| 
 | |
|   // Check for end of file.  Don't eat the EOF.
 | |
|   if (LastChar == EOF)
 | |
|     return tok_eof;
 | |
| 
 | |
|   // Otherwise, just return the character as its ascii value.
 | |
|   int ThisChar = LastChar;
 | |
|   LastChar = getchar();
 | |
|   return ThisChar;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Abstract Syntax Tree (aka Parse Tree)
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ExprAST - Base class for all expression nodes.
 | |
| class ExprAST {
 | |
| public:
 | |
|   virtual ~ExprAST() {}
 | |
|   virtual Value *Codegen() = 0;
 | |
| };
 | |
| 
 | |
| /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
| class NumberExprAST : public ExprAST {
 | |
|   double Val;
 | |
| public:
 | |
|   NumberExprAST(double val) : Val(val) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
| class VariableExprAST : public ExprAST {
 | |
|   std::string Name;
 | |
| public:
 | |
|   VariableExprAST(const std::string &name) : Name(name) {}
 | |
|   const std::string &getName() const { return Name; }
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// UnaryExprAST - Expression class for a unary operator.
 | |
| class UnaryExprAST : public ExprAST {
 | |
|   char Opcode;
 | |
|   ExprAST *Operand;
 | |
| public:
 | |
|   UnaryExprAST(char opcode, ExprAST *operand)
 | |
|     : Opcode(opcode), Operand(operand) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// BinaryExprAST - Expression class for a binary operator.
 | |
| class BinaryExprAST : public ExprAST {
 | |
|   char Op;
 | |
|   ExprAST *LHS, *RHS;
 | |
| public:
 | |
|   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
 | |
|     : Op(op), LHS(lhs), RHS(rhs) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// CallExprAST - Expression class for function calls.
 | |
| class CallExprAST : public ExprAST {
 | |
|   std::string Callee;
 | |
|   std::vector<ExprAST*> Args;
 | |
| public:
 | |
|   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|     : Callee(callee), Args(args) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// IfExprAST - Expression class for if/then/else.
 | |
| class IfExprAST : public ExprAST {
 | |
|   ExprAST *Cond, *Then, *Else;
 | |
| public:
 | |
|   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | |
|   : Cond(cond), Then(then), Else(_else) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// ForExprAST - Expression class for for/in.
 | |
| class ForExprAST : public ExprAST {
 | |
|   std::string VarName;
 | |
|   ExprAST *Start, *End, *Step, *Body;
 | |
| public:
 | |
|   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | |
|              ExprAST *step, ExprAST *body)
 | |
|     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// VarExprAST - Expression class for var/in
 | |
| class VarExprAST : public ExprAST {
 | |
|   std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
 | |
|              ExprAST *body)
 | |
|   : VarNames(varnames), Body(body) {}
 | |
| 
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its argument names as well as if it is an operator.
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
|   bool isOperator;
 | |
|   unsigned Precedence;  // Precedence if a binary op.
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | |
|                bool isoperator = false, unsigned prec = 0)
 | |
|   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
 | |
| 
 | |
|   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | |
|   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | |
| 
 | |
|   char getOperatorName() const {
 | |
|     assert(isUnaryOp() || isBinaryOp());
 | |
|     return Name[Name.size()-1];
 | |
|   }
 | |
| 
 | |
|   unsigned getBinaryPrecedence() const { return Precedence; }
 | |
| 
 | |
|   Function *Codegen();
 | |
| 
 | |
|   void CreateArgumentAllocas(Function *F);
 | |
| };
 | |
| 
 | |
| /// FunctionAST - This class represents a function definition itself.
 | |
| class FunctionAST {
 | |
|   PrototypeAST *Proto;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|     : Proto(proto), Body(body) {}
 | |
| 
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
| /// token the parser is looking at.  getNextToken reads another token from the
 | |
| /// lexer and updates CurTok with its results.
 | |
| static int CurTok;
 | |
| static int getNextToken() {
 | |
|   return CurTok = gettok();
 | |
| }
 | |
| 
 | |
| /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
| /// defined.
 | |
| static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
| static int GetTokPrecedence() {
 | |
|   if (!isascii(CurTok))
 | |
|     return -1;
 | |
| 
 | |
|   // Make sure it's a declared binop.
 | |
|   int TokPrec = BinopPrecedence[CurTok];
 | |
|   if (TokPrec <= 0) return -1;
 | |
|   return TokPrec;
 | |
| }
 | |
| 
 | |
| /// Error* - These are little helper functions for error handling.
 | |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| static ExprAST *ParseExpression();
 | |
| 
 | |
| /// identifierexpr
 | |
| ///   ::= identifier
 | |
| ///   ::= identifier '(' expression* ')'
 | |
| static ExprAST *ParseIdentifierExpr() {
 | |
|   std::string IdName = IdentifierStr;
 | |
| 
 | |
|   getNextToken();  // eat identifier.
 | |
| 
 | |
|   if (CurTok != '(') // Simple variable ref.
 | |
|     return new VariableExprAST(IdName);
 | |
| 
 | |
|   // Call.
 | |
|   getNextToken();  // eat (
 | |
|   std::vector<ExprAST*> Args;
 | |
|   if (CurTok != ')') {
 | |
|     while (1) {
 | |
|       ExprAST *Arg = ParseExpression();
 | |
|       if (!Arg) return 0;
 | |
|       Args.push_back(Arg);
 | |
| 
 | |
|       if (CurTok == ')') break;
 | |
| 
 | |
|       if (CurTok != ',')
 | |
|         return Error("Expected ')' or ',' in argument list");
 | |
|       getNextToken();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eat the ')'.
 | |
|   getNextToken();
 | |
| 
 | |
|   return new CallExprAST(IdName, Args);
 | |
| }
 | |
| 
 | |
| /// numberexpr ::= number
 | |
| static ExprAST *ParseNumberExpr() {
 | |
|   ExprAST *Result = new NumberExprAST(NumVal);
 | |
|   getNextToken(); // consume the number
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// parenexpr ::= '(' expression ')'
 | |
| static ExprAST *ParseParenExpr() {
 | |
|   getNextToken();  // eat (.
 | |
|   ExprAST *V = ParseExpression();
 | |
|   if (!V) return 0;
 | |
| 
 | |
|   if (CurTok != ')')
 | |
|     return Error("expected ')'");
 | |
|   getNextToken();  // eat ).
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | |
| static ExprAST *ParseIfExpr() {
 | |
|   getNextToken();  // eat the if.
 | |
| 
 | |
|   // condition.
 | |
|   ExprAST *Cond = ParseExpression();
 | |
|   if (!Cond) return 0;
 | |
| 
 | |
|   if (CurTok != tok_then)
 | |
|     return Error("expected then");
 | |
|   getNextToken();  // eat the then
 | |
| 
 | |
|   ExprAST *Then = ParseExpression();
 | |
|   if (Then == 0) return 0;
 | |
| 
 | |
|   if (CurTok != tok_else)
 | |
|     return Error("expected else");
 | |
| 
 | |
|   getNextToken();
 | |
| 
 | |
|   ExprAST *Else = ParseExpression();
 | |
|   if (!Else) return 0;
 | |
| 
 | |
|   return new IfExprAST(Cond, Then, Else);
 | |
| }
 | |
| 
 | |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | |
| static ExprAST *ParseForExpr() {
 | |
|   getNextToken();  // eat the for.
 | |
| 
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after for");
 | |
| 
 | |
|   std::string IdName = IdentifierStr;
 | |
|   getNextToken();  // eat identifier.
 | |
| 
 | |
|   if (CurTok != '=')
 | |
|     return Error("expected '=' after for");
 | |
|   getNextToken();  // eat '='.
 | |
| 
 | |
| 
 | |
|   ExprAST *Start = ParseExpression();
 | |
|   if (Start == 0) return 0;
 | |
|   if (CurTok != ',')
 | |
|     return Error("expected ',' after for start value");
 | |
|   getNextToken();
 | |
| 
 | |
|   ExprAST *End = ParseExpression();
 | |
|   if (End == 0) return 0;
 | |
| 
 | |
|   // The step value is optional.
 | |
|   ExprAST *Step = 0;
 | |
|   if (CurTok == ',') {
 | |
|     getNextToken();
 | |
|     Step = ParseExpression();
 | |
|     if (Step == 0) return 0;
 | |
|   }
 | |
| 
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' after for");
 | |
|   getNextToken();  // eat 'in'.
 | |
| 
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
| 
 | |
|   return new ForExprAST(IdName, Start, End, Step, Body);
 | |
| }
 | |
| 
 | |
| /// varexpr ::= 'var' identifier ('=' expression)?
 | |
| //                    (',' identifier ('=' expression)?)* 'in' expression
 | |
| static ExprAST *ParseVarExpr() {
 | |
|   getNextToken();  // eat the var.
 | |
| 
 | |
|   std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
| 
 | |
|   // At least one variable name is required.
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after var");
 | |
| 
 | |
|   while (1) {
 | |
|     std::string Name = IdentifierStr;
 | |
|     getNextToken();  // eat identifier.
 | |
| 
 | |
|     // Read the optional initializer.
 | |
|     ExprAST *Init = 0;
 | |
|     if (CurTok == '=') {
 | |
|       getNextToken(); // eat the '='.
 | |
| 
 | |
|       Init = ParseExpression();
 | |
|       if (Init == 0) return 0;
 | |
|     }
 | |
| 
 | |
|     VarNames.push_back(std::make_pair(Name, Init));
 | |
| 
 | |
|     // End of var list, exit loop.
 | |
|     if (CurTok != ',') break;
 | |
|     getNextToken(); // eat the ','.
 | |
| 
 | |
|     if (CurTok != tok_identifier)
 | |
|       return Error("expected identifier list after var");
 | |
|   }
 | |
| 
 | |
|   // At this point, we have to have 'in'.
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' keyword after 'var'");
 | |
|   getNextToken();  // eat 'in'.
 | |
| 
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
| 
 | |
|   return new VarExprAST(VarNames, Body);
 | |
| }
 | |
| 
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| ///   ::= ifexpr
 | |
| ///   ::= forexpr
 | |
| ///   ::= varexpr
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   case tok_if:         return ParseIfExpr();
 | |
|   case tok_for:        return ParseForExpr();
 | |
|   case tok_var:        return ParseVarExpr();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// unary
 | |
| ///   ::= primary
 | |
| ///   ::= '!' unary
 | |
| static ExprAST *ParseUnary() {
 | |
|   // If the current token is not an operator, it must be a primary expr.
 | |
|   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | |
|     return ParsePrimary();
 | |
| 
 | |
|   // If this is a unary operator, read it.
 | |
|   int Opc = CurTok;
 | |
|   getNextToken();
 | |
|   if (ExprAST *Operand = ParseUnary())
 | |
|     return new UnaryExprAST(Opc, Operand);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// binoprhs
 | |
| ///   ::= ('+' unary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   // If this is a binop, find its precedence.
 | |
|   while (1) {
 | |
|     int TokPrec = GetTokPrecedence();
 | |
| 
 | |
|     // If this is a binop that binds at least as tightly as the current binop,
 | |
|     // consume it, otherwise we are done.
 | |
|     if (TokPrec < ExprPrec)
 | |
|       return LHS;
 | |
| 
 | |
|     // Okay, we know this is a binop.
 | |
|     int BinOp = CurTok;
 | |
|     getNextToken();  // eat binop
 | |
| 
 | |
|     // Parse the unary expression after the binary operator.
 | |
|     ExprAST *RHS = ParseUnary();
 | |
|     if (!RHS) return 0;
 | |
| 
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
|       RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|       if (RHS == 0) return 0;
 | |
|     }
 | |
| 
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expression
 | |
| ///   ::= unary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   ExprAST *LHS = ParseUnary();
 | |
|   if (!LHS) return 0;
 | |
| 
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| 
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| ///   ::= binary LETTER number? (id, id)
 | |
| ///   ::= unary LETTER (id)
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   std::string FnName;
 | |
| 
 | |
|   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
 | |
|   unsigned BinaryPrecedence = 30;
 | |
| 
 | |
|   switch (CurTok) {
 | |
|   default:
 | |
|     return ErrorP("Expected function name in prototype");
 | |
|   case tok_identifier:
 | |
|     FnName = IdentifierStr;
 | |
|     Kind = 0;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   case tok_unary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected unary operator");
 | |
|     FnName = "unary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 1;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   case tok_binary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected binary operator");
 | |
|     FnName = "binary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 2;
 | |
|     getNextToken();
 | |
| 
 | |
|     // Read the precedence if present.
 | |
|     if (CurTok == tok_number) {
 | |
|       if (NumVal < 1 || NumVal > 100)
 | |
|         return ErrorP("Invalid precedecnce: must be 1..100");
 | |
|       BinaryPrecedence = (unsigned)NumVal;
 | |
|       getNextToken();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
| 
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
| 
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
| 
 | |
|   // Verify right number of names for operator.
 | |
|   if (Kind && ArgNames.size() != Kind)
 | |
|     return ErrorP("Invalid number of operands for operator");
 | |
| 
 | |
|   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
 | |
| }
 | |
| 
 | |
| /// definition ::= 'def' prototype expression
 | |
| static FunctionAST *ParseDefinition() {
 | |
|   getNextToken();  // eat def.
 | |
|   PrototypeAST *Proto = ParsePrototype();
 | |
|   if (Proto == 0) return 0;
 | |
| 
 | |
|   if (ExprAST *E = ParseExpression())
 | |
|     return new FunctionAST(Proto, E);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// toplevelexpr ::= expression
 | |
| static FunctionAST *ParseTopLevelExpr() {
 | |
|   if (ExprAST *E = ParseExpression()) {
 | |
|     // Make an anonymous proto.
 | |
|     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|     return new FunctionAST(Proto, E);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// external ::= 'extern' prototype
 | |
| static PrototypeAST *ParseExtern() {
 | |
|   getNextToken();  // eat extern.
 | |
|   return ParsePrototype();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Quick and dirty hack
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // FIXME: Obviously we can do better than this
 | |
| std::string GenerateUniqueName(const char *root)
 | |
| {
 | |
|   static int i = 0;
 | |
|   char s[16];
 | |
|   sprintf(s, "%s%d", root, i++);
 | |
|   std::string S = s;
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| std::string MakeLegalFunctionName(std::string Name)
 | |
| {
 | |
|   std::string NewName;
 | |
|   if (!Name.length())
 | |
|       return GenerateUniqueName("anon_func_");
 | |
| 
 | |
|   // Start with what we have
 | |
|   NewName = Name;
 | |
| 
 | |
|   // Look for a numberic first character
 | |
|   if (NewName.find_first_of("0123456789") == 0) {
 | |
|     NewName.insert(0, 1, 'n');
 | |
|   }
 | |
| 
 | |
|   // Replace illegal characters with their ASCII equivalent
 | |
|   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
 | |
|   size_t pos;
 | |
|   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
 | |
|     char old_c = NewName.at(pos);
 | |
|     char new_str[16];
 | |
|     sprintf(new_str, "%d", (int)old_c);
 | |
|     NewName = NewName.replace(pos, 1, new_str);
 | |
|   }
 | |
| 
 | |
|   return NewName;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MCJIT helper class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class MCJITHelper
 | |
| {
 | |
| public:
 | |
|   MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
 | |
|   ~MCJITHelper();
 | |
| 
 | |
|   Function *getFunction(const std::string FnName);
 | |
|   Module *getModuleForNewFunction();
 | |
|   void *getPointerToFunction(Function* F);
 | |
|   void *getPointerToNamedFunction(const std::string &Name);
 | |
|   ExecutionEngine *compileModule(Module *M);
 | |
|   void closeCurrentModule();
 | |
|   void dump();
 | |
| 
 | |
| private:
 | |
|   typedef std::vector<Module*> ModuleVector;
 | |
| 
 | |
|   LLVMContext  &Context;
 | |
|   Module       *OpenModule;
 | |
|   ModuleVector  Modules;
 | |
|   std::map<Module *, ExecutionEngine *> EngineMap;
 | |
| };
 | |
| 
 | |
| class HelpingMemoryManager : public SectionMemoryManager
 | |
| {
 | |
|   HelpingMemoryManager(const HelpingMemoryManager&) = delete;
 | |
|   void operator=(const HelpingMemoryManager&) = delete;
 | |
| 
 | |
| public:
 | |
|   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
 | |
|   virtual ~HelpingMemoryManager() {}
 | |
| 
 | |
|   /// This method returns the address of the specified function.
 | |
|   /// Our implementation will attempt to find functions in other
 | |
|   /// modules associated with the MCJITHelper to cross link functions
 | |
|   /// from one generated module to another.
 | |
|   ///
 | |
|   /// If \p AbortOnFailure is false and no function with the given name is
 | |
|   /// found, this function returns a null pointer. Otherwise, it prints a
 | |
|   /// message to stderr and aborts.
 | |
|   virtual void *getPointerToNamedFunction(const std::string &Name,
 | |
|                                           bool AbortOnFailure = true);
 | |
| private:
 | |
|   MCJITHelper *MasterHelper;
 | |
| };
 | |
| 
 | |
| void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
 | |
|                                         bool AbortOnFailure)
 | |
| {
 | |
|   // Try the standard symbol resolution first, but ask it not to abort.
 | |
|   void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
 | |
|   if (pfn)
 | |
|     return pfn;
 | |
| 
 | |
|   pfn = MasterHelper->getPointerToNamedFunction(Name);
 | |
|   if (!pfn && AbortOnFailure)
 | |
|     report_fatal_error("Program used external function '" + Name +
 | |
|                         "' which could not be resolved!");
 | |
|   return pfn;
 | |
| }
 | |
| 
 | |
| MCJITHelper::~MCJITHelper()
 | |
| {
 | |
|   // Walk the vector of modules.
 | |
|   ModuleVector::iterator it, end;
 | |
|   for (it = Modules.begin(), end = Modules.end();
 | |
|        it != end; ++it) {
 | |
|     // See if we have an execution engine for this module.
 | |
|     std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it);
 | |
|     // If we have an EE, the EE owns the module so just delete the EE.
 | |
|     if (mapIt != EngineMap.end()) {
 | |
|       delete mapIt->second;
 | |
|     } else {
 | |
|       // Otherwise, we still own the module.  Delete it now.
 | |
|       delete *it;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Function *MCJITHelper::getFunction(const std::string FnName) {
 | |
|   ModuleVector::iterator begin = Modules.begin();
 | |
|   ModuleVector::iterator end = Modules.end();
 | |
|   ModuleVector::iterator it;
 | |
|   for (it = begin; it != end; ++it) {
 | |
|     Function *F = (*it)->getFunction(FnName);
 | |
|     if (F) {
 | |
|       if (*it == OpenModule)
 | |
|           return F;
 | |
| 
 | |
|       assert(OpenModule != NULL);
 | |
| 
 | |
|       // This function is in a module that has already been JITed.
 | |
|       // We need to generate a new prototype for external linkage.
 | |
|       Function *PF = OpenModule->getFunction(FnName);
 | |
|       if (PF && !PF->empty()) {
 | |
|         ErrorF("redefinition of function across modules");
 | |
|         return 0;
 | |
|       }
 | |
| 
 | |
|       // If we don't have a prototype yet, create one.
 | |
|       if (!PF)
 | |
|         PF = Function::Create(F->getFunctionType(),
 | |
|                                       Function::ExternalLinkage,
 | |
|                                       FnName,
 | |
|                                       OpenModule);
 | |
|       return PF;
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| Module *MCJITHelper::getModuleForNewFunction() {
 | |
|   // If we have a Module that hasn't been JITed, use that.
 | |
|   if (OpenModule)
 | |
|     return OpenModule;
 | |
| 
 | |
|   // Otherwise create a new Module.
 | |
|   std::string ModName = GenerateUniqueName("mcjit_module_");
 | |
|   Module *M = new Module(ModName, Context);
 | |
|   Modules.push_back(M);
 | |
|   OpenModule = M;
 | |
|   return M;
 | |
| }
 | |
| 
 | |
| void *MCJITHelper::getPointerToFunction(Function* F) {
 | |
|   // Look for this function in an existing module
 | |
|   ModuleVector::iterator begin = Modules.begin();
 | |
|   ModuleVector::iterator end = Modules.end();
 | |
|   ModuleVector::iterator it;
 | |
|   std::string FnName = F->getName();
 | |
|   for (it = begin; it != end; ++it) {
 | |
|     Function *MF = (*it)->getFunction(FnName);
 | |
|     if (MF == F) {
 | |
|       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
 | |
|       if (eeIt != EngineMap.end()) {
 | |
|         void *P = eeIt->second->getPointerToFunction(F);
 | |
|         if (P)
 | |
|           return P;
 | |
|       } else {
 | |
|         ExecutionEngine *EE = compileModule(*it);
 | |
|         void *P = EE->getPointerToFunction(F);
 | |
|         if (P)
 | |
|           return P;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| void MCJITHelper::closeCurrentModule() {
 | |
|   OpenModule = NULL;
 | |
| }
 | |
| 
 | |
| ExecutionEngine *MCJITHelper::compileModule(Module *M) {
 | |
|   if (M == OpenModule)
 | |
|     closeCurrentModule();
 | |
| 
 | |
|   std::string ErrStr;
 | |
|   ExecutionEngine *NewEngine = EngineBuilder(M)
 | |
|                                             .setErrorStr(&ErrStr)
 | |
|                                             .setMCJITMemoryManager(new HelpingMemoryManager(this))
 | |
|                                             .create();
 | |
|   if (!NewEngine) {
 | |
|     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   // Create a function pass manager for this engine
 | |
|   FunctionPassManager *FPM = new FunctionPassManager(M);
 | |
| 
 | |
|   // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|   // target lays out data structures.
 | |
|   FPM->add(new DataLayout(*NewEngine->getDataLayout()));
 | |
|   // Provide basic AliasAnalysis support for GVN.
 | |
|   FPM->add(createBasicAliasAnalysisPass());
 | |
|   // Promote allocas to registers.
 | |
|   FPM->add(createPromoteMemoryToRegisterPass());
 | |
|   // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|   FPM->add(createInstructionCombiningPass());
 | |
|   // Reassociate expressions.
 | |
|   FPM->add(createReassociatePass());
 | |
|   // Eliminate Common SubExpressions.
 | |
|   FPM->add(createGVNPass());
 | |
|   // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|   FPM->add(createCFGSimplificationPass());
 | |
|   FPM->doInitialization();
 | |
| 
 | |
|   // For each function in the module
 | |
|   Module::iterator it;
 | |
|   Module::iterator end = M->end();
 | |
|   for (it = M->begin(); it != end; ++it) {
 | |
|     // Run the FPM on this function
 | |
|     FPM->run(*it);
 | |
|   }
 | |
| 
 | |
|   // We don't need this anymore
 | |
|   delete FPM;
 | |
| 
 | |
|   // Store this engine
 | |
|   EngineMap[M] = NewEngine;
 | |
|   NewEngine->finalizeObject();
 | |
| 
 | |
|   return NewEngine;
 | |
| }
 | |
| 
 | |
| void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
 | |
| {
 | |
|   // Look for the functions in our modules, compiling only as necessary
 | |
|   ModuleVector::iterator begin = Modules.begin();
 | |
|   ModuleVector::iterator end = Modules.end();
 | |
|   ModuleVector::iterator it;
 | |
|   for (it = begin; it != end; ++it) {
 | |
|     Function *F = (*it)->getFunction(Name);
 | |
|     if (F && !F->empty()) {
 | |
|       std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it);
 | |
|       if (eeIt != EngineMap.end()) {
 | |
|         void *P = eeIt->second->getPointerToFunction(F);
 | |
|         if (P)
 | |
|           return P;
 | |
|       } else {
 | |
|         ExecutionEngine *EE = compileModule(*it);
 | |
|         void *P = EE->getPointerToFunction(F);
 | |
|         if (P)
 | |
|           return P;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| void MCJITHelper::dump()
 | |
| {
 | |
|   ModuleVector::iterator begin = Modules.begin();
 | |
|   ModuleVector::iterator end = Modules.end();
 | |
|   ModuleVector::iterator it;
 | |
|   for (it = begin; it != end; ++it)
 | |
|     (*it)->dump();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code Generation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static MCJITHelper *TheHelper;
 | |
| static LLVMContext TheContext;
 | |
| static IRBuilder<> Builder(TheContext);
 | |
| static std::map<std::string, AllocaInst*> NamedValues;
 | |
| 
 | |
| Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
 | |
| /// the function.  This is used for mutable variables etc.
 | |
| static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 | |
|                                           const std::string &VarName) {
 | |
|   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 | |
|                  TheFunction->getEntryBlock().begin());
 | |
|   return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str());
 | |
| }
 | |
| 
 | |
| Value *NumberExprAST::Codegen() {
 | |
|   return ConstantFP::get(TheContext, APFloat(Val));
 | |
| }
 | |
| 
 | |
| Value *VariableExprAST::Codegen() {
 | |
|   // Look this variable up in the function.
 | |
|   Value *V = NamedValues[Name];
 | |
|   char ErrStr[256];
 | |
|   sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
 | |
|   if (V == 0) return ErrorV(ErrStr);
 | |
| 
 | |
|   // Load the value.
 | |
|   return Builder.CreateLoad(V, Name.c_str());
 | |
| }
 | |
| 
 | |
| Value *UnaryExprAST::Codegen() {
 | |
|   Value *OperandV = Operand->Codegen();
 | |
|   if (OperandV == 0) return 0;
 | |
| 
 | |
|   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
 | |
|   if (F == 0)
 | |
|     return ErrorV("Unknown unary operator");
 | |
| 
 | |
|   return Builder.CreateCall(F, OperandV, "unop");
 | |
| }
 | |
| 
 | |
| Value *BinaryExprAST::Codegen() {
 | |
|   // Special case '=' because we don't want to emit the LHS as an expression.
 | |
|   if (Op == '=') {
 | |
|     // Assignment requires the LHS to be an identifier.
 | |
|     VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS);
 | |
|     if (!LHSE)
 | |
|       return ErrorV("destination of '=' must be a variable");
 | |
|     // Codegen the RHS.
 | |
|     Value *Val = RHS->Codegen();
 | |
|     if (Val == 0) return 0;
 | |
| 
 | |
|     // Look up the name.
 | |
|     Value *Variable = NamedValues[LHSE->getName()];
 | |
|     if (Variable == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|     Builder.CreateStore(Val, Variable);
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   Value *L = LHS->Codegen();
 | |
|   Value *R = RHS->Codegen();
 | |
|   if (L == 0 || R == 0) return 0;
 | |
| 
 | |
|   switch (Op) {
 | |
|   case '+': return Builder.CreateFAdd(L, R, "addtmp");
 | |
|   case '-': return Builder.CreateFSub(L, R, "subtmp");
 | |
|   case '*': return Builder.CreateFMul(L, R, "multmp");
 | |
|   case '/': return Builder.CreateFDiv(L, R, "divtmp");
 | |
|   case '<':
 | |
|     L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|     // Convert bool 0/1 to double 0.0 or 1.0
 | |
|     return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | |
|   // a call to it.
 | |
|   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
 | |
|   assert(F && "binary operator not found!");
 | |
| 
 | |
|   Value *Ops[] = { L, R };
 | |
|   return Builder.CreateCall(F, Ops, "binop");
 | |
| }
 | |
| 
 | |
| Value *CallExprAST::Codegen() {
 | |
|   // Look up the name in the global module table.
 | |
|   Function *CalleeF = TheHelper->getFunction(Callee);
 | |
|   if (CalleeF == 0)
 | |
|     return ErrorV("Unknown function referenced");
 | |
| 
 | |
|   // If argument mismatch error.
 | |
|   if (CalleeF->arg_size() != Args.size())
 | |
|     return ErrorV("Incorrect # arguments passed");
 | |
| 
 | |
|   std::vector<Value*> ArgsV;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     ArgsV.push_back(Args[i]->Codegen());
 | |
|     if (ArgsV.back() == 0) return 0;
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
 | |
| }
 | |
| 
 | |
| Value *IfExprAST::Codegen() {
 | |
|   Value *CondV = Cond->Codegen();
 | |
|   if (CondV == 0) return 0;
 | |
| 
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   CondV = Builder.CreateFCmpONE(
 | |
|       CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
 | |
| 
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|   // Create blocks for the then and else cases.  Insert the 'then' block at the
 | |
|   // end of the function.
 | |
|   BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
 | |
|   BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
 | |
|   BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
 | |
| 
 | |
|   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | |
| 
 | |
|   // Emit then value.
 | |
|   Builder.SetInsertPoint(ThenBB);
 | |
| 
 | |
|   Value *ThenV = Then->Codegen();
 | |
|   if (ThenV == 0) return 0;
 | |
| 
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | |
|   ThenBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Emit else block.
 | |
|   TheFunction->getBasicBlockList().push_back(ElseBB);
 | |
|   Builder.SetInsertPoint(ElseBB);
 | |
| 
 | |
|   Value *ElseV = Else->Codegen();
 | |
|   if (ElseV == 0) return 0;
 | |
| 
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | |
|   ElseBB = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Emit merge block.
 | |
|   TheFunction->getBasicBlockList().push_back(MergeBB);
 | |
|   Builder.SetInsertPoint(MergeBB);
 | |
|   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
 | |
| 
 | |
|   PN->addIncoming(ThenV, ThenBB);
 | |
|   PN->addIncoming(ElseV, ElseBB);
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| Value *ForExprAST::Codegen() {
 | |
|   // Output this as:
 | |
|   //   var = alloca double
 | |
|   //   ...
 | |
|   //   start = startexpr
 | |
|   //   store start -> var
 | |
|   //   goto loop
 | |
|   // loop:
 | |
|   //   ...
 | |
|   //   bodyexpr
 | |
|   //   ...
 | |
|   // loopend:
 | |
|   //   step = stepexpr
 | |
|   //   endcond = endexpr
 | |
|   //
 | |
|   //   curvar = load var
 | |
|   //   nextvar = curvar + step
 | |
|   //   store nextvar -> var
 | |
|   //   br endcond, loop, endloop
 | |
|   // outloop:
 | |
| 
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|   // Create an alloca for the variable in the entry block.
 | |
|   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
| 
 | |
|   // Emit the start code first, without 'variable' in scope.
 | |
|   Value *StartVal = Start->Codegen();
 | |
|   if (StartVal == 0) return 0;
 | |
| 
 | |
|   // Store the value into the alloca.
 | |
|   Builder.CreateStore(StartVal, Alloca);
 | |
| 
 | |
|   // Make the new basic block for the loop header, inserting after current
 | |
|   // block.
 | |
|   BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
 | |
| 
 | |
|   // Insert an explicit fall through from the current block to the LoopBB.
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start insertion in LoopBB.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
| 
 | |
|   // Within the loop, the variable is defined equal to the PHI node.  If it
 | |
|   // shadows an existing variable, we have to restore it, so save it now.
 | |
|   AllocaInst *OldVal = NamedValues[VarName];
 | |
|   NamedValues[VarName] = Alloca;
 | |
| 
 | |
|   // Emit the body of the loop.  This, like any other expr, can change the
 | |
|   // current BB.  Note that we ignore the value computed by the body, but don't
 | |
|   // allow an error.
 | |
|   if (Body->Codegen() == 0)
 | |
|     return 0;
 | |
| 
 | |
|   // Emit the step value.
 | |
|   Value *StepVal;
 | |
|   if (Step) {
 | |
|     StepVal = Step->Codegen();
 | |
|     if (StepVal == 0) return 0;
 | |
|   } else {
 | |
|     // If not specified, use 1.0.
 | |
|     StepVal = ConstantFP::get(TheContext, APFloat(1.0));
 | |
|   }
 | |
| 
 | |
|   // Compute the end condition.
 | |
|   Value *EndCond = End->Codegen();
 | |
|   if (EndCond == 0) return EndCond;
 | |
| 
 | |
|   // Reload, increment, and restore the alloca.  This handles the case where
 | |
|   // the body of the loop mutates the variable.
 | |
|   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
 | |
|   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
 | |
|   Builder.CreateStore(NextVar, Alloca);
 | |
| 
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   EndCond = Builder.CreateFCmpONE(
 | |
|       EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
 | |
| 
 | |
|   // Create the "after loop" block and insert it.
 | |
|   BasicBlock *AfterBB =
 | |
|       BasicBlock::Create(TheContext, "afterloop", TheFunction);
 | |
| 
 | |
|   // Insert the conditional branch into the end of LoopEndBB.
 | |
|   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | |
| 
 | |
|   // Any new code will be inserted in AfterBB.
 | |
|   Builder.SetInsertPoint(AfterBB);
 | |
| 
 | |
|   // Restore the unshadowed variable.
 | |
|   if (OldVal)
 | |
|     NamedValues[VarName] = OldVal;
 | |
|   else
 | |
|     NamedValues.erase(VarName);
 | |
| 
 | |
| 
 | |
|   // for expr always returns 0.0.
 | |
|   return Constant::getNullValue(Type::getDoubleTy(TheContext));
 | |
| }
 | |
| 
 | |
| Value *VarExprAST::Codegen() {
 | |
|   std::vector<AllocaInst *> OldBindings;
 | |
| 
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|   // Register all variables and emit their initializer.
 | |
|   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 | |
|     const std::string &VarName = VarNames[i].first;
 | |
|     ExprAST *Init = VarNames[i].second;
 | |
| 
 | |
|     // Emit the initializer before adding the variable to scope, this prevents
 | |
|     // the initializer from referencing the variable itself, and permits stuff
 | |
|     // like this:
 | |
|     //  var a = 1 in
 | |
|     //    var a = a in ...   # refers to outer 'a'.
 | |
|     Value *InitVal;
 | |
|     if (Init) {
 | |
|       InitVal = Init->Codegen();
 | |
|       if (InitVal == 0) return 0;
 | |
|     } else { // If not specified, use 0.0.
 | |
|       InitVal = ConstantFP::get(TheContext, APFloat(0.0));
 | |
|     }
 | |
| 
 | |
|     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
|     Builder.CreateStore(InitVal, Alloca);
 | |
| 
 | |
|     // Remember the old variable binding so that we can restore the binding when
 | |
|     // we unrecurse.
 | |
|     OldBindings.push_back(NamedValues[VarName]);
 | |
| 
 | |
|     // Remember this binding.
 | |
|     NamedValues[VarName] = Alloca;
 | |
|   }
 | |
| 
 | |
|   // Codegen the body, now that all vars are in scope.
 | |
|   Value *BodyVal = Body->Codegen();
 | |
|   if (BodyVal == 0) return 0;
 | |
| 
 | |
|   // Pop all our variables from scope.
 | |
|   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 | |
|     NamedValues[VarNames[i].first] = OldBindings[i];
 | |
| 
 | |
|   // Return the body computation.
 | |
|   return BodyVal;
 | |
| }
 | |
| 
 | |
| Function *PrototypeAST::Codegen() {
 | |
|   // Make the function type:  double(double,double) etc.
 | |
|   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
 | |
|   FunctionType *FT =
 | |
|       FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
 | |
| 
 | |
|   std::string FnName = MakeLegalFunctionName(Name);
 | |
| 
 | |
|   Module* M = TheHelper->getModuleForNewFunction();
 | |
| 
 | |
|   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
 | |
| 
 | |
|   // If F conflicted, there was already something named 'FnName'.  If it has a
 | |
|   // body, don't allow redefinition or reextern.
 | |
|   if (F->getName() != FnName) {
 | |
|     // Delete the one we just made and get the existing one.
 | |
|     F->eraseFromParent();
 | |
|     F = M->getFunction(Name);
 | |
| 
 | |
|     // If F already has a body, reject this.
 | |
|     if (!F->empty()) {
 | |
|       ErrorF("redefinition of function");
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // If F took a different number of args, reject.
 | |
|     if (F->arg_size() != Args.size()) {
 | |
|       ErrorF("redefinition of function with different # args");
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Set names for all arguments.
 | |
|   unsigned Idx = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | |
|        ++AI, ++Idx)
 | |
|     AI->setName(Args[Idx]);
 | |
| 
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| /// CreateArgumentAllocas - Create an alloca for each argument and register the
 | |
| /// argument in the symbol table so that references to it will succeed.
 | |
| void PrototypeAST::CreateArgumentAllocas(Function *F) {
 | |
|   Function::arg_iterator AI = F->arg_begin();
 | |
|   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
 | |
|     // Create an alloca for this variable.
 | |
|     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
 | |
| 
 | |
|     // Store the initial value into the alloca.
 | |
|     Builder.CreateStore(AI, Alloca);
 | |
| 
 | |
|     // Add arguments to variable symbol table.
 | |
|     NamedValues[Args[Idx]] = Alloca;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Function *FunctionAST::Codegen() {
 | |
|   NamedValues.clear();
 | |
| 
 | |
|   Function *TheFunction = Proto->Codegen();
 | |
|   if (TheFunction == 0)
 | |
|     return 0;
 | |
| 
 | |
|   // If this is an operator, install it.
 | |
|   if (Proto->isBinaryOp())
 | |
|     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
 | |
| 
 | |
|   // Create a new basic block to start insertion into.
 | |
|   BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
 | |
|   Builder.SetInsertPoint(BB);
 | |
| 
 | |
|   // Add all arguments to the symbol table and create their allocas.
 | |
|   Proto->CreateArgumentAllocas(TheFunction);
 | |
| 
 | |
|   if (Value *RetVal = Body->Codegen()) {
 | |
|     // Finish off the function.
 | |
|     Builder.CreateRet(RetVal);
 | |
| 
 | |
|     // Validate the generated code, checking for consistency.
 | |
|     verifyFunction(*TheFunction);
 | |
| 
 | |
|     return TheFunction;
 | |
|   }
 | |
| 
 | |
|   // Error reading body, remove function.
 | |
|   TheFunction->eraseFromParent();
 | |
| 
 | |
|   if (Proto->isBinaryOp())
 | |
|     BinopPrecedence.erase(Proto->getOperatorName());
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Top-Level parsing and JIT Driver
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static void HandleDefinition() {
 | |
|   if (FunctionAST *F = ParseDefinition()) {
 | |
|     TheHelper->closeCurrentModule();
 | |
|     if (Function *LF = F->Codegen()) {
 | |
| #ifndef MINIMAL_STDERR_OUTPUT
 | |
|       fprintf(stderr, "Read function definition:");
 | |
|       LF->print(errs());
 | |
|       fprintf(stderr, "\n");
 | |
| #endif
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleExtern() {
 | |
|   if (PrototypeAST *P = ParseExtern()) {
 | |
|     if (Function *F = P->Codegen()) {
 | |
| #ifndef MINIMAL_STDERR_OUTPUT
 | |
|       fprintf(stderr, "Read extern: ");
 | |
|       F->print(errs());
 | |
|       fprintf(stderr, "\n");
 | |
| #endif
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleTopLevelExpression() {
 | |
|   // Evaluate a top-level expression into an anonymous function.
 | |
|   if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       // JIT the function, returning a function pointer.
 | |
|       void *FPtr = TheHelper->getPointerToFunction(LF);
 | |
| 
 | |
|       // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|       // can call it as a native function.
 | |
|       double (*FP)() = (double (*)())(intptr_t)FPtr;
 | |
| #ifdef MINIMAL_STDERR_OUTPUT
 | |
|       FP();
 | |
| #else
 | |
|       fprintf(stderr, "Evaluated to %f\n", FP());
 | |
| #endif
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// top ::= definition | external | expression | ';'
 | |
| static void MainLoop() {
 | |
|   while (1) {
 | |
| #ifndef MINIMAL_STDERR_OUTPUT
 | |
|     fprintf(stderr, "ready> ");
 | |
| #endif
 | |
|     switch (CurTok) {
 | |
|     case tok_eof:    return;
 | |
|     case ';':        getNextToken(); break;  // ignore top-level semicolons.
 | |
|     case tok_def:    HandleDefinition(); break;
 | |
|     case tok_extern: HandleExtern(); break;
 | |
|     default:         HandleTopLevelExpression(); break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // "Library" functions that can be "extern'd" from user code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// putchard - putchar that takes a double and returns 0.
 | |
| extern "C"
 | |
| double putchard(double X) {
 | |
|   putchar((char)X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// printd - printf that takes a double prints it as "%f\n", returning 0.
 | |
| extern "C"
 | |
| double printd(double X) {
 | |
|   printf("%f", X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| extern "C"
 | |
| double printlf() {
 | |
|   printf("\n");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main driver code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int main() {
 | |
|   InitializeNativeTarget();
 | |
|   InitializeNativeTargetAsmPrinter();
 | |
|   InitializeNativeTargetAsmParser();
 | |
|   LLVMContext &Context = TheContext;
 | |
| 
 | |
|   // Install standard binary operators.
 | |
|   // 1 is lowest precedence.
 | |
|   BinopPrecedence['='] = 2;
 | |
|   BinopPrecedence['<'] = 10;
 | |
|   BinopPrecedence['+'] = 20;
 | |
|   BinopPrecedence['-'] = 20;
 | |
|   BinopPrecedence['/'] = 40;
 | |
|   BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|   // Prime the first token.
 | |
| #ifndef MINIMAL_STDERR_OUTPUT
 | |
|   fprintf(stderr, "ready> ");
 | |
| #endif
 | |
|   getNextToken();
 | |
| 
 | |
|   // Make the helper, which holds all the code.
 | |
|   TheHelper = new MCJITHelper(Context);
 | |
| 
 | |
|   // Run the main "interpreter loop" now.
 | |
|   MainLoop();
 | |
| 
 | |
| #ifndef MINIMAL_STDERR_OUTPUT
 | |
|   // Print out all of the generated code.
 | |
|   TheHelper->dump();
 | |
| #endif
 | |
| 
 | |
|   return 0;
 | |
| }
 |