94b2861243
Former-commit-id: 5f9c6ae75f295e057a7d2971f3a6df4656fa8850
852 lines
29 KiB
C
852 lines
29 KiB
C
/*
|
|
* DTLS implementation written by Nagendra Modadugu
|
|
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/buf.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/x509.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
/* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
|
|
* for these values? Notably, why is kMinMTU a function of the transport
|
|
* protocol's overhead rather than, say, what's needed to hold a minimally-sized
|
|
* handshake fragment plus protocol overhead. */
|
|
|
|
/* kMinMTU is the minimum acceptable MTU value. */
|
|
static const unsigned int kMinMTU = 256 - 28;
|
|
|
|
/* kDefaultMTU is the default MTU value to use if neither the user nor
|
|
* the underlying BIO supplies one. */
|
|
static const unsigned int kDefaultMTU = 1500 - 28;
|
|
|
|
/* kMaxHandshakeBuffer is the maximum number of handshake messages ahead of the
|
|
* current one to buffer. */
|
|
static const unsigned int kHandshakeBufferSize = 10;
|
|
|
|
static hm_fragment *dtls1_hm_fragment_new(size_t frag_len, int reassembly) {
|
|
hm_fragment *frag = OPENSSL_malloc(sizeof(hm_fragment));
|
|
if (frag == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
memset(frag, 0, sizeof(hm_fragment));
|
|
|
|
/* If the handshake message is empty, |frag->fragment| and |frag->reassembly|
|
|
* are NULL. */
|
|
if (frag_len > 0) {
|
|
frag->fragment = OPENSSL_malloc(frag_len);
|
|
if (frag->fragment == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (reassembly) {
|
|
/* Initialize reassembly bitmask. */
|
|
if (frag_len + 7 < frag_len) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
|
|
goto err;
|
|
}
|
|
size_t bitmask_len = (frag_len + 7) / 8;
|
|
frag->reassembly = OPENSSL_malloc(bitmask_len);
|
|
if (frag->reassembly == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
memset(frag->reassembly, 0, bitmask_len);
|
|
}
|
|
}
|
|
|
|
return frag;
|
|
|
|
err:
|
|
dtls1_hm_fragment_free(frag);
|
|
return NULL;
|
|
}
|
|
|
|
void dtls1_hm_fragment_free(hm_fragment *frag) {
|
|
if (frag == NULL) {
|
|
return;
|
|
}
|
|
OPENSSL_free(frag->fragment);
|
|
OPENSSL_free(frag->reassembly);
|
|
OPENSSL_free(frag);
|
|
}
|
|
|
|
#if !defined(inline)
|
|
#define inline __inline
|
|
#endif
|
|
|
|
/* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
|
|
* exclusive, set. */
|
|
static inline uint8_t bit_range(size_t start, size_t end) {
|
|
return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
|
|
}
|
|
|
|
/* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
|
|
* as received in |frag|. If |frag| becomes complete, it clears
|
|
* |frag->reassembly|. The range must be within the bounds of |frag|'s message
|
|
* and |frag->reassembly| must not be NULL. */
|
|
static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
|
|
size_t end) {
|
|
size_t i;
|
|
size_t msg_len = frag->msg_header.msg_len;
|
|
|
|
if (frag->reassembly == NULL || start > end || end > msg_len) {
|
|
assert(0);
|
|
return;
|
|
}
|
|
/* A zero-length message will never have a pending reassembly. */
|
|
assert(msg_len > 0);
|
|
|
|
if ((start >> 3) == (end >> 3)) {
|
|
frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
|
|
} else {
|
|
frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
|
|
for (i = (start >> 3) + 1; i < (end >> 3); i++) {
|
|
frag->reassembly[i] = 0xff;
|
|
}
|
|
if ((end & 7) != 0) {
|
|
frag->reassembly[end >> 3] |= bit_range(0, end & 7);
|
|
}
|
|
}
|
|
|
|
/* Check if the fragment is complete. */
|
|
for (i = 0; i < (msg_len >> 3); i++) {
|
|
if (frag->reassembly[i] != 0xff) {
|
|
return;
|
|
}
|
|
}
|
|
if ((msg_len & 7) != 0 &&
|
|
frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
|
|
return;
|
|
}
|
|
|
|
OPENSSL_free(frag->reassembly);
|
|
frag->reassembly = NULL;
|
|
}
|
|
|
|
static void dtls1_update_mtu(SSL *ssl) {
|
|
/* TODO(davidben): What is this code doing and do we need it? */
|
|
if (ssl->d1->mtu < dtls1_min_mtu() &&
|
|
!(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
|
|
long mtu = BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
|
|
if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
|
|
ssl->d1->mtu = (unsigned)mtu;
|
|
} else {
|
|
ssl->d1->mtu = kDefaultMTU;
|
|
BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
|
|
}
|
|
}
|
|
|
|
/* The MTU should be above the minimum now. */
|
|
assert(ssl->d1->mtu >= dtls1_min_mtu());
|
|
}
|
|
|
|
/* dtls1_max_record_size returns the maximum record body length that may be
|
|
* written without exceeding the MTU. It accounts for any buffering installed on
|
|
* the write BIO. If no record may be written, it returns zero. */
|
|
static size_t dtls1_max_record_size(SSL *ssl) {
|
|
size_t ret = ssl->d1->mtu;
|
|
|
|
size_t overhead = ssl_max_seal_overhead(ssl);
|
|
if (ret <= overhead) {
|
|
return 0;
|
|
}
|
|
ret -= overhead;
|
|
|
|
size_t pending = BIO_wpending(ssl->wbio);
|
|
if (ret <= pending) {
|
|
return 0;
|
|
}
|
|
ret -= pending;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dtls1_write_change_cipher_spec(SSL *ssl,
|
|
enum dtls1_use_epoch_t use_epoch) {
|
|
dtls1_update_mtu(ssl);
|
|
|
|
/* During the handshake, wbio is buffered to pack messages together. Flush the
|
|
* buffer if the ChangeCipherSpec would not fit in a packet. */
|
|
if (dtls1_max_record_size(ssl) == 0) {
|
|
int ret = BIO_flush(ssl->wbio);
|
|
if (ret <= 0) {
|
|
ssl->rwstate = SSL_WRITING;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
|
|
int ret =
|
|
dtls1_write_record(ssl, SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
|
|
sizeof(kChangeCipherSpec), use_epoch);
|
|
if (ret <= 0) {
|
|
return ret;
|
|
}
|
|
|
|
ssl_do_msg_callback(ssl, 1 /* write */, ssl->version,
|
|
SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
|
|
sizeof(kChangeCipherSpec));
|
|
return 1;
|
|
}
|
|
|
|
int dtls1_do_handshake_write(SSL *ssl, enum dtls1_use_epoch_t use_epoch) {
|
|
dtls1_update_mtu(ssl);
|
|
|
|
int ret = -1;
|
|
CBB cbb;
|
|
CBB_zero(&cbb);
|
|
/* Allocate a temporary buffer to hold the message fragments to avoid
|
|
* clobbering the message. */
|
|
uint8_t *buf = OPENSSL_malloc(ssl->d1->mtu);
|
|
if (buf == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* Consume the message header. Fragments will have different headers
|
|
* prepended. */
|
|
if (ssl->init_off == 0) {
|
|
ssl->init_off += DTLS1_HM_HEADER_LENGTH;
|
|
ssl->init_num -= DTLS1_HM_HEADER_LENGTH;
|
|
}
|
|
assert(ssl->init_off >= DTLS1_HM_HEADER_LENGTH);
|
|
|
|
do {
|
|
/* During the handshake, wbio is buffered to pack messages together. Flush
|
|
* the buffer if there isn't enough room to make progress. */
|
|
if (dtls1_max_record_size(ssl) < DTLS1_HM_HEADER_LENGTH + 1) {
|
|
int flush_ret = BIO_flush(ssl->wbio);
|
|
if (flush_ret <= 0) {
|
|
ssl->rwstate = SSL_WRITING;
|
|
ret = flush_ret;
|
|
goto err;
|
|
}
|
|
assert(BIO_wpending(ssl->wbio) == 0);
|
|
}
|
|
|
|
size_t todo = dtls1_max_record_size(ssl);
|
|
if (todo < DTLS1_HM_HEADER_LENGTH + 1) {
|
|
/* To make forward progress, the MTU must, at minimum, fit the handshake
|
|
* header and one byte of handshake body. */
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
|
|
goto err;
|
|
}
|
|
todo -= DTLS1_HM_HEADER_LENGTH;
|
|
|
|
if (todo > (size_t)ssl->init_num) {
|
|
todo = ssl->init_num;
|
|
}
|
|
if (todo >= (1u << 24)) {
|
|
todo = (1u << 24) - 1;
|
|
}
|
|
|
|
size_t len;
|
|
if (!CBB_init_fixed(&cbb, buf, ssl->d1->mtu) ||
|
|
!CBB_add_u8(&cbb, ssl->d1->w_msg_hdr.type) ||
|
|
!CBB_add_u24(&cbb, ssl->d1->w_msg_hdr.msg_len) ||
|
|
!CBB_add_u16(&cbb, ssl->d1->w_msg_hdr.seq) ||
|
|
!CBB_add_u24(&cbb, ssl->init_off - DTLS1_HM_HEADER_LENGTH) ||
|
|
!CBB_add_u24(&cbb, todo) ||
|
|
!CBB_add_bytes(
|
|
&cbb, (const uint8_t *)ssl->init_buf->data + ssl->init_off, todo) ||
|
|
!CBB_finish(&cbb, NULL, &len)) {
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
int write_ret =
|
|
dtls1_write_record(ssl, SSL3_RT_HANDSHAKE, buf, len, use_epoch);
|
|
if (write_ret <= 0) {
|
|
ret = write_ret;
|
|
goto err;
|
|
}
|
|
ssl->init_off += todo;
|
|
ssl->init_num -= todo;
|
|
} while (ssl->init_num > 0);
|
|
|
|
ssl_do_msg_callback(ssl, 1 /* write */, ssl->version, SSL3_RT_HANDSHAKE,
|
|
ssl->init_buf->data,
|
|
(size_t)(ssl->init_off + ssl->init_num));
|
|
|
|
ssl->init_off = 0;
|
|
ssl->init_num = 0;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
CBB_cleanup(&cbb);
|
|
OPENSSL_free(buf);
|
|
return ret;
|
|
}
|
|
|
|
/* dtls1_is_next_message_complete returns one if the next handshake message is
|
|
* complete and zero otherwise. */
|
|
static int dtls1_is_next_message_complete(SSL *ssl) {
|
|
pitem *item = pqueue_peek(ssl->d1->buffered_messages);
|
|
if (item == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
hm_fragment *frag = (hm_fragment *)item->data;
|
|
assert(ssl->d1->handshake_read_seq <= frag->msg_header.seq);
|
|
|
|
return ssl->d1->handshake_read_seq == frag->msg_header.seq &&
|
|
frag->reassembly == NULL;
|
|
}
|
|
|
|
/* dtls1_get_buffered_message returns the buffered message corresponding to
|
|
* |msg_hdr|. If none exists, it creates a new one and inserts it in the
|
|
* queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
|
|
* returns NULL on failure. The caller does not take ownership of the result. */
|
|
static hm_fragment *dtls1_get_buffered_message(
|
|
SSL *ssl, const struct hm_header_st *msg_hdr) {
|
|
uint8_t seq64be[8];
|
|
memset(seq64be, 0, sizeof(seq64be));
|
|
seq64be[6] = (uint8_t)(msg_hdr->seq >> 8);
|
|
seq64be[7] = (uint8_t)msg_hdr->seq;
|
|
pitem *item = pqueue_find(ssl->d1->buffered_messages, seq64be);
|
|
|
|
hm_fragment *frag;
|
|
if (item == NULL) {
|
|
/* This is the first fragment from this message. */
|
|
frag = dtls1_hm_fragment_new(msg_hdr->msg_len,
|
|
1 /* reassembly buffer needed */);
|
|
if (frag == NULL) {
|
|
return NULL;
|
|
}
|
|
memcpy(&frag->msg_header, msg_hdr, sizeof(*msg_hdr));
|
|
item = pitem_new(seq64be, frag);
|
|
if (item == NULL) {
|
|
dtls1_hm_fragment_free(frag);
|
|
return NULL;
|
|
}
|
|
item = pqueue_insert(ssl->d1->buffered_messages, item);
|
|
/* |pqueue_insert| fails iff a duplicate item is inserted, but |item| cannot
|
|
* be a duplicate. */
|
|
assert(item != NULL);
|
|
} else {
|
|
frag = item->data;
|
|
assert(frag->msg_header.seq == msg_hdr->seq);
|
|
if (frag->msg_header.type != msg_hdr->type ||
|
|
frag->msg_header.msg_len != msg_hdr->msg_len) {
|
|
/* The new fragment must be compatible with the previous fragments from
|
|
* this message. */
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
|
|
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
|
|
return NULL;
|
|
}
|
|
}
|
|
return frag;
|
|
}
|
|
|
|
/* dtls1_process_handshake_record reads a handshake record and processes it. It
|
|
* returns one if the record was successfully processed and 0 or -1 on error. */
|
|
static int dtls1_process_handshake_record(SSL *ssl) {
|
|
SSL3_RECORD *rr = &ssl->s3->rrec;
|
|
|
|
start:
|
|
if (rr->length == 0) {
|
|
int ret = dtls1_get_record(ssl);
|
|
if (ret <= 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Cross-epoch records are discarded, but we may receive out-of-order
|
|
* application data between ChangeCipherSpec and Finished or a ChangeCipherSpec
|
|
* before the appropriate point in the handshake. Those must be silently
|
|
* discarded.
|
|
*
|
|
* However, only allow the out-of-order records in the correct epoch.
|
|
* Application data must come in the encrypted epoch, and ChangeCipherSpec in
|
|
* the unencrypted epoch (we never renegotiate). Other cases fall through and
|
|
* fail with a fatal error. */
|
|
if ((rr->type == SSL3_RT_APPLICATION_DATA &&
|
|
ssl->s3->aead_read_ctx != NULL) ||
|
|
(rr->type == SSL3_RT_CHANGE_CIPHER_SPEC &&
|
|
ssl->s3->aead_read_ctx == NULL)) {
|
|
rr->length = 0;
|
|
goto start;
|
|
}
|
|
|
|
if (rr->type != SSL3_RT_HANDSHAKE) {
|
|
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
|
|
return -1;
|
|
}
|
|
|
|
CBS cbs;
|
|
CBS_init(&cbs, rr->data, rr->length);
|
|
|
|
while (CBS_len(&cbs) > 0) {
|
|
/* Read a handshake fragment. */
|
|
struct hm_header_st msg_hdr;
|
|
CBS body;
|
|
if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
|
|
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
|
|
return -1;
|
|
}
|
|
|
|
const size_t frag_off = msg_hdr.frag_off;
|
|
const size_t frag_len = msg_hdr.frag_len;
|
|
const size_t msg_len = msg_hdr.msg_len;
|
|
if (frag_off > msg_len || frag_off + frag_len < frag_off ||
|
|
frag_off + frag_len > msg_len ||
|
|
msg_len > ssl_max_handshake_message_len(ssl)) {
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
|
|
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
|
|
return -1;
|
|
}
|
|
|
|
if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
|
|
msg_hdr.seq >
|
|
(unsigned)ssl->d1->handshake_read_seq + kHandshakeBufferSize) {
|
|
/* Ignore fragments from the past, or ones too far in the future. */
|
|
continue;
|
|
}
|
|
|
|
hm_fragment *frag = dtls1_get_buffered_message(ssl, &msg_hdr);
|
|
if (frag == NULL) {
|
|
return -1;
|
|
}
|
|
assert(frag->msg_header.msg_len == msg_len);
|
|
|
|
if (frag->reassembly == NULL) {
|
|
/* The message is already assembled. */
|
|
continue;
|
|
}
|
|
assert(msg_len > 0);
|
|
|
|
/* Copy the body into the fragment. */
|
|
memcpy(frag->fragment + frag_off, CBS_data(&body), CBS_len(&body));
|
|
dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
|
|
}
|
|
|
|
rr->length = 0;
|
|
ssl_read_buffer_discard(ssl);
|
|
return 1;
|
|
}
|
|
|
|
/* dtls1_get_message reads a handshake message of message type |msg_type| (any
|
|
* if |msg_type| == -1). Read an entire handshake message. Handshake messages
|
|
* arrive in fragments. */
|
|
long dtls1_get_message(SSL *ssl, int msg_type,
|
|
enum ssl_hash_message_t hash_message, int *ok) {
|
|
pitem *item = NULL;
|
|
hm_fragment *frag = NULL;
|
|
int al;
|
|
|
|
/* s3->tmp is used to store messages that are unexpected, caused
|
|
* by the absence of an optional handshake message */
|
|
if (ssl->s3->tmp.reuse_message) {
|
|
/* A ssl_dont_hash_message call cannot be combined with reuse_message; the
|
|
* ssl_dont_hash_message would have to have been applied to the previous
|
|
* call. */
|
|
assert(hash_message == ssl_hash_message);
|
|
ssl->s3->tmp.reuse_message = 0;
|
|
if (msg_type >= 0 && ssl->s3->tmp.message_type != msg_type) {
|
|
al = SSL_AD_UNEXPECTED_MESSAGE;
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
|
|
goto f_err;
|
|
}
|
|
*ok = 1;
|
|
assert(ssl->init_buf->length >= DTLS1_HM_HEADER_LENGTH);
|
|
ssl->init_msg = (uint8_t *)ssl->init_buf->data + DTLS1_HM_HEADER_LENGTH;
|
|
ssl->init_num = (int)ssl->init_buf->length - DTLS1_HM_HEADER_LENGTH;
|
|
return ssl->init_num;
|
|
}
|
|
|
|
/* Process handshake records until the next message is ready. */
|
|
while (!dtls1_is_next_message_complete(ssl)) {
|
|
int ret = dtls1_process_handshake_record(ssl);
|
|
if (ret <= 0) {
|
|
*ok = 0;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Read out the next complete handshake message. */
|
|
item = pqueue_pop(ssl->d1->buffered_messages);
|
|
assert(item != NULL);
|
|
frag = (hm_fragment *)item->data;
|
|
assert(ssl->d1->handshake_read_seq == frag->msg_header.seq);
|
|
assert(frag->reassembly == NULL);
|
|
|
|
/* Reconstruct the assembled message. */
|
|
CBB cbb;
|
|
CBB_zero(&cbb);
|
|
if (!BUF_MEM_reserve(ssl->init_buf, (size_t)frag->msg_header.msg_len +
|
|
DTLS1_HM_HEADER_LENGTH) ||
|
|
!CBB_init_fixed(&cbb, (uint8_t *)ssl->init_buf->data,
|
|
ssl->init_buf->max) ||
|
|
!CBB_add_u8(&cbb, frag->msg_header.type) ||
|
|
!CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
|
|
!CBB_add_u16(&cbb, frag->msg_header.seq) ||
|
|
!CBB_add_u24(&cbb, 0 /* frag_off */) ||
|
|
!CBB_add_u24(&cbb, frag->msg_header.msg_len) ||
|
|
!CBB_add_bytes(&cbb, frag->fragment, frag->msg_header.msg_len) ||
|
|
!CBB_finish(&cbb, NULL, &ssl->init_buf->length)) {
|
|
CBB_cleanup(&cbb);
|
|
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
assert(ssl->init_buf->length ==
|
|
(size_t)frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH);
|
|
|
|
ssl->d1->handshake_read_seq++;
|
|
|
|
/* TODO(davidben): This function has a lot of implicit outputs. Simplify the
|
|
* |ssl_get_message| API. */
|
|
ssl->s3->tmp.message_type = frag->msg_header.type;
|
|
ssl->init_msg = (uint8_t *)ssl->init_buf->data + DTLS1_HM_HEADER_LENGTH;
|
|
ssl->init_num = frag->msg_header.msg_len;
|
|
|
|
if (msg_type >= 0 && ssl->s3->tmp.message_type != msg_type) {
|
|
al = SSL_AD_UNEXPECTED_MESSAGE;
|
|
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
|
|
goto f_err;
|
|
}
|
|
if (hash_message == ssl_hash_message && !ssl3_hash_current_message(ssl)) {
|
|
goto err;
|
|
}
|
|
|
|
ssl_do_msg_callback(ssl, 0 /* read */, ssl->version, SSL3_RT_HANDSHAKE,
|
|
ssl->init_buf->data,
|
|
ssl->init_num + DTLS1_HM_HEADER_LENGTH);
|
|
|
|
pitem_free(item);
|
|
dtls1_hm_fragment_free(frag);
|
|
|
|
*ok = 1;
|
|
return ssl->init_num;
|
|
|
|
f_err:
|
|
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
|
|
err:
|
|
pitem_free(item);
|
|
dtls1_hm_fragment_free(frag);
|
|
*ok = 0;
|
|
return -1;
|
|
}
|
|
|
|
static uint16_t dtls1_get_queue_priority(uint16_t seq, int is_ccs) {
|
|
assert(seq * 2 >= seq);
|
|
|
|
/* The index of the retransmission queue actually is the message sequence
|
|
* number, since the queue only contains messages of a single handshake.
|
|
* However, the ChangeCipherSpec has no message sequence number and so using
|
|
* only the sequence will result in the CCS and Finished having the same
|
|
* index. To prevent this, the sequence number is multiplied by 2. In case of
|
|
* a CCS 1 is subtracted. This does not only differ CSS and Finished, it also
|
|
* maintains the order of the index (important for priority queues) and fits
|
|
* in the unsigned short variable. */
|
|
return seq * 2 - is_ccs;
|
|
}
|
|
|
|
static int dtls1_retransmit_message(SSL *ssl, hm_fragment *frag) {
|
|
/* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1
|
|
* (negotiated cipher) exist. */
|
|
assert(ssl->d1->w_epoch == 0 || ssl->d1->w_epoch == 1);
|
|
assert(frag->msg_header.epoch <= ssl->d1->w_epoch);
|
|
enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
|
|
if (ssl->d1->w_epoch == 1 && frag->msg_header.epoch == 0) {
|
|
use_epoch = dtls1_use_previous_epoch;
|
|
}
|
|
|
|
/* TODO(davidben): This cannot handle non-blocking writes. */
|
|
int ret;
|
|
if (frag->msg_header.is_ccs) {
|
|
ret = dtls1_write_change_cipher_spec(ssl, use_epoch);
|
|
} else {
|
|
/* Restore the message body.
|
|
* TODO(davidben): Make this less stateful. */
|
|
memcpy(ssl->init_buf->data, frag->fragment,
|
|
frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH);
|
|
ssl->init_num = frag->msg_header.msg_len + DTLS1_HM_HEADER_LENGTH;
|
|
|
|
dtls1_set_message_header(ssl, frag->msg_header.type,
|
|
frag->msg_header.msg_len, frag->msg_header.seq,
|
|
0, frag->msg_header.frag_len);
|
|
ret = dtls1_do_handshake_write(ssl, use_epoch);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dtls1_retransmit_buffered_messages(SSL *ssl) {
|
|
/* Ensure we are packing handshake messages. */
|
|
const int was_buffered = ssl_is_wbio_buffered(ssl);
|
|
assert(was_buffered == SSL_in_init(ssl));
|
|
if (!was_buffered && !ssl_init_wbio_buffer(ssl)) {
|
|
return -1;
|
|
}
|
|
assert(ssl_is_wbio_buffered(ssl));
|
|
|
|
int ret = -1;
|
|
piterator iter = pqueue_iterator(ssl->d1->sent_messages);
|
|
pitem *item;
|
|
for (item = pqueue_next(&iter); item != NULL; item = pqueue_next(&iter)) {
|
|
hm_fragment *frag = (hm_fragment *)item->data;
|
|
if (dtls1_retransmit_message(ssl, frag) <= 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
ret = BIO_flush(ssl->wbio);
|
|
if (ret <= 0) {
|
|
ssl->rwstate = SSL_WRITING;
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
if (!was_buffered) {
|
|
ssl_free_wbio_buffer(ssl);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* dtls1_buffer_change_cipher_spec adds a ChangeCipherSpec to the current
|
|
* handshake flight, ordered just before the handshake message numbered
|
|
* |seq|. */
|
|
static int dtls1_buffer_change_cipher_spec(SSL *ssl, uint16_t seq) {
|
|
hm_fragment *frag = dtls1_hm_fragment_new(0 /* frag_len */,
|
|
0 /* no reassembly */);
|
|
if (frag == NULL) {
|
|
return 0;
|
|
}
|
|
frag->msg_header.is_ccs = 1;
|
|
frag->msg_header.epoch = ssl->d1->w_epoch;
|
|
|
|
uint16_t priority = dtls1_get_queue_priority(seq, 1 /* is_ccs */);
|
|
uint8_t seq64be[8];
|
|
memset(seq64be, 0, sizeof(seq64be));
|
|
seq64be[6] = (uint8_t)(priority >> 8);
|
|
seq64be[7] = (uint8_t)priority;
|
|
|
|
pitem *item = pitem_new(seq64be, frag);
|
|
if (item == NULL) {
|
|
dtls1_hm_fragment_free(frag);
|
|
return 0;
|
|
}
|
|
|
|
pqueue_insert(ssl->d1->sent_messages, item);
|
|
return 1;
|
|
}
|
|
|
|
int dtls1_buffer_message(SSL *ssl) {
|
|
/* this function is called immediately after a message has
|
|
* been serialized */
|
|
assert(ssl->init_off == 0);
|
|
|
|
hm_fragment *frag = dtls1_hm_fragment_new(ssl->init_num, 0);
|
|
if (!frag) {
|
|
return 0;
|
|
}
|
|
|
|
memcpy(frag->fragment, ssl->init_buf->data, ssl->init_num);
|
|
|
|
assert(ssl->d1->w_msg_hdr.msg_len + DTLS1_HM_HEADER_LENGTH ==
|
|
(unsigned int)ssl->init_num);
|
|
|
|
frag->msg_header.msg_len = ssl->d1->w_msg_hdr.msg_len;
|
|
frag->msg_header.seq = ssl->d1->w_msg_hdr.seq;
|
|
frag->msg_header.type = ssl->d1->w_msg_hdr.type;
|
|
frag->msg_header.frag_off = 0;
|
|
frag->msg_header.frag_len = ssl->d1->w_msg_hdr.msg_len;
|
|
frag->msg_header.is_ccs = 0;
|
|
frag->msg_header.epoch = ssl->d1->w_epoch;
|
|
|
|
uint16_t priority = dtls1_get_queue_priority(frag->msg_header.seq,
|
|
0 /* handshake */);
|
|
uint8_t seq64be[8];
|
|
memset(seq64be, 0, sizeof(seq64be));
|
|
seq64be[6] = (uint8_t)(priority >> 8);
|
|
seq64be[7] = (uint8_t)priority;
|
|
|
|
pitem *item = pitem_new(seq64be, frag);
|
|
if (item == NULL) {
|
|
dtls1_hm_fragment_free(frag);
|
|
return 0;
|
|
}
|
|
|
|
pqueue_insert(ssl->d1->sent_messages, item);
|
|
return 1;
|
|
}
|
|
|
|
int dtls1_send_change_cipher_spec(SSL *ssl, int a, int b) {
|
|
if (ssl->state == a) {
|
|
/* Buffer the message to handle retransmits. */
|
|
ssl->d1->handshake_write_seq = ssl->d1->next_handshake_write_seq;
|
|
dtls1_buffer_change_cipher_spec(ssl, ssl->d1->handshake_write_seq);
|
|
ssl->state = b;
|
|
}
|
|
|
|
return dtls1_write_change_cipher_spec(ssl, dtls1_use_current_epoch);
|
|
}
|
|
|
|
/* call this function when the buffered messages are no longer needed */
|
|
void dtls1_clear_record_buffer(SSL *ssl) {
|
|
pitem *item;
|
|
|
|
for (item = pqueue_pop(ssl->d1->sent_messages); item != NULL;
|
|
item = pqueue_pop(ssl->d1->sent_messages)) {
|
|
dtls1_hm_fragment_free((hm_fragment *)item->data);
|
|
pitem_free(item);
|
|
}
|
|
}
|
|
|
|
/* don't actually do the writing, wait till the MTU has been retrieved */
|
|
void dtls1_set_message_header(SSL *ssl, uint8_t mt, unsigned long len,
|
|
unsigned short seq_num, unsigned long frag_off,
|
|
unsigned long frag_len) {
|
|
struct hm_header_st *msg_hdr = &ssl->d1->w_msg_hdr;
|
|
|
|
msg_hdr->type = mt;
|
|
msg_hdr->msg_len = len;
|
|
msg_hdr->seq = seq_num;
|
|
msg_hdr->frag_off = frag_off;
|
|
msg_hdr->frag_len = frag_len;
|
|
}
|
|
|
|
unsigned int dtls1_min_mtu(void) {
|
|
return kMinMTU;
|
|
}
|
|
|
|
int dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
|
|
CBS *out_body) {
|
|
memset(out_hdr, 0x00, sizeof(struct hm_header_st));
|
|
|
|
if (!CBS_get_u8(cbs, &out_hdr->type) ||
|
|
!CBS_get_u24(cbs, &out_hdr->msg_len) ||
|
|
!CBS_get_u16(cbs, &out_hdr->seq) ||
|
|
!CBS_get_u24(cbs, &out_hdr->frag_off) ||
|
|
!CBS_get_u24(cbs, &out_hdr->frag_len) ||
|
|
!CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|