You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass which inserts x86 AVX vzeroupper instructions
 | |
| // before calls to SSE encoded functions. This avoids transition latency
 | |
| // penalty when transferring control between AVX encoded instructions and old
 | |
| // SSE encoding mode.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-vzeroupper"
 | |
| 
 | |
| STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class VZeroUpperInserter : public MachineFunctionPass {
 | |
|   public:
 | |
|     VZeroUpperInserter() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     MachineFunctionProperties getRequiredProperties() const override {
 | |
|       return MachineFunctionProperties().set(
 | |
|           MachineFunctionProperties::Property::NoVRegs);
 | |
|     }
 | |
| 
 | |
|     StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
 | |
| 
 | |
|   private:
 | |
|     void processBasicBlock(MachineBasicBlock &MBB);
 | |
|     void insertVZeroUpper(MachineBasicBlock::iterator I,
 | |
|                           MachineBasicBlock &MBB);
 | |
|     void addDirtySuccessor(MachineBasicBlock &MBB);
 | |
| 
 | |
|     using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
 | |
| 
 | |
|     static const char* getBlockExitStateName(BlockExitState ST);
 | |
| 
 | |
|     // Core algorithm state:
 | |
|     // BlockState - Each block is either:
 | |
|     //   - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
 | |
|     //                   vzeroupper instructions in this block.
 | |
|     //   - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
 | |
|     //                  block that will ensure that YMM/ZMM is clean on exit.
 | |
|     //   - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
 | |
|     //                  subsequent vzeroupper in the block clears it.
 | |
|     //
 | |
|     // AddedToDirtySuccessors - This flag is raised when a block is added to the
 | |
|     //                          DirtySuccessors list to ensure that it's not
 | |
|     //                          added multiple times.
 | |
|     //
 | |
|     // FirstUnguardedCall - Records the location of the first unguarded call in
 | |
|     //                      each basic block that may need to be guarded by a
 | |
|     //                      vzeroupper. We won't know whether it actually needs
 | |
|     //                      to be guarded until we discover a predecessor that
 | |
|     //                      is DIRTY_OUT.
 | |
|     struct BlockState {
 | |
|       BlockExitState ExitState = PASS_THROUGH;
 | |
|       bool AddedToDirtySuccessors = false;
 | |
|       MachineBasicBlock::iterator FirstUnguardedCall;
 | |
| 
 | |
|       BlockState() = default;
 | |
|     };
 | |
| 
 | |
|     using BlockStateMap = SmallVector<BlockState, 8>;
 | |
|     using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
 | |
| 
 | |
|     BlockStateMap BlockStates;
 | |
|     DirtySuccessorsWorkList DirtySuccessors;
 | |
|     bool EverMadeChange;
 | |
|     bool IsX86INTR;
 | |
|     const TargetInstrInfo *TII;
 | |
| 
 | |
|     static char ID;
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char VZeroUpperInserter::ID = 0;
 | |
| 
 | |
| FunctionPass *llvm::createX86IssueVZeroUpperPass() {
 | |
|   return new VZeroUpperInserter();
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
 | |
|   switch (ST) {
 | |
|     case PASS_THROUGH: return "Pass-through";
 | |
|     case EXITS_DIRTY: return "Exits-dirty";
 | |
|     case EXITS_CLEAN: return "Exits-clean";
 | |
|   }
 | |
|   llvm_unreachable("Invalid block exit state.");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
 | |
| /// Thus, there is no need to check for Y/ZMM16 and above.
 | |
| static bool isYmmOrZmmReg(unsigned Reg) {
 | |
|   return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
 | |
|          (Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
 | |
| }
 | |
| 
 | |
| static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
 | |
|   for (std::pair<unsigned, unsigned> LI : MRI.liveins())
 | |
|     if (isYmmOrZmmReg(LI.first))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
 | |
|   for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
 | |
|     if (!MO.clobbersPhysReg(reg))
 | |
|       return false;
 | |
|   }
 | |
|   for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
 | |
|     if (!MO.clobbersPhysReg(reg))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool hasYmmOrZmmReg(MachineInstr &MI) {
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
 | |
|       return true;
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (MO.isDebug())
 | |
|       continue;
 | |
|     if (isYmmOrZmmReg(MO.getReg()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check if given call instruction has a RegMask operand.
 | |
| static bool callHasRegMask(MachineInstr &MI) {
 | |
|   assert(MI.isCall() && "Can only be called on call instructions.");
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     if (MO.isRegMask())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Insert a vzeroupper instruction before I.
 | |
| void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
 | |
|                                           MachineBasicBlock &MBB) {
 | |
|   DebugLoc dl = I->getDebugLoc();
 | |
|   BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
 | |
|   ++NumVZU;
 | |
|   EverMadeChange = true;
 | |
| }
 | |
| 
 | |
| /// Add MBB to the DirtySuccessors list if it hasn't already been added.
 | |
| void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
 | |
|   if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
 | |
|     DirtySuccessors.push_back(&MBB);
 | |
|     BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Loop over all of the instructions in the basic block, inserting vzeroupper
 | |
| /// instructions before function calls.
 | |
| void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
 | |
|   // Start by assuming that the block is PASS_THROUGH which implies no unguarded
 | |
|   // calls.
 | |
|   BlockExitState CurState = PASS_THROUGH;
 | |
|   BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
 | |
| 
 | |
|   for (MachineInstr &MI : MBB) {
 | |
|     bool IsCall = MI.isCall();
 | |
|     bool IsReturn = MI.isReturn();
 | |
|     bool IsControlFlow = IsCall || IsReturn;
 | |
| 
 | |
|     // No need for vzeroupper before iret in interrupt handler function,
 | |
|     // epilogue will restore YMM/ZMM registers if needed.
 | |
|     if (IsX86INTR && IsReturn)
 | |
|       continue;
 | |
| 
 | |
|     // An existing VZERO* instruction resets the state.
 | |
|     if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
 | |
|       CurState = EXITS_CLEAN;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Shortcut: don't need to check regular instructions in dirty state.
 | |
|     if (!IsControlFlow && CurState == EXITS_DIRTY)
 | |
|       continue;
 | |
| 
 | |
|     if (hasYmmOrZmmReg(MI)) {
 | |
|       // We found a ymm/zmm-using instruction; this could be an AVX/AVX512
 | |
|       // instruction, or it could be control flow.
 | |
|       CurState = EXITS_DIRTY;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check for control-flow out of the current function (which might
 | |
|     // indirectly execute SSE instructions).
 | |
|     if (!IsControlFlow)
 | |
|       continue;
 | |
| 
 | |
|     // If the call has no RegMask, skip it as well. It usually happens on
 | |
|     // helper function calls (such as '_chkstk', '_ftol2') where standard
 | |
|     // calling convention is not used (RegMask is not used to mark register
 | |
|     // clobbered and register usage (def/implicit-def/use) is well-defined and
 | |
|     // explicitly specified.
 | |
|     if (IsCall && !callHasRegMask(MI))
 | |
|       continue;
 | |
| 
 | |
|     // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
 | |
|     // registers. In addition, the processor changes back to Clean state, after
 | |
|     // which execution of SSE instructions or AVX instructions has no transition
 | |
|     // penalty. Add the VZEROUPPER instruction before any function call/return
 | |
|     // that might execute SSE code.
 | |
|     // FIXME: In some cases, we may want to move the VZEROUPPER into a
 | |
|     // predecessor block.
 | |
|     if (CurState == EXITS_DIRTY) {
 | |
|       // After the inserted VZEROUPPER the state becomes clean again, but
 | |
|       // other YMM/ZMM may appear before other subsequent calls or even before
 | |
|       // the end of the BB.
 | |
|       insertVZeroUpper(MI, MBB);
 | |
|       CurState = EXITS_CLEAN;
 | |
|     } else if (CurState == PASS_THROUGH) {
 | |
|       // If this block is currently in pass-through state and we encounter a
 | |
|       // call then whether we need a vzeroupper or not depends on whether this
 | |
|       // block has successors that exit dirty. Record the location of the call,
 | |
|       // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
 | |
|       // It will be inserted later if necessary.
 | |
|       BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
 | |
|       CurState = EXITS_CLEAN;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
 | |
|                << getBlockExitStateName(CurState) << '\n');
 | |
| 
 | |
|   if (CurState == EXITS_DIRTY)
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
 | |
|                                           SE = MBB.succ_end();
 | |
|          SI != SE; ++SI)
 | |
|       addDirtySuccessor(**SI);
 | |
| 
 | |
|   BlockStates[MBB.getNumber()].ExitState = CurState;
 | |
| }
 | |
| 
 | |
| /// Loop over all of the basic blocks, inserting vzeroupper instructions before
 | |
| /// function calls.
 | |
| bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
 | |
|   if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite())
 | |
|     return false;
 | |
|   TII = ST.getInstrInfo();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   EverMadeChange = false;
 | |
|   IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
 | |
| 
 | |
|   bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
 | |
| 
 | |
|   // Fast check: if the function doesn't use any ymm/zmm registers, we don't
 | |
|   // need to insert any VZEROUPPER instructions.  This is constant-time, so it
 | |
|   // is cheap in the common case of no ymm/zmm use.
 | |
|   bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
 | |
|   const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass};
 | |
|   for (auto *RC : RCs) {
 | |
|     if (!YmmOrZmmUsed) {
 | |
|       for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
 | |
|            i++) {
 | |
|         if (!MRI.reg_nodbg_empty(*i)) {
 | |
|           YmmOrZmmUsed = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (!YmmOrZmmUsed) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(BlockStates.empty() && DirtySuccessors.empty() &&
 | |
|          "X86VZeroUpper state should be clear");
 | |
|   BlockStates.resize(MF.getNumBlockIDs());
 | |
| 
 | |
|   // Process all blocks. This will compute block exit states, record the first
 | |
|   // unguarded call in each block, and add successors of dirty blocks to the
 | |
|   // DirtySuccessors list.
 | |
|   for (MachineBasicBlock &MBB : MF)
 | |
|     processBasicBlock(MBB);
 | |
| 
 | |
|   // If any YMM/ZMM regs are live-in to this function, add the entry block to
 | |
|   // the DirtySuccessors list
 | |
|   if (FnHasLiveInYmmOrZmm)
 | |
|     addDirtySuccessor(MF.front());
 | |
| 
 | |
|   // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
 | |
|   // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
 | |
|   // through PASS_THROUGH blocks.
 | |
|   while (!DirtySuccessors.empty()) {
 | |
|     MachineBasicBlock &MBB = *DirtySuccessors.back();
 | |
|     DirtySuccessors.pop_back();
 | |
|     BlockState &BBState = BlockStates[MBB.getNumber()];
 | |
| 
 | |
|     // MBB is a successor of a dirty block, so its first call needs to be
 | |
|     // guarded.
 | |
|     if (BBState.FirstUnguardedCall != MBB.end())
 | |
|       insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
 | |
| 
 | |
|     // If this successor was a pass-through block, then it is now dirty. Its
 | |
|     // successors need to be added to the worklist (if they haven't been
 | |
|     // already).
 | |
|     if (BBState.ExitState == PASS_THROUGH) {
 | |
|       DEBUG(dbgs() << "MBB #" << MBB.getNumber()
 | |
|                    << " was Pass-through, is now Dirty-out.\n");
 | |
|       for (MachineBasicBlock *Succ : MBB.successors())
 | |
|         addDirtySuccessor(*Succ);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BlockStates.clear();
 | |
|   return EverMadeChange;
 | |
| }
 |