You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			1855 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1855 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- RDFGraph.cpp -------------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Target-independent, SSA-based data flow graph for register data flow (RDF).
 | |
| //
 | |
| #include "RDFGraph.h"
 | |
| #include "RDFRegisters.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineDominanceFrontier.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace rdf;
 | |
| 
 | |
| // Printing functions. Have them here first, so that the rest of the code
 | |
| // can use them.
 | |
| namespace llvm {
 | |
| namespace rdf {
 | |
| 
 | |
| raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
 | |
|   if (!P.Mask.all())
 | |
|     OS << ':' << PrintLaneMask(P.Mask);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
 | |
|   auto &TRI = P.G.getTRI();
 | |
|   if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
 | |
|     OS << TRI.getName(P.Obj.Reg);
 | |
|   else
 | |
|     OS << '#' << P.Obj.Reg;
 | |
|   OS << PrintLaneMaskOpt(P.Obj.Mask);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
 | |
|   auto NA = P.G.addr<NodeBase*>(P.Obj);
 | |
|   uint16_t Attrs = NA.Addr->getAttrs();
 | |
|   uint16_t Kind = NodeAttrs::kind(Attrs);
 | |
|   uint16_t Flags = NodeAttrs::flags(Attrs);
 | |
|   switch (NodeAttrs::type(Attrs)) {
 | |
|     case NodeAttrs::Code:
 | |
|       switch (Kind) {
 | |
|         case NodeAttrs::Func:   OS << 'f'; break;
 | |
|         case NodeAttrs::Block:  OS << 'b'; break;
 | |
|         case NodeAttrs::Stmt:   OS << 's'; break;
 | |
|         case NodeAttrs::Phi:    OS << 'p'; break;
 | |
|         default:                OS << "c?"; break;
 | |
|       }
 | |
|       break;
 | |
|     case NodeAttrs::Ref:
 | |
|       if (Flags & NodeAttrs::Undef)
 | |
|         OS << '/';
 | |
|       if (Flags & NodeAttrs::Dead)
 | |
|         OS << '\\';
 | |
|       if (Flags & NodeAttrs::Preserving)
 | |
|         OS << '+';
 | |
|       if (Flags & NodeAttrs::Clobbering)
 | |
|         OS << '~';
 | |
|       switch (Kind) {
 | |
|         case NodeAttrs::Use:    OS << 'u'; break;
 | |
|         case NodeAttrs::Def:    OS << 'd'; break;
 | |
|         case NodeAttrs::Block:  OS << 'b'; break;
 | |
|         default:                OS << "r?"; break;
 | |
|       }
 | |
|       break;
 | |
|     default:
 | |
|       OS << '?';
 | |
|       break;
 | |
|   }
 | |
|   OS << P.Obj;
 | |
|   if (Flags & NodeAttrs::Shadow)
 | |
|     OS << '"';
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
 | |
|                 const DataFlowGraph &G) {
 | |
|   OS << Print<NodeId>(RA.Id, G) << '<'
 | |
|      << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
 | |
|   if (RA.Addr->getFlags() & NodeAttrs::Fixed)
 | |
|     OS << '!';
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
 | |
|   printRefHeader(OS, P.Obj, P.G);
 | |
|   OS << '(';
 | |
|   if (NodeId N = P.Obj.Addr->getReachingDef())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   OS << ',';
 | |
|   if (NodeId N = P.Obj.Addr->getReachedDef())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   OS << ',';
 | |
|   if (NodeId N = P.Obj.Addr->getReachedUse())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   OS << "):";
 | |
|   if (NodeId N = P.Obj.Addr->getSibling())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
 | |
|   printRefHeader(OS, P.Obj, P.G);
 | |
|   OS << '(';
 | |
|   if (NodeId N = P.Obj.Addr->getReachingDef())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   OS << "):";
 | |
|   if (NodeId N = P.Obj.Addr->getSibling())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS,
 | |
|       const Print<NodeAddr<PhiUseNode*>> &P) {
 | |
|   printRefHeader(OS, P.Obj, P.G);
 | |
|   OS << '(';
 | |
|   if (NodeId N = P.Obj.Addr->getReachingDef())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   OS << ',';
 | |
|   if (NodeId N = P.Obj.Addr->getPredecessor())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   OS << "):";
 | |
|   if (NodeId N = P.Obj.Addr->getSibling())
 | |
|     OS << Print<NodeId>(N, P.G);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
 | |
|   switch (P.Obj.Addr->getKind()) {
 | |
|     case NodeAttrs::Def:
 | |
|       OS << PrintNode<DefNode*>(P.Obj, P.G);
 | |
|       break;
 | |
|     case NodeAttrs::Use:
 | |
|       if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
 | |
|         OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
 | |
|       else
 | |
|         OS << PrintNode<UseNode*>(P.Obj, P.G);
 | |
|       break;
 | |
|   }
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
 | |
|   unsigned N = P.Obj.size();
 | |
|   for (auto I : P.Obj) {
 | |
|     OS << Print<NodeId>(I.Id, P.G);
 | |
|     if (--N)
 | |
|       OS << ' ';
 | |
|   }
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
 | |
|   unsigned N = P.Obj.size();
 | |
|   for (auto I : P.Obj) {
 | |
|     OS << Print<NodeId>(I, P.G);
 | |
|     if (--N)
 | |
|       OS << ' ';
 | |
|   }
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   template <typename T>
 | |
|   struct PrintListV {
 | |
|     PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
 | |
| 
 | |
|     using Type = T;
 | |
|     const NodeList &List;
 | |
|     const DataFlowGraph &G;
 | |
|   };
 | |
| 
 | |
|   template <typename T>
 | |
|   raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
 | |
|     unsigned N = P.List.size();
 | |
|     for (NodeAddr<T> A : P.List) {
 | |
|       OS << PrintNode<T>(A, P.G);
 | |
|       if (--N)
 | |
|         OS << ", ";
 | |
|     }
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
 | |
|   OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
 | |
|      << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS,
 | |
|       const Print<NodeAddr<StmtNode*>> &P) {
 | |
|   const MachineInstr &MI = *P.Obj.Addr->getCode();
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
 | |
|   // Print the target for calls and branches (for readability).
 | |
|   if (MI.isCall() || MI.isBranch()) {
 | |
|     MachineInstr::const_mop_iterator T =
 | |
|           llvm::find_if(MI.operands(),
 | |
|                         [] (const MachineOperand &Op) -> bool {
 | |
|                           return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
 | |
|                         });
 | |
|     if (T != MI.operands_end()) {
 | |
|       OS << ' ';
 | |
|       if (T->isMBB())
 | |
|         OS << printMBBReference(*T->getMBB());
 | |
|       else if (T->isGlobal())
 | |
|         OS << T->getGlobal()->getName();
 | |
|       else if (T->isSymbol())
 | |
|         OS << T->getSymbolName();
 | |
|     }
 | |
|   }
 | |
|   OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS,
 | |
|       const Print<NodeAddr<InstrNode*>> &P) {
 | |
|   switch (P.Obj.Addr->getKind()) {
 | |
|     case NodeAttrs::Phi:
 | |
|       OS << PrintNode<PhiNode*>(P.Obj, P.G);
 | |
|       break;
 | |
|     case NodeAttrs::Stmt:
 | |
|       OS << PrintNode<StmtNode*>(P.Obj, P.G);
 | |
|       break;
 | |
|     default:
 | |
|       OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
 | |
|       break;
 | |
|   }
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS,
 | |
|       const Print<NodeAddr<BlockNode*>> &P) {
 | |
|   MachineBasicBlock *BB = P.Obj.Addr->getCode();
 | |
|   unsigned NP = BB->pred_size();
 | |
|   std::vector<int> Ns;
 | |
|   auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
 | |
|     unsigned N = Ns.size();
 | |
|     for (int I : Ns) {
 | |
|       OS << "%bb." << I;
 | |
|       if (--N)
 | |
|         OS << ", ";
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
 | |
|      << " --- preds(" << NP << "): ";
 | |
|   for (MachineBasicBlock *B : BB->predecessors())
 | |
|     Ns.push_back(B->getNumber());
 | |
|   PrintBBs(Ns);
 | |
| 
 | |
|   unsigned NS = BB->succ_size();
 | |
|   OS << "  succs(" << NS << "): ";
 | |
|   Ns.clear();
 | |
|   for (MachineBasicBlock *B : BB->successors())
 | |
|     Ns.push_back(B->getNumber());
 | |
|   PrintBBs(Ns);
 | |
|   OS << '\n';
 | |
| 
 | |
|   for (auto I : P.Obj.Addr->members(P.G))
 | |
|     OS << PrintNode<InstrNode*>(I, P.G) << '\n';
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS,
 | |
|       const Print<NodeAddr<FuncNode*>> &P) {
 | |
|   OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
 | |
|      << P.Obj.Addr->getCode()->getName() << '\n';
 | |
|   for (auto I : P.Obj.Addr->members(P.G))
 | |
|     OS << PrintNode<BlockNode*>(I, P.G) << '\n';
 | |
|   OS << "]\n";
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
 | |
|   OS << '{';
 | |
|   for (auto I : P.Obj)
 | |
|     OS << ' ' << Print<RegisterRef>(I, P.G);
 | |
|   OS << " }";
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
 | |
|   P.Obj.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| template<>
 | |
| raw_ostream &operator<< (raw_ostream &OS,
 | |
|       const Print<DataFlowGraph::DefStack> &P) {
 | |
|   for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
 | |
|     OS << Print<NodeId>(I->Id, P.G)
 | |
|        << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
 | |
|     I.down();
 | |
|     if (I != E)
 | |
|       OS << ' ';
 | |
|   }
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| } // end namespace rdf
 | |
| } // end namespace llvm
 | |
| 
 | |
| // Node allocation functions.
 | |
| //
 | |
| // Node allocator is like a slab memory allocator: it allocates blocks of
 | |
| // memory in sizes that are multiples of the size of a node. Each block has
 | |
| // the same size. Nodes are allocated from the currently active block, and
 | |
| // when it becomes full, a new one is created.
 | |
| // There is a mapping scheme between node id and its location in a block,
 | |
| // and within that block is described in the header file.
 | |
| //
 | |
| void NodeAllocator::startNewBlock() {
 | |
|   void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
 | |
|   char *P = static_cast<char*>(T);
 | |
|   Blocks.push_back(P);
 | |
|   // Check if the block index is still within the allowed range, i.e. less
 | |
|   // than 2^N, where N is the number of bits in NodeId for the block index.
 | |
|   // BitsPerIndex is the number of bits per node index.
 | |
|   assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
 | |
|          "Out of bits for block index");
 | |
|   ActiveEnd = P;
 | |
| }
 | |
| 
 | |
| bool NodeAllocator::needNewBlock() {
 | |
|   if (Blocks.empty())
 | |
|     return true;
 | |
| 
 | |
|   char *ActiveBegin = Blocks.back();
 | |
|   uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
 | |
|   return Index >= NodesPerBlock;
 | |
| }
 | |
| 
 | |
| NodeAddr<NodeBase*> NodeAllocator::New() {
 | |
|   if (needNewBlock())
 | |
|     startNewBlock();
 | |
| 
 | |
|   uint32_t ActiveB = Blocks.size()-1;
 | |
|   uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
 | |
|   NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
 | |
|                              makeId(ActiveB, Index) };
 | |
|   ActiveEnd += NodeMemSize;
 | |
|   return NA;
 | |
| }
 | |
| 
 | |
| NodeId NodeAllocator::id(const NodeBase *P) const {
 | |
|   uintptr_t A = reinterpret_cast<uintptr_t>(P);
 | |
|   for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
 | |
|     uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
 | |
|     if (A < B || A >= B + NodesPerBlock*NodeMemSize)
 | |
|       continue;
 | |
|     uint32_t Idx = (A-B)/NodeMemSize;
 | |
|     return makeId(i, Idx);
 | |
|   }
 | |
|   llvm_unreachable("Invalid node address");
 | |
| }
 | |
| 
 | |
| void NodeAllocator::clear() {
 | |
|   MemPool.Reset();
 | |
|   Blocks.clear();
 | |
|   ActiveEnd = nullptr;
 | |
| }
 | |
| 
 | |
| // Insert node NA after "this" in the circular chain.
 | |
| void NodeBase::append(NodeAddr<NodeBase*> NA) {
 | |
|   NodeId Nx = Next;
 | |
|   // If NA is already "next", do nothing.
 | |
|   if (Next != NA.Id) {
 | |
|     Next = NA.Id;
 | |
|     NA.Addr->Next = Nx;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Fundamental node manipulator functions.
 | |
| 
 | |
| // Obtain the register reference from a reference node.
 | |
| RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
 | |
|   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
 | |
|   if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
 | |
|     return G.unpack(Ref.PR);
 | |
|   assert(Ref.Op != nullptr);
 | |
|   return G.makeRegRef(*Ref.Op);
 | |
| }
 | |
| 
 | |
| // Set the register reference in the reference node directly (for references
 | |
| // in phi nodes).
 | |
| void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
 | |
|   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
 | |
|   assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
 | |
|   Ref.PR = G.pack(RR);
 | |
| }
 | |
| 
 | |
| // Set the register reference in the reference node based on a machine
 | |
| // operand (for references in statement nodes).
 | |
| void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
 | |
|   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
 | |
|   assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
 | |
|   (void)G;
 | |
|   Ref.Op = Op;
 | |
| }
 | |
| 
 | |
| // Get the owner of a given reference node.
 | |
| NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
 | |
|   NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
 | |
| 
 | |
|   while (NA.Addr != this) {
 | |
|     if (NA.Addr->getType() == NodeAttrs::Code)
 | |
|       return NA;
 | |
|     NA = G.addr<NodeBase*>(NA.Addr->getNext());
 | |
|   }
 | |
|   llvm_unreachable("No owner in circular list");
 | |
| }
 | |
| 
 | |
| // Connect the def node to the reaching def node.
 | |
| void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
 | |
|   Ref.RD = DA.Id;
 | |
|   Ref.Sib = DA.Addr->getReachedDef();
 | |
|   DA.Addr->setReachedDef(Self);
 | |
| }
 | |
| 
 | |
| // Connect the use node to the reaching def node.
 | |
| void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
 | |
|   Ref.RD = DA.Id;
 | |
|   Ref.Sib = DA.Addr->getReachedUse();
 | |
|   DA.Addr->setReachedUse(Self);
 | |
| }
 | |
| 
 | |
| // Get the first member of the code node.
 | |
| NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
 | |
|   if (Code.FirstM == 0)
 | |
|     return NodeAddr<NodeBase*>();
 | |
|   return G.addr<NodeBase*>(Code.FirstM);
 | |
| }
 | |
| 
 | |
| // Get the last member of the code node.
 | |
| NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
 | |
|   if (Code.LastM == 0)
 | |
|     return NodeAddr<NodeBase*>();
 | |
|   return G.addr<NodeBase*>(Code.LastM);
 | |
| }
 | |
| 
 | |
| // Add node NA at the end of the member list of the given code node.
 | |
| void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
 | |
|   NodeAddr<NodeBase*> ML = getLastMember(G);
 | |
|   if (ML.Id != 0) {
 | |
|     ML.Addr->append(NA);
 | |
|   } else {
 | |
|     Code.FirstM = NA.Id;
 | |
|     NodeId Self = G.id(this);
 | |
|     NA.Addr->setNext(Self);
 | |
|   }
 | |
|   Code.LastM = NA.Id;
 | |
| }
 | |
| 
 | |
| // Add node NA after member node MA in the given code node.
 | |
| void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
 | |
|       const DataFlowGraph &G) {
 | |
|   MA.Addr->append(NA);
 | |
|   if (Code.LastM == MA.Id)
 | |
|     Code.LastM = NA.Id;
 | |
| }
 | |
| 
 | |
| // Remove member node NA from the given code node.
 | |
| void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
 | |
|   NodeAddr<NodeBase*> MA = getFirstMember(G);
 | |
|   assert(MA.Id != 0);
 | |
| 
 | |
|   // Special handling if the member to remove is the first member.
 | |
|   if (MA.Id == NA.Id) {
 | |
|     if (Code.LastM == MA.Id) {
 | |
|       // If it is the only member, set both first and last to 0.
 | |
|       Code.FirstM = Code.LastM = 0;
 | |
|     } else {
 | |
|       // Otherwise, advance the first member.
 | |
|       Code.FirstM = MA.Addr->getNext();
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   while (MA.Addr != this) {
 | |
|     NodeId MX = MA.Addr->getNext();
 | |
|     if (MX == NA.Id) {
 | |
|       MA.Addr->setNext(NA.Addr->getNext());
 | |
|       // If the member to remove happens to be the last one, update the
 | |
|       // LastM indicator.
 | |
|       if (Code.LastM == NA.Id)
 | |
|         Code.LastM = MA.Id;
 | |
|       return;
 | |
|     }
 | |
|     MA = G.addr<NodeBase*>(MX);
 | |
|   }
 | |
|   llvm_unreachable("No such member");
 | |
| }
 | |
| 
 | |
| // Return the list of all members of the code node.
 | |
| NodeList CodeNode::members(const DataFlowGraph &G) const {
 | |
|   static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
 | |
|   return members_if(True, G);
 | |
| }
 | |
| 
 | |
| // Return the owner of the given instr node.
 | |
| NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
 | |
|   NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
 | |
| 
 | |
|   while (NA.Addr != this) {
 | |
|     assert(NA.Addr->getType() == NodeAttrs::Code);
 | |
|     if (NA.Addr->getKind() == NodeAttrs::Block)
 | |
|       return NA;
 | |
|     NA = G.addr<NodeBase*>(NA.Addr->getNext());
 | |
|   }
 | |
|   llvm_unreachable("No owner in circular list");
 | |
| }
 | |
| 
 | |
| // Add the phi node PA to the given block node.
 | |
| void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
 | |
|   NodeAddr<NodeBase*> M = getFirstMember(G);
 | |
|   if (M.Id == 0) {
 | |
|     addMember(PA, G);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(M.Addr->getType() == NodeAttrs::Code);
 | |
|   if (M.Addr->getKind() == NodeAttrs::Stmt) {
 | |
|     // If the first member of the block is a statement, insert the phi as
 | |
|     // the first member.
 | |
|     Code.FirstM = PA.Id;
 | |
|     PA.Addr->setNext(M.Id);
 | |
|   } else {
 | |
|     // If the first member is a phi, find the last phi, and append PA to it.
 | |
|     assert(M.Addr->getKind() == NodeAttrs::Phi);
 | |
|     NodeAddr<NodeBase*> MN = M;
 | |
|     do {
 | |
|       M = MN;
 | |
|       MN = G.addr<NodeBase*>(M.Addr->getNext());
 | |
|       assert(MN.Addr->getType() == NodeAttrs::Code);
 | |
|     } while (MN.Addr->getKind() == NodeAttrs::Phi);
 | |
| 
 | |
|     // M is the last phi.
 | |
|     addMemberAfter(M, PA, G);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Find the block node corresponding to the machine basic block BB in the
 | |
| // given func node.
 | |
| NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
 | |
|       const DataFlowGraph &G) const {
 | |
|   auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
 | |
|     return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
 | |
|   };
 | |
|   NodeList Ms = members_if(EqBB, G);
 | |
|   if (!Ms.empty())
 | |
|     return Ms[0];
 | |
|   return NodeAddr<BlockNode*>();
 | |
| }
 | |
| 
 | |
| // Get the block node for the entry block in the given function.
 | |
| NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
 | |
|   MachineBasicBlock *EntryB = &getCode()->front();
 | |
|   return findBlock(EntryB, G);
 | |
| }
 | |
| 
 | |
| // Target operand information.
 | |
| //
 | |
| 
 | |
| // For a given instruction, check if there are any bits of RR that can remain
 | |
| // unchanged across this def.
 | |
| bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
 | |
|       const {
 | |
|   return TII.isPredicated(In);
 | |
| }
 | |
| 
 | |
| // Check if the definition of RR produces an unspecified value.
 | |
| bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
 | |
|       const {
 | |
|   const MachineOperand &Op = In.getOperand(OpNum);
 | |
|   if (Op.isRegMask())
 | |
|     return true;
 | |
|   assert(Op.isReg());
 | |
|   if (In.isCall())
 | |
|     if (Op.isDef() && Op.isDead())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check if the given instruction specifically requires
 | |
| bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
 | |
|       const {
 | |
|   if (In.isCall() || In.isReturn() || In.isInlineAsm())
 | |
|     return true;
 | |
|   // Check for a tail call.
 | |
|   if (In.isBranch())
 | |
|     for (const MachineOperand &O : In.operands())
 | |
|       if (O.isGlobal() || O.isSymbol())
 | |
|         return true;
 | |
| 
 | |
|   const MCInstrDesc &D = In.getDesc();
 | |
|   if (!D.getImplicitDefs() && !D.getImplicitUses())
 | |
|     return false;
 | |
|   const MachineOperand &Op = In.getOperand(OpNum);
 | |
|   // If there is a sub-register, treat the operand as non-fixed. Currently,
 | |
|   // fixed registers are those that are listed in the descriptor as implicit
 | |
|   // uses or defs, and those lists do not allow sub-registers.
 | |
|   if (Op.getSubReg() != 0)
 | |
|     return false;
 | |
|   RegisterId Reg = Op.getReg();
 | |
|   const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
 | |
|                                      : D.getImplicitUses();
 | |
|   if (!ImpR)
 | |
|     return false;
 | |
|   while (*ImpR)
 | |
|     if (*ImpR++ == Reg)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //
 | |
| // The data flow graph construction.
 | |
| //
 | |
| 
 | |
| DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
 | |
|       const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
 | |
|       const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
 | |
|     : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
 | |
|       LiveIns(PRI) {
 | |
| }
 | |
| 
 | |
| // The implementation of the definition stack.
 | |
| // Each register reference has its own definition stack. In particular,
 | |
| // for a register references "Reg" and "Reg:subreg" will each have their
 | |
| // own definition stacks.
 | |
| 
 | |
| // Construct a stack iterator.
 | |
| DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
 | |
|       bool Top) : DS(S) {
 | |
|   if (!Top) {
 | |
|     // Initialize to bottom.
 | |
|     Pos = 0;
 | |
|     return;
 | |
|   }
 | |
|   // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
 | |
|   Pos = DS.Stack.size();
 | |
|   while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
 | |
|     Pos--;
 | |
| }
 | |
| 
 | |
| // Return the size of the stack, including block delimiters.
 | |
| unsigned DataFlowGraph::DefStack::size() const {
 | |
|   unsigned S = 0;
 | |
|   for (auto I = top(), E = bottom(); I != E; I.down())
 | |
|     S++;
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| // Remove the top entry from the stack. Remove all intervening delimiters
 | |
| // so that after this, the stack is either empty, or the top of the stack
 | |
| // is a non-delimiter.
 | |
| void DataFlowGraph::DefStack::pop() {
 | |
|   assert(!empty());
 | |
|   unsigned P = nextDown(Stack.size());
 | |
|   Stack.resize(P);
 | |
| }
 | |
| 
 | |
| // Push a delimiter for block node N on the stack.
 | |
| void DataFlowGraph::DefStack::start_block(NodeId N) {
 | |
|   assert(N != 0);
 | |
|   Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
 | |
| }
 | |
| 
 | |
| // Remove all nodes from the top of the stack, until the delimited for
 | |
| // block node N is encountered. Remove the delimiter as well. In effect,
 | |
| // this will remove from the stack all definitions from block N.
 | |
| void DataFlowGraph::DefStack::clear_block(NodeId N) {
 | |
|   assert(N != 0);
 | |
|   unsigned P = Stack.size();
 | |
|   while (P > 0) {
 | |
|     bool Found = isDelimiter(Stack[P-1], N);
 | |
|     P--;
 | |
|     if (Found)
 | |
|       break;
 | |
|   }
 | |
|   // This will also remove the delimiter, if found.
 | |
|   Stack.resize(P);
 | |
| }
 | |
| 
 | |
| // Move the stack iterator up by one.
 | |
| unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
 | |
|   // Get the next valid position after P (skipping all delimiters).
 | |
|   // The input position P does not have to point to a non-delimiter.
 | |
|   unsigned SS = Stack.size();
 | |
|   bool IsDelim;
 | |
|   assert(P < SS);
 | |
|   do {
 | |
|     P++;
 | |
|     IsDelim = isDelimiter(Stack[P-1]);
 | |
|   } while (P < SS && IsDelim);
 | |
|   assert(!IsDelim);
 | |
|   return P;
 | |
| }
 | |
| 
 | |
| // Move the stack iterator down by one.
 | |
| unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
 | |
|   // Get the preceding valid position before P (skipping all delimiters).
 | |
|   // The input position P does not have to point to a non-delimiter.
 | |
|   assert(P > 0 && P <= Stack.size());
 | |
|   bool IsDelim = isDelimiter(Stack[P-1]);
 | |
|   do {
 | |
|     if (--P == 0)
 | |
|       break;
 | |
|     IsDelim = isDelimiter(Stack[P-1]);
 | |
|   } while (P > 0 && IsDelim);
 | |
|   assert(!IsDelim);
 | |
|   return P;
 | |
| }
 | |
| 
 | |
| // Register information.
 | |
| 
 | |
| RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
 | |
|   RegisterSet LR;
 | |
|   const Function &F = MF.getFunction();
 | |
|   const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
 | |
|                                             : nullptr;
 | |
|   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
 | |
|   if (RegisterId R = TLI.getExceptionPointerRegister(PF))
 | |
|     LR.insert(RegisterRef(R));
 | |
|   if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
 | |
|     LR.insert(RegisterRef(R));
 | |
|   return LR;
 | |
| }
 | |
| 
 | |
| // Node management functions.
 | |
| 
 | |
| // Get the pointer to the node with the id N.
 | |
| NodeBase *DataFlowGraph::ptr(NodeId N) const {
 | |
|   if (N == 0)
 | |
|     return nullptr;
 | |
|   return Memory.ptr(N);
 | |
| }
 | |
| 
 | |
| // Get the id of the node at the address P.
 | |
| NodeId DataFlowGraph::id(const NodeBase *P) const {
 | |
|   if (P == nullptr)
 | |
|     return 0;
 | |
|   return Memory.id(P);
 | |
| }
 | |
| 
 | |
| // Allocate a new node and set the attributes to Attrs.
 | |
| NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
 | |
|   NodeAddr<NodeBase*> P = Memory.New();
 | |
|   P.Addr->init();
 | |
|   P.Addr->setAttrs(Attrs);
 | |
|   return P;
 | |
| }
 | |
| 
 | |
| // Make a copy of the given node B, except for the data-flow links, which
 | |
| // are set to 0.
 | |
| NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
 | |
|   NodeAddr<NodeBase*> NA = newNode(0);
 | |
|   memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
 | |
|   // Ref nodes need to have the data-flow links reset.
 | |
|   if (NA.Addr->getType() == NodeAttrs::Ref) {
 | |
|     NodeAddr<RefNode*> RA = NA;
 | |
|     RA.Addr->setReachingDef(0);
 | |
|     RA.Addr->setSibling(0);
 | |
|     if (NA.Addr->getKind() == NodeAttrs::Def) {
 | |
|       NodeAddr<DefNode*> DA = NA;
 | |
|       DA.Addr->setReachedDef(0);
 | |
|       DA.Addr->setReachedUse(0);
 | |
|     }
 | |
|   }
 | |
|   return NA;
 | |
| }
 | |
| 
 | |
| // Allocation routines for specific node types/kinds.
 | |
| 
 | |
| NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
 | |
|       MachineOperand &Op, uint16_t Flags) {
 | |
|   NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
 | |
|   UA.Addr->setRegRef(&Op, *this);
 | |
|   return UA;
 | |
| }
 | |
| 
 | |
| NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
 | |
|       RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
 | |
|   NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
 | |
|   assert(Flags & NodeAttrs::PhiRef);
 | |
|   PUA.Addr->setRegRef(RR, *this);
 | |
|   PUA.Addr->setPredecessor(PredB.Id);
 | |
|   return PUA;
 | |
| }
 | |
| 
 | |
| NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
 | |
|       MachineOperand &Op, uint16_t Flags) {
 | |
|   NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
 | |
|   DA.Addr->setRegRef(&Op, *this);
 | |
|   return DA;
 | |
| }
 | |
| 
 | |
| NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
 | |
|       RegisterRef RR, uint16_t Flags) {
 | |
|   NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
 | |
|   assert(Flags & NodeAttrs::PhiRef);
 | |
|   DA.Addr->setRegRef(RR, *this);
 | |
|   return DA;
 | |
| }
 | |
| 
 | |
| NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
 | |
|   NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
 | |
|   Owner.Addr->addPhi(PA, *this);
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
 | |
|       MachineInstr *MI) {
 | |
|   NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
 | |
|   SA.Addr->setCode(MI);
 | |
|   Owner.Addr->addMember(SA, *this);
 | |
|   return SA;
 | |
| }
 | |
| 
 | |
| NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
 | |
|       MachineBasicBlock *BB) {
 | |
|   NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
 | |
|   BA.Addr->setCode(BB);
 | |
|   Owner.Addr->addMember(BA, *this);
 | |
|   return BA;
 | |
| }
 | |
| 
 | |
| NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
 | |
|   NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
 | |
|   FA.Addr->setCode(MF);
 | |
|   return FA;
 | |
| }
 | |
| 
 | |
| // Build the data flow graph.
 | |
| void DataFlowGraph::build(unsigned Options) {
 | |
|   reset();
 | |
|   Func = newFunc(&MF);
 | |
| 
 | |
|   if (MF.empty())
 | |
|     return;
 | |
| 
 | |
|   for (MachineBasicBlock &B : MF) {
 | |
|     NodeAddr<BlockNode*> BA = newBlock(Func, &B);
 | |
|     BlockNodes.insert(std::make_pair(&B, BA));
 | |
|     for (MachineInstr &I : B) {
 | |
|       if (I.isDebugValue())
 | |
|         continue;
 | |
|       buildStmt(BA, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
 | |
|   NodeList Blocks = Func.Addr->members(*this);
 | |
| 
 | |
|   // Collect information about block references.
 | |
|   RegisterSet AllRefs;
 | |
|   for (NodeAddr<BlockNode*> BA : Blocks)
 | |
|     for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
 | |
|       for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
 | |
|         AllRefs.insert(RA.Addr->getRegRef(*this));
 | |
| 
 | |
|   // Collect function live-ins and entry block live-ins.
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   MachineBasicBlock &EntryB = *EA.Addr->getCode();
 | |
|   assert(EntryB.pred_empty() && "Function entry block has predecessors");
 | |
|   for (std::pair<unsigned,unsigned> P : MRI.liveins())
 | |
|     LiveIns.insert(RegisterRef(P.first));
 | |
|   if (MRI.tracksLiveness()) {
 | |
|     for (auto I : EntryB.liveins())
 | |
|       LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
 | |
|   }
 | |
| 
 | |
|   // Add function-entry phi nodes for the live-in registers.
 | |
|   //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
 | |
|   for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
 | |
|     RegisterRef RR = *I;
 | |
|     NodeAddr<PhiNode*> PA = newPhi(EA);
 | |
|     uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
 | |
|     NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
 | |
|     PA.Addr->addMember(DA, *this);
 | |
|   }
 | |
| 
 | |
|   // Add phis for landing pads.
 | |
|   // Landing pads, unlike usual backs blocks, are not entered through
 | |
|   // branches in the program, or fall-throughs from other blocks. They
 | |
|   // are entered from the exception handling runtime and target's ABI
 | |
|   // may define certain registers as defined on entry to such a block.
 | |
|   RegisterSet EHRegs = getLandingPadLiveIns();
 | |
|   if (!EHRegs.empty()) {
 | |
|     for (NodeAddr<BlockNode*> BA : Blocks) {
 | |
|       const MachineBasicBlock &B = *BA.Addr->getCode();
 | |
|       if (!B.isEHPad())
 | |
|         continue;
 | |
| 
 | |
|       // Prepare a list of NodeIds of the block's predecessors.
 | |
|       NodeList Preds;
 | |
|       for (MachineBasicBlock *PB : B.predecessors())
 | |
|         Preds.push_back(findBlock(PB));
 | |
| 
 | |
|       // Build phi nodes for each live-in.
 | |
|       for (RegisterRef RR : EHRegs) {
 | |
|         NodeAddr<PhiNode*> PA = newPhi(BA);
 | |
|         uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
 | |
|         // Add def:
 | |
|         NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
 | |
|         PA.Addr->addMember(DA, *this);
 | |
|         // Add uses (no reaching defs for phi uses):
 | |
|         for (NodeAddr<BlockNode*> PBA : Preds) {
 | |
|           NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
 | |
|           PA.Addr->addMember(PUA, *this);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Build a map "PhiM" which will contain, for each block, the set
 | |
|   // of references that will require phi definitions in that block.
 | |
|   BlockRefsMap PhiM;
 | |
|   for (NodeAddr<BlockNode*> BA : Blocks)
 | |
|     recordDefsForDF(PhiM, BA);
 | |
|   for (NodeAddr<BlockNode*> BA : Blocks)
 | |
|     buildPhis(PhiM, AllRefs, BA);
 | |
| 
 | |
|   // Link all the refs. This will recursively traverse the dominator tree.
 | |
|   DefStackMap DM;
 | |
|   linkBlockRefs(DM, EA);
 | |
| 
 | |
|   // Finally, remove all unused phi nodes.
 | |
|   if (!(Options & BuildOptions::KeepDeadPhis))
 | |
|     removeUnusedPhis();
 | |
| }
 | |
| 
 | |
| RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
 | |
|   assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
 | |
|          TargetRegisterInfo::isPhysicalRegister(Reg));
 | |
|   assert(Reg != 0);
 | |
|   if (Sub != 0)
 | |
|     Reg = TRI.getSubReg(Reg, Sub);
 | |
|   return RegisterRef(Reg);
 | |
| }
 | |
| 
 | |
| RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
 | |
|   assert(Op.isReg() || Op.isRegMask());
 | |
|   if (Op.isReg())
 | |
|     return makeRegRef(Op.getReg(), Op.getSubReg());
 | |
|   return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
 | |
| }
 | |
| 
 | |
| RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
 | |
|   if (AR.Reg == BR.Reg) {
 | |
|     LaneBitmask M = AR.Mask & BR.Mask;
 | |
|     return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
| //  RegisterRef NAR = PRI.normalize(AR);
 | |
| //  RegisterRef NBR = PRI.normalize(BR);
 | |
| //  assert(NAR.Reg != NBR.Reg);
 | |
| #endif
 | |
|   // This isn't strictly correct, because the overlap may happen in the
 | |
|   // part masked out.
 | |
|   if (PRI.alias(AR, BR))
 | |
|     return AR;
 | |
|   return RegisterRef();
 | |
| }
 | |
| 
 | |
| // For each stack in the map DefM, push the delimiter for block B on it.
 | |
| void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
 | |
|   // Push block delimiters.
 | |
|   for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
 | |
|     I->second.start_block(B);
 | |
| }
 | |
| 
 | |
| // Remove all definitions coming from block B from each stack in DefM.
 | |
| void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
 | |
|   // Pop all defs from this block from the definition stack. Defs that were
 | |
|   // added to the map during the traversal of instructions will not have a
 | |
|   // delimiter, but for those, the whole stack will be emptied.
 | |
|   for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
 | |
|     I->second.clear_block(B);
 | |
| 
 | |
|   // Finally, remove empty stacks from the map.
 | |
|   for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
 | |
|     NextI = std::next(I);
 | |
|     // This preserves the validity of iterators other than I.
 | |
|     if (I->second.empty())
 | |
|       DefM.erase(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Push all definitions from the instruction node IA to an appropriate
 | |
| // stack in DefM.
 | |
| void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
 | |
|   pushClobbers(IA, DefM);
 | |
|   pushDefs(IA, DefM);
 | |
| }
 | |
| 
 | |
| // Push all definitions from the instruction node IA to an appropriate
 | |
| // stack in DefM.
 | |
| void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
 | |
|   NodeSet Visited;
 | |
|   std::set<RegisterId> Defined;
 | |
| 
 | |
|   // The important objectives of this function are:
 | |
|   // - to be able to handle instructions both while the graph is being
 | |
|   //   constructed, and after the graph has been constructed, and
 | |
|   // - maintain proper ordering of definitions on the stack for each
 | |
|   //   register reference:
 | |
|   //   - if there are two or more related defs in IA (i.e. coming from
 | |
|   //     the same machine operand), then only push one def on the stack,
 | |
|   //   - if there are multiple unrelated defs of non-overlapping
 | |
|   //     subregisters of S, then the stack for S will have both (in an
 | |
|   //     unspecified order), but the order does not matter from the data-
 | |
|   //     -flow perspective.
 | |
| 
 | |
|   for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
 | |
|     if (Visited.count(DA.Id))
 | |
|       continue;
 | |
|     if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
 | |
|       continue;
 | |
| 
 | |
|     NodeList Rel = getRelatedRefs(IA, DA);
 | |
|     NodeAddr<DefNode*> PDA = Rel.front();
 | |
|     RegisterRef RR = PDA.Addr->getRegRef(*this);
 | |
| 
 | |
|     // Push the definition on the stack for the register and all aliases.
 | |
|     // The def stack traversal in linkNodeUp will check the exact aliasing.
 | |
|     DefM[RR.Reg].push(DA);
 | |
|     Defined.insert(RR.Reg);
 | |
|     for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
 | |
|       // Check that we don't push the same def twice.
 | |
|       assert(A != RR.Reg);
 | |
|       if (!Defined.count(A))
 | |
|         DefM[A].push(DA);
 | |
|     }
 | |
|     // Mark all the related defs as visited.
 | |
|     for (NodeAddr<NodeBase*> T : Rel)
 | |
|       Visited.insert(T.Id);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Push all definitions from the instruction node IA to an appropriate
 | |
| // stack in DefM.
 | |
| void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
 | |
|   NodeSet Visited;
 | |
| #ifndef NDEBUG
 | |
|   std::set<RegisterId> Defined;
 | |
| #endif
 | |
| 
 | |
|   // The important objectives of this function are:
 | |
|   // - to be able to handle instructions both while the graph is being
 | |
|   //   constructed, and after the graph has been constructed, and
 | |
|   // - maintain proper ordering of definitions on the stack for each
 | |
|   //   register reference:
 | |
|   //   - if there are two or more related defs in IA (i.e. coming from
 | |
|   //     the same machine operand), then only push one def on the stack,
 | |
|   //   - if there are multiple unrelated defs of non-overlapping
 | |
|   //     subregisters of S, then the stack for S will have both (in an
 | |
|   //     unspecified order), but the order does not matter from the data-
 | |
|   //     -flow perspective.
 | |
| 
 | |
|   for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
 | |
|     if (Visited.count(DA.Id))
 | |
|       continue;
 | |
|     if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
 | |
|       continue;
 | |
| 
 | |
|     NodeList Rel = getRelatedRefs(IA, DA);
 | |
|     NodeAddr<DefNode*> PDA = Rel.front();
 | |
|     RegisterRef RR = PDA.Addr->getRegRef(*this);
 | |
| #ifndef NDEBUG
 | |
|     // Assert if the register is defined in two or more unrelated defs.
 | |
|     // This could happen if there are two or more def operands defining it.
 | |
|     if (!Defined.insert(RR.Reg).second) {
 | |
|       MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
 | |
|       dbgs() << "Multiple definitions of register: "
 | |
|              << Print<RegisterRef>(RR, *this) << " in\n  " << *MI << "in "
 | |
|              << printMBBReference(*MI->getParent()) << '\n';
 | |
|       llvm_unreachable(nullptr);
 | |
|     }
 | |
| #endif
 | |
|     // Push the definition on the stack for the register and all aliases.
 | |
|     // The def stack traversal in linkNodeUp will check the exact aliasing.
 | |
|     DefM[RR.Reg].push(DA);
 | |
|     for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
 | |
|       // Check that we don't push the same def twice.
 | |
|       assert(A != RR.Reg);
 | |
|       DefM[A].push(DA);
 | |
|     }
 | |
|     // Mark all the related defs as visited.
 | |
|     for (NodeAddr<NodeBase*> T : Rel)
 | |
|       Visited.insert(T.Id);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the list of all reference nodes related to RA, including RA itself.
 | |
| // See "getNextRelated" for the meaning of a "related reference".
 | |
| NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
 | |
|       NodeAddr<RefNode*> RA) const {
 | |
|   assert(IA.Id != 0 && RA.Id != 0);
 | |
| 
 | |
|   NodeList Refs;
 | |
|   NodeId Start = RA.Id;
 | |
|   do {
 | |
|     Refs.push_back(RA);
 | |
|     RA = getNextRelated(IA, RA);
 | |
|   } while (RA.Id != 0 && RA.Id != Start);
 | |
|   return Refs;
 | |
| }
 | |
| 
 | |
| // Clear all information in the graph.
 | |
| void DataFlowGraph::reset() {
 | |
|   Memory.clear();
 | |
|   BlockNodes.clear();
 | |
|   Func = NodeAddr<FuncNode*>();
 | |
| }
 | |
| 
 | |
| // Return the next reference node in the instruction node IA that is related
 | |
| // to RA. Conceptually, two reference nodes are related if they refer to the
 | |
| // same instance of a register access, but differ in flags or other minor
 | |
| // characteristics. Specific examples of related nodes are shadow reference
 | |
| // nodes.
 | |
| // Return the equivalent of nullptr if there are no more related references.
 | |
| NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
 | |
|       NodeAddr<RefNode*> RA) const {
 | |
|   assert(IA.Id != 0 && RA.Id != 0);
 | |
| 
 | |
|   auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
 | |
|     if (TA.Addr->getKind() != RA.Addr->getKind())
 | |
|       return false;
 | |
|     if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
 | |
|       return false;
 | |
|     return true;
 | |
|   };
 | |
|   auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
 | |
|     return Related(TA) &&
 | |
|            &RA.Addr->getOp() == &TA.Addr->getOp();
 | |
|   };
 | |
|   auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
 | |
|     if (!Related(TA))
 | |
|       return false;
 | |
|     if (TA.Addr->getKind() != NodeAttrs::Use)
 | |
|       return true;
 | |
|     // For phi uses, compare predecessor blocks.
 | |
|     const NodeAddr<const PhiUseNode*> TUA = TA;
 | |
|     const NodeAddr<const PhiUseNode*> RUA = RA;
 | |
|     return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
 | |
|   };
 | |
| 
 | |
|   RegisterRef RR = RA.Addr->getRegRef(*this);
 | |
|   if (IA.Addr->getKind() == NodeAttrs::Stmt)
 | |
|     return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
 | |
|   return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
 | |
| }
 | |
| 
 | |
| // Find the next node related to RA in IA that satisfies condition P.
 | |
| // If such a node was found, return a pair where the second element is the
 | |
| // located node. If such a node does not exist, return a pair where the
 | |
| // first element is the element after which such a node should be inserted,
 | |
| // and the second element is a null-address.
 | |
| template <typename Predicate>
 | |
| std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
 | |
| DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
 | |
|       Predicate P) const {
 | |
|   assert(IA.Id != 0 && RA.Id != 0);
 | |
| 
 | |
|   NodeAddr<RefNode*> NA;
 | |
|   NodeId Start = RA.Id;
 | |
|   while (true) {
 | |
|     NA = getNextRelated(IA, RA);
 | |
|     if (NA.Id == 0 || NA.Id == Start)
 | |
|       break;
 | |
|     if (P(NA))
 | |
|       break;
 | |
|     RA = NA;
 | |
|   }
 | |
| 
 | |
|   if (NA.Id != 0 && NA.Id != Start)
 | |
|     return std::make_pair(RA, NA);
 | |
|   return std::make_pair(RA, NodeAddr<RefNode*>());
 | |
| }
 | |
| 
 | |
| // Get the next shadow node in IA corresponding to RA, and optionally create
 | |
| // such a node if it does not exist.
 | |
| NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
 | |
|       NodeAddr<RefNode*> RA, bool Create) {
 | |
|   assert(IA.Id != 0 && RA.Id != 0);
 | |
| 
 | |
|   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
 | |
|   auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
 | |
|     return TA.Addr->getFlags() == Flags;
 | |
|   };
 | |
|   auto Loc = locateNextRef(IA, RA, IsShadow);
 | |
|   if (Loc.second.Id != 0 || !Create)
 | |
|     return Loc.second;
 | |
| 
 | |
|   // Create a copy of RA and mark is as shadow.
 | |
|   NodeAddr<RefNode*> NA = cloneNode(RA);
 | |
|   NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
 | |
|   IA.Addr->addMemberAfter(Loc.first, NA, *this);
 | |
|   return NA;
 | |
| }
 | |
| 
 | |
| // Get the next shadow node in IA corresponding to RA. Return null-address
 | |
| // if such a node does not exist.
 | |
| NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
 | |
|       NodeAddr<RefNode*> RA) const {
 | |
|   assert(IA.Id != 0 && RA.Id != 0);
 | |
|   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
 | |
|   auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
 | |
|     return TA.Addr->getFlags() == Flags;
 | |
|   };
 | |
|   return locateNextRef(IA, RA, IsShadow).second;
 | |
| }
 | |
| 
 | |
| // Create a new statement node in the block node BA that corresponds to
 | |
| // the machine instruction MI.
 | |
| void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
 | |
|   NodeAddr<StmtNode*> SA = newStmt(BA, &In);
 | |
| 
 | |
|   auto isCall = [] (const MachineInstr &In) -> bool {
 | |
|     if (In.isCall())
 | |
|       return true;
 | |
|     // Is tail call?
 | |
|     if (In.isBranch()) {
 | |
|       for (const MachineOperand &Op : In.operands())
 | |
|         if (Op.isGlobal() || Op.isSymbol())
 | |
|           return true;
 | |
|       // Assume indirect branches are calls. This is for the purpose of
 | |
|       // keeping implicit operands, and so it won't hurt on intra-function
 | |
|       // indirect branches.
 | |
|       if (In.isIndirectBranch())
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
 | |
|     // This instruction defines DR. Check if there is a use operand that
 | |
|     // would make DR live on entry to the instruction.
 | |
|     for (const MachineOperand &Op : In.operands()) {
 | |
|       if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
 | |
|         continue;
 | |
|       RegisterRef UR = makeRegRef(Op);
 | |
|       if (PRI.alias(DR, UR))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   bool IsCall = isCall(In);
 | |
|   unsigned NumOps = In.getNumOperands();
 | |
| 
 | |
|   // Avoid duplicate implicit defs. This will not detect cases of implicit
 | |
|   // defs that define registers that overlap, but it is not clear how to
 | |
|   // interpret that in the absence of explicit defs. Overlapping explicit
 | |
|   // defs are likely illegal already.
 | |
|   BitVector DoneDefs(TRI.getNumRegs());
 | |
|   // Process explicit defs first.
 | |
|   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | |
|     MachineOperand &Op = In.getOperand(OpN);
 | |
|     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
 | |
|       continue;
 | |
|     unsigned R = Op.getReg();
 | |
|     if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
 | |
|       continue;
 | |
|     uint16_t Flags = NodeAttrs::None;
 | |
|     if (TOI.isPreserving(In, OpN)) {
 | |
|       Flags |= NodeAttrs::Preserving;
 | |
|       // If the def is preserving, check if it is also undefined.
 | |
|       if (isDefUndef(In, makeRegRef(Op)))
 | |
|         Flags |= NodeAttrs::Undef;
 | |
|     }
 | |
|     if (TOI.isClobbering(In, OpN))
 | |
|       Flags |= NodeAttrs::Clobbering;
 | |
|     if (TOI.isFixedReg(In, OpN))
 | |
|       Flags |= NodeAttrs::Fixed;
 | |
|     if (IsCall && Op.isDead())
 | |
|       Flags |= NodeAttrs::Dead;
 | |
|     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
 | |
|     SA.Addr->addMember(DA, *this);
 | |
|     assert(!DoneDefs.test(R));
 | |
|     DoneDefs.set(R);
 | |
|   }
 | |
| 
 | |
|   // Process reg-masks (as clobbers).
 | |
|   BitVector DoneClobbers(TRI.getNumRegs());
 | |
|   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | |
|     MachineOperand &Op = In.getOperand(OpN);
 | |
|     if (!Op.isRegMask())
 | |
|       continue;
 | |
|     uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
 | |
|                      NodeAttrs::Dead;
 | |
|     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
 | |
|     SA.Addr->addMember(DA, *this);
 | |
|     // Record all clobbered registers in DoneDefs.
 | |
|     const uint32_t *RM = Op.getRegMask();
 | |
|     for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
 | |
|       if (!(RM[i/32] & (1u << (i%32))))
 | |
|         DoneClobbers.set(i);
 | |
|   }
 | |
| 
 | |
|   // Process implicit defs, skipping those that have already been added
 | |
|   // as explicit.
 | |
|   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | |
|     MachineOperand &Op = In.getOperand(OpN);
 | |
|     if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
 | |
|       continue;
 | |
|     unsigned R = Op.getReg();
 | |
|     if (!R || !TargetRegisterInfo::isPhysicalRegister(R) || DoneDefs.test(R))
 | |
|       continue;
 | |
|     RegisterRef RR = makeRegRef(Op);
 | |
|     uint16_t Flags = NodeAttrs::None;
 | |
|     if (TOI.isPreserving(In, OpN)) {
 | |
|       Flags |= NodeAttrs::Preserving;
 | |
|       // If the def is preserving, check if it is also undefined.
 | |
|       if (isDefUndef(In, RR))
 | |
|         Flags |= NodeAttrs::Undef;
 | |
|     }
 | |
|     if (TOI.isClobbering(In, OpN))
 | |
|       Flags |= NodeAttrs::Clobbering;
 | |
|     if (TOI.isFixedReg(In, OpN))
 | |
|       Flags |= NodeAttrs::Fixed;
 | |
|     if (IsCall && Op.isDead()) {
 | |
|       if (DoneClobbers.test(R))
 | |
|         continue;
 | |
|       Flags |= NodeAttrs::Dead;
 | |
|     }
 | |
|     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
 | |
|     SA.Addr->addMember(DA, *this);
 | |
|     DoneDefs.set(R);
 | |
|   }
 | |
| 
 | |
|   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
 | |
|     MachineOperand &Op = In.getOperand(OpN);
 | |
|     if (!Op.isReg() || !Op.isUse())
 | |
|       continue;
 | |
|     unsigned R = Op.getReg();
 | |
|     if (!R || !TargetRegisterInfo::isPhysicalRegister(R))
 | |
|       continue;
 | |
|     uint16_t Flags = NodeAttrs::None;
 | |
|     if (Op.isUndef())
 | |
|       Flags |= NodeAttrs::Undef;
 | |
|     if (TOI.isFixedReg(In, OpN))
 | |
|       Flags |= NodeAttrs::Fixed;
 | |
|     NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
 | |
|     SA.Addr->addMember(UA, *this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Scan all defs in the block node BA and record in PhiM the locations of
 | |
| // phi nodes corresponding to these defs.
 | |
| void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
 | |
|       NodeAddr<BlockNode*> BA) {
 | |
|   // Check all defs from block BA and record them in each block in BA's
 | |
|   // iterated dominance frontier. This information will later be used to
 | |
|   // create phi nodes.
 | |
|   MachineBasicBlock *BB = BA.Addr->getCode();
 | |
|   assert(BB);
 | |
|   auto DFLoc = MDF.find(BB);
 | |
|   if (DFLoc == MDF.end() || DFLoc->second.empty())
 | |
|     return;
 | |
| 
 | |
|   // Traverse all instructions in the block and collect the set of all
 | |
|   // defined references. For each reference there will be a phi created
 | |
|   // in the block's iterated dominance frontier.
 | |
|   // This is done to make sure that each defined reference gets only one
 | |
|   // phi node, even if it is defined multiple times.
 | |
|   RegisterSet Defs;
 | |
|   for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
 | |
|     for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
 | |
|       Defs.insert(RA.Addr->getRegRef(*this));
 | |
| 
 | |
|   // Calculate the iterated dominance frontier of BB.
 | |
|   const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
 | |
|   SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
 | |
|   for (unsigned i = 0; i < IDF.size(); ++i) {
 | |
|     auto F = MDF.find(IDF[i]);
 | |
|     if (F != MDF.end())
 | |
|       IDF.insert(F->second.begin(), F->second.end());
 | |
|   }
 | |
| 
 | |
|   // Finally, add the set of defs to each block in the iterated dominance
 | |
|   // frontier.
 | |
|   for (auto DB : IDF) {
 | |
|     NodeAddr<BlockNode*> DBA = findBlock(DB);
 | |
|     PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Given the locations of phi nodes in the map PhiM, create the phi nodes
 | |
| // that are located in the block node BA.
 | |
| void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
 | |
|       NodeAddr<BlockNode*> BA) {
 | |
|   // Check if this blocks has any DF defs, i.e. if there are any defs
 | |
|   // that this block is in the iterated dominance frontier of.
 | |
|   auto HasDF = PhiM.find(BA.Id);
 | |
|   if (HasDF == PhiM.end() || HasDF->second.empty())
 | |
|     return;
 | |
| 
 | |
|   // First, remove all R in Refs in such that there exists T in Refs
 | |
|   // such that T covers R. In other words, only leave those refs that
 | |
|   // are not covered by another ref (i.e. maximal with respect to covering).
 | |
| 
 | |
|   auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
 | |
|     for (RegisterRef I : RRs)
 | |
|       if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
 | |
|         RR = I;
 | |
|     return RR;
 | |
|   };
 | |
| 
 | |
|   RegisterSet MaxDF;
 | |
|   for (RegisterRef I : HasDF->second)
 | |
|     MaxDF.insert(MaxCoverIn(I, HasDF->second));
 | |
| 
 | |
|   std::vector<RegisterRef> MaxRefs;
 | |
|   for (RegisterRef I : MaxDF)
 | |
|     MaxRefs.push_back(MaxCoverIn(I, AllRefs));
 | |
| 
 | |
|   // Now, for each R in MaxRefs, get the alias closure of R. If the closure
 | |
|   // only has R in it, create a phi a def for R. Otherwise, create a phi,
 | |
|   // and add a def for each S in the closure.
 | |
| 
 | |
|   // Sort the refs so that the phis will be created in a deterministic order.
 | |
|   std::sort(MaxRefs.begin(), MaxRefs.end());
 | |
|   // Remove duplicates.
 | |
|   auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
 | |
|   MaxRefs.erase(NewEnd, MaxRefs.end());
 | |
| 
 | |
|   auto Aliased = [this,&MaxRefs](RegisterRef RR,
 | |
|                                  std::vector<unsigned> &Closure) -> bool {
 | |
|     for (unsigned I : Closure)
 | |
|       if (PRI.alias(RR, MaxRefs[I]))
 | |
|         return true;
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Prepare a list of NodeIds of the block's predecessors.
 | |
|   NodeList Preds;
 | |
|   const MachineBasicBlock *MBB = BA.Addr->getCode();
 | |
|   for (MachineBasicBlock *PB : MBB->predecessors())
 | |
|     Preds.push_back(findBlock(PB));
 | |
| 
 | |
|   while (!MaxRefs.empty()) {
 | |
|     // Put the first element in the closure, and then add all subsequent
 | |
|     // elements from MaxRefs to it, if they alias at least one element
 | |
|     // already in the closure.
 | |
|     // ClosureIdx: vector of indices in MaxRefs of members of the closure.
 | |
|     std::vector<unsigned> ClosureIdx = { 0 };
 | |
|     for (unsigned i = 1; i != MaxRefs.size(); ++i)
 | |
|       if (Aliased(MaxRefs[i], ClosureIdx))
 | |
|         ClosureIdx.push_back(i);
 | |
| 
 | |
|     // Build a phi for the closure.
 | |
|     unsigned CS = ClosureIdx.size();
 | |
|     NodeAddr<PhiNode*> PA = newPhi(BA);
 | |
| 
 | |
|     // Add defs.
 | |
|     for (unsigned X = 0; X != CS; ++X) {
 | |
|       RegisterRef RR = MaxRefs[ClosureIdx[X]];
 | |
|       uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
 | |
|       NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
 | |
|       PA.Addr->addMember(DA, *this);
 | |
|     }
 | |
|     // Add phi uses.
 | |
|     for (NodeAddr<BlockNode*> PBA : Preds) {
 | |
|       for (unsigned X = 0; X != CS; ++X) {
 | |
|         RegisterRef RR = MaxRefs[ClosureIdx[X]];
 | |
|         NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
 | |
|         PA.Addr->addMember(PUA, *this);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Erase from MaxRefs all elements in the closure.
 | |
|     auto Begin = MaxRefs.begin();
 | |
|     for (unsigned i = ClosureIdx.size(); i != 0; --i)
 | |
|       MaxRefs.erase(Begin + ClosureIdx[i-1]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Remove any unneeded phi nodes that were created during the build process.
 | |
| void DataFlowGraph::removeUnusedPhis() {
 | |
|   // This will remove unused phis, i.e. phis where each def does not reach
 | |
|   // any uses or other defs. This will not detect or remove circular phi
 | |
|   // chains that are otherwise dead. Unused/dead phis are created during
 | |
|   // the build process and this function is intended to remove these cases
 | |
|   // that are easily determinable to be unnecessary.
 | |
| 
 | |
|   SetVector<NodeId> PhiQ;
 | |
|   for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
 | |
|     for (auto P : BA.Addr->members_if(IsPhi, *this))
 | |
|       PhiQ.insert(P.Id);
 | |
|   }
 | |
| 
 | |
|   static auto HasUsedDef = [](NodeList &Ms) -> bool {
 | |
|     for (NodeAddr<NodeBase*> M : Ms) {
 | |
|       if (M.Addr->getKind() != NodeAttrs::Def)
 | |
|         continue;
 | |
|       NodeAddr<DefNode*> DA = M;
 | |
|       if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Any phi, if it is removed, may affect other phis (make them dead).
 | |
|   // For each removed phi, collect the potentially affected phis and add
 | |
|   // them back to the queue.
 | |
|   while (!PhiQ.empty()) {
 | |
|     auto PA = addr<PhiNode*>(PhiQ[0]);
 | |
|     PhiQ.remove(PA.Id);
 | |
|     NodeList Refs = PA.Addr->members(*this);
 | |
|     if (HasUsedDef(Refs))
 | |
|       continue;
 | |
|     for (NodeAddr<RefNode*> RA : Refs) {
 | |
|       if (NodeId RD = RA.Addr->getReachingDef()) {
 | |
|         auto RDA = addr<DefNode*>(RD);
 | |
|         NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
 | |
|         if (IsPhi(OA))
 | |
|           PhiQ.insert(OA.Id);
 | |
|       }
 | |
|       if (RA.Addr->isDef())
 | |
|         unlinkDef(RA, true);
 | |
|       else
 | |
|         unlinkUse(RA, true);
 | |
|     }
 | |
|     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
 | |
|     BA.Addr->removeMember(PA, *this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // For a given reference node TA in an instruction node IA, connect the
 | |
| // reaching def of TA to the appropriate def node. Create any shadow nodes
 | |
| // as appropriate.
 | |
| template <typename T>
 | |
| void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
 | |
|       DefStack &DS) {
 | |
|   if (DS.empty())
 | |
|     return;
 | |
|   RegisterRef RR = TA.Addr->getRegRef(*this);
 | |
|   NodeAddr<T> TAP;
 | |
| 
 | |
|   // References from the def stack that have been examined so far.
 | |
|   RegisterAggr Defs(PRI);
 | |
| 
 | |
|   for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
 | |
|     RegisterRef QR = I->Addr->getRegRef(*this);
 | |
| 
 | |
|     // Skip all defs that are aliased to any of the defs that we have already
 | |
|     // seen. If this completes a cover of RR, stop the stack traversal.
 | |
|     bool Alias = Defs.hasAliasOf(QR);
 | |
|     bool Cover = Defs.insert(QR).hasCoverOf(RR);
 | |
|     if (Alias) {
 | |
|       if (Cover)
 | |
|         break;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The reaching def.
 | |
|     NodeAddr<DefNode*> RDA = *I;
 | |
| 
 | |
|     // Pick the reached node.
 | |
|     if (TAP.Id == 0) {
 | |
|       TAP = TA;
 | |
|     } else {
 | |
|       // Mark the existing ref as "shadow" and create a new shadow.
 | |
|       TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
 | |
|       TAP = getNextShadow(IA, TAP, true);
 | |
|     }
 | |
| 
 | |
|     // Create the link.
 | |
|     TAP.Addr->linkToDef(TAP.Id, RDA);
 | |
| 
 | |
|     if (Cover)
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Create data-flow links for all reference nodes in the statement node SA.
 | |
| template <typename Predicate>
 | |
| void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
 | |
|       Predicate P) {
 | |
| #ifndef NDEBUG
 | |
|   RegisterSet Defs;
 | |
| #endif
 | |
| 
 | |
|   // Link all nodes (upwards in the data-flow) with their reaching defs.
 | |
|   for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
 | |
|     uint16_t Kind = RA.Addr->getKind();
 | |
|     assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
 | |
|     RegisterRef RR = RA.Addr->getRegRef(*this);
 | |
| #ifndef NDEBUG
 | |
|     // Do not expect multiple defs of the same reference.
 | |
|     assert(Kind != NodeAttrs::Def || !Defs.count(RR));
 | |
|     Defs.insert(RR);
 | |
| #endif
 | |
| 
 | |
|     auto F = DefM.find(RR.Reg);
 | |
|     if (F == DefM.end())
 | |
|       continue;
 | |
|     DefStack &DS = F->second;
 | |
|     if (Kind == NodeAttrs::Use)
 | |
|       linkRefUp<UseNode*>(SA, RA, DS);
 | |
|     else if (Kind == NodeAttrs::Def)
 | |
|       linkRefUp<DefNode*>(SA, RA, DS);
 | |
|     else
 | |
|       llvm_unreachable("Unexpected node in instruction");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Create data-flow links for all instructions in the block node BA. This
 | |
| // will include updating any phi nodes in BA.
 | |
| void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
 | |
|   // Push block delimiters.
 | |
|   markBlock(BA.Id, DefM);
 | |
| 
 | |
|   auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
 | |
|     return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
 | |
|   };
 | |
|   auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
 | |
|     return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
 | |
|   };
 | |
| 
 | |
|   assert(BA.Addr && "block node address is needed to create a data-flow link");
 | |
|   // For each non-phi instruction in the block, link all the defs and uses
 | |
|   // to their reaching defs. For any member of the block (including phis),
 | |
|   // push the defs on the corresponding stacks.
 | |
|   for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
 | |
|     // Ignore phi nodes here. They will be linked part by part from the
 | |
|     // predecessors.
 | |
|     if (IA.Addr->getKind() == NodeAttrs::Stmt) {
 | |
|       linkStmtRefs(DefM, IA, IsUse);
 | |
|       linkStmtRefs(DefM, IA, IsClobber);
 | |
|     }
 | |
| 
 | |
|     // Push the definitions on the stack.
 | |
|     pushClobbers(IA, DefM);
 | |
| 
 | |
|     if (IA.Addr->getKind() == NodeAttrs::Stmt)
 | |
|       linkStmtRefs(DefM, IA, IsNoClobber);
 | |
| 
 | |
|     pushDefs(IA, DefM);
 | |
|   }
 | |
| 
 | |
|   // Recursively process all children in the dominator tree.
 | |
|   MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
 | |
|   for (auto I : *N) {
 | |
|     MachineBasicBlock *SB = I->getBlock();
 | |
|     NodeAddr<BlockNode*> SBA = findBlock(SB);
 | |
|     linkBlockRefs(DefM, SBA);
 | |
|   }
 | |
| 
 | |
|   // Link the phi uses from the successor blocks.
 | |
|   auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
 | |
|     if (NA.Addr->getKind() != NodeAttrs::Use)
 | |
|       return false;
 | |
|     assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
 | |
|     NodeAddr<PhiUseNode*> PUA = NA;
 | |
|     return PUA.Addr->getPredecessor() == BA.Id;
 | |
|   };
 | |
| 
 | |
|   RegisterSet EHLiveIns = getLandingPadLiveIns();
 | |
|   MachineBasicBlock *MBB = BA.Addr->getCode();
 | |
| 
 | |
|   for (MachineBasicBlock *SB : MBB->successors()) {
 | |
|     bool IsEHPad = SB->isEHPad();
 | |
|     NodeAddr<BlockNode*> SBA = findBlock(SB);
 | |
|     for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
 | |
|       // Do not link phi uses for landing pad live-ins.
 | |
|       if (IsEHPad) {
 | |
|         // Find what register this phi is for.
 | |
|         NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
 | |
|         assert(RA.Id != 0);
 | |
|         if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
 | |
|           continue;
 | |
|       }
 | |
|       // Go over each phi use associated with MBB, and link it.
 | |
|       for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
 | |
|         NodeAddr<PhiUseNode*> PUA = U;
 | |
|         RegisterRef RR = PUA.Addr->getRegRef(*this);
 | |
|         linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Pop all defs from this block from the definition stacks.
 | |
|   releaseBlock(BA.Id, DefM);
 | |
| }
 | |
| 
 | |
| // Remove the use node UA from any data-flow and structural links.
 | |
| void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
 | |
|   NodeId RD = UA.Addr->getReachingDef();
 | |
|   NodeId Sib = UA.Addr->getSibling();
 | |
| 
 | |
|   if (RD == 0) {
 | |
|     assert(Sib == 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto RDA = addr<DefNode*>(RD);
 | |
|   auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
 | |
|   if (TA.Id == UA.Id) {
 | |
|     RDA.Addr->setReachedUse(Sib);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   while (TA.Id != 0) {
 | |
|     NodeId S = TA.Addr->getSibling();
 | |
|     if (S == UA.Id) {
 | |
|       TA.Addr->setSibling(UA.Addr->getSibling());
 | |
|       return;
 | |
|     }
 | |
|     TA = addr<UseNode*>(S);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Remove the def node DA from any data-flow and structural links.
 | |
| void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
 | |
|   //
 | |
|   //         RD
 | |
|   //         | reached
 | |
|   //         | def
 | |
|   //         :
 | |
|   //         .
 | |
|   //        +----+
 | |
|   // ... -- | DA | -- ... -- 0  : sibling chain of DA
 | |
|   //        +----+
 | |
|   //         |  | reached
 | |
|   //         |  : def
 | |
|   //         |  .
 | |
|   //         | ...  : Siblings (defs)
 | |
|   //         |
 | |
|   //         : reached
 | |
|   //         . use
 | |
|   //        ... : sibling chain of reached uses
 | |
| 
 | |
|   NodeId RD = DA.Addr->getReachingDef();
 | |
| 
 | |
|   // Visit all siblings of the reached def and reset their reaching defs.
 | |
|   // Also, defs reached by DA are now "promoted" to being reached by RD,
 | |
|   // so all of them will need to be spliced into the sibling chain where
 | |
|   // DA belongs.
 | |
|   auto getAllNodes = [this] (NodeId N) -> NodeList {
 | |
|     NodeList Res;
 | |
|     while (N) {
 | |
|       auto RA = addr<RefNode*>(N);
 | |
|       // Keep the nodes in the exact sibling order.
 | |
|       Res.push_back(RA);
 | |
|       N = RA.Addr->getSibling();
 | |
|     }
 | |
|     return Res;
 | |
|   };
 | |
|   NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
 | |
|   NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
 | |
| 
 | |
|   if (RD == 0) {
 | |
|     for (NodeAddr<RefNode*> I : ReachedDefs)
 | |
|       I.Addr->setSibling(0);
 | |
|     for (NodeAddr<RefNode*> I : ReachedUses)
 | |
|       I.Addr->setSibling(0);
 | |
|   }
 | |
|   for (NodeAddr<DefNode*> I : ReachedDefs)
 | |
|     I.Addr->setReachingDef(RD);
 | |
|   for (NodeAddr<UseNode*> I : ReachedUses)
 | |
|     I.Addr->setReachingDef(RD);
 | |
| 
 | |
|   NodeId Sib = DA.Addr->getSibling();
 | |
|   if (RD == 0) {
 | |
|     assert(Sib == 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Update the reaching def node and remove DA from the sibling list.
 | |
|   auto RDA = addr<DefNode*>(RD);
 | |
|   auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
 | |
|   if (TA.Id == DA.Id) {
 | |
|     // If DA is the first reached def, just update the RD's reached def
 | |
|     // to the DA's sibling.
 | |
|     RDA.Addr->setReachedDef(Sib);
 | |
|   } else {
 | |
|     // Otherwise, traverse the sibling list of the reached defs and remove
 | |
|     // DA from it.
 | |
|     while (TA.Id != 0) {
 | |
|       NodeId S = TA.Addr->getSibling();
 | |
|       if (S == DA.Id) {
 | |
|         TA.Addr->setSibling(Sib);
 | |
|         break;
 | |
|       }
 | |
|       TA = addr<DefNode*>(S);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Splice the DA's reached defs into the RDA's reached def chain.
 | |
|   if (!ReachedDefs.empty()) {
 | |
|     auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
 | |
|     Last.Addr->setSibling(RDA.Addr->getReachedDef());
 | |
|     RDA.Addr->setReachedDef(ReachedDefs.front().Id);
 | |
|   }
 | |
|   // Splice the DA's reached uses into the RDA's reached use chain.
 | |
|   if (!ReachedUses.empty()) {
 | |
|     auto Last = NodeAddr<UseNode*>(ReachedUses.back());
 | |
|     Last.Addr->setSibling(RDA.Addr->getReachedUse());
 | |
|     RDA.Addr->setReachedUse(ReachedUses.front().Id);
 | |
|   }
 | |
| }
 |