You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			244 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			244 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===--- RDFDeadCode.cpp --------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // RDF-based generic dead code elimination.
 | |
| 
 | |
| #include "RDFDeadCode.h"
 | |
| #include "RDFGraph.h"
 | |
| #include "RDFLiveness.h"
 | |
| 
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| 
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace rdf;
 | |
| 
 | |
| // This drastically improves execution time in "collect" over using
 | |
| // SetVector as a work queue, and popping the first element from it.
 | |
| template<typename T> struct DeadCodeElimination::SetQueue {
 | |
|   SetQueue() : Set(), Queue() {}
 | |
| 
 | |
|   bool empty() const {
 | |
|     return Queue.empty();
 | |
|   }
 | |
|   T pop_front() {
 | |
|     T V = Queue.front();
 | |
|     Queue.pop();
 | |
|     Set.erase(V);
 | |
|     return V;
 | |
|   }
 | |
|   void push_back(T V) {
 | |
|     if (Set.count(V))
 | |
|       return;
 | |
|     Queue.push(V);
 | |
|     Set.insert(V);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   DenseSet<T> Set;
 | |
|   std::queue<T> Queue;
 | |
| };
 | |
| 
 | |
| 
 | |
| // Check if the given instruction has observable side-effects, i.e. if
 | |
| // it should be considered "live". It is safe for this function to be
 | |
| // overly conservative (i.e. return "true" for all instructions), but it
 | |
| // is not safe to return "false" for an instruction that should not be
 | |
| // considered removable.
 | |
| bool DeadCodeElimination::isLiveInstr(const MachineInstr *MI) const {
 | |
|   if (MI->mayStore() || MI->isBranch() || MI->isCall() || MI->isReturn())
 | |
|     return true;
 | |
|   if (MI->hasOrderedMemoryRef() || MI->hasUnmodeledSideEffects() ||
 | |
|       MI->isPosition())
 | |
|     return true;
 | |
|   if (MI->isPHI())
 | |
|     return false;
 | |
|   for (auto &Op : MI->operands()) {
 | |
|     if (Op.isReg() && MRI.isReserved(Op.getReg()))
 | |
|       return true;
 | |
|     if (Op.isRegMask()) {
 | |
|       const uint32_t *BM = Op.getRegMask();
 | |
|       for (unsigned R = 0, RN = DFG.getTRI().getNumRegs(); R != RN; ++R) {
 | |
|         if (BM[R/32] & (1u << (R%32)))
 | |
|           continue;
 | |
|         if (MRI.isReserved(R))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DeadCodeElimination::scanInstr(NodeAddr<InstrNode*> IA,
 | |
|       SetQueue<NodeId> &WorkQ) {
 | |
|   if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
 | |
|     return;
 | |
|   if (!isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
 | |
|     return;
 | |
|   for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) {
 | |
|     if (!LiveNodes.count(RA.Id))
 | |
|       WorkQ.push_back(RA.Id);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DeadCodeElimination::processDef(NodeAddr<DefNode*> DA,
 | |
|       SetQueue<NodeId> &WorkQ) {
 | |
|   NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
 | |
|   for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
 | |
|     if (!LiveNodes.count(UA.Id))
 | |
|       WorkQ.push_back(UA.Id);
 | |
|   }
 | |
|   for (NodeAddr<DefNode*> TA : DFG.getRelatedRefs(IA, DA))
 | |
|     LiveNodes.insert(TA.Id);
 | |
| }
 | |
| 
 | |
| void DeadCodeElimination::processUse(NodeAddr<UseNode*> UA,
 | |
|       SetQueue<NodeId> &WorkQ) {
 | |
|   for (NodeAddr<DefNode*> DA : LV.getAllReachingDefs(UA)) {
 | |
|     if (!LiveNodes.count(DA.Id))
 | |
|       WorkQ.push_back(DA.Id);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Traverse the DFG and collect the set dead RefNodes and the set of
 | |
| // dead instructions. Return "true" if any of these sets is non-empty,
 | |
| // "false" otherwise.
 | |
| bool DeadCodeElimination::collect() {
 | |
|   // This function works by first finding all live nodes. The dead nodes
 | |
|   // are then the complement of the set of live nodes.
 | |
|   //
 | |
|   // Assume that all nodes are dead. Identify instructions which must be
 | |
|   // considered live, i.e. instructions with observable side-effects, such
 | |
|   // as calls and stores. All arguments of such instructions are considered
 | |
|   // live. For each live def, all operands used in the corresponding
 | |
|   // instruction are considered live. For each live use, all its reaching
 | |
|   // defs are considered live.
 | |
|   LiveNodes.clear();
 | |
|   SetQueue<NodeId> WorkQ;
 | |
|   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG))
 | |
|     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG))
 | |
|       scanInstr(IA, WorkQ);
 | |
| 
 | |
|   while (!WorkQ.empty()) {
 | |
|     NodeId N = WorkQ.pop_front();
 | |
|     LiveNodes.insert(N);
 | |
|     auto RA = DFG.addr<RefNode*>(N);
 | |
|     if (DFG.IsDef(RA))
 | |
|       processDef(RA, WorkQ);
 | |
|     else
 | |
|       processUse(RA, WorkQ);
 | |
|   }
 | |
| 
 | |
|   if (trace()) {
 | |
|     dbgs() << "Live nodes:\n";
 | |
|     for (NodeId N : LiveNodes) {
 | |
|       auto RA = DFG.addr<RefNode*>(N);
 | |
|       dbgs() << PrintNode<RefNode*>(RA, DFG) << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto IsDead = [this] (NodeAddr<InstrNode*> IA) -> bool {
 | |
|     for (NodeAddr<DefNode*> DA : IA.Addr->members_if(DFG.IsDef, DFG))
 | |
|       if (LiveNodes.count(DA.Id))
 | |
|         return false;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
 | |
|     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
 | |
|       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
 | |
|         if (!LiveNodes.count(RA.Id))
 | |
|           DeadNodes.insert(RA.Id);
 | |
|       if (DFG.IsCode<NodeAttrs::Stmt>(IA))
 | |
|         if (isLiveInstr(NodeAddr<StmtNode*>(IA).Addr->getCode()))
 | |
|           continue;
 | |
|       if (IsDead(IA)) {
 | |
|         DeadInstrs.insert(IA.Id);
 | |
|         if (trace())
 | |
|           dbgs() << "Dead instr: " << PrintNode<InstrNode*>(IA, DFG) << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return !DeadNodes.empty();
 | |
| }
 | |
| 
 | |
| // Erase the nodes given in the Nodes set from DFG. In addition to removing
 | |
| // them from the DFG, if a node corresponds to a statement, the corresponding
 | |
| // machine instruction is erased from the function.
 | |
| bool DeadCodeElimination::erase(const SetVector<NodeId> &Nodes) {
 | |
|   if (Nodes.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Prepare the actual set of ref nodes to remove: ref nodes from Nodes
 | |
|   // are included directly, for each InstrNode in Nodes, include the set
 | |
|   // of all RefNodes from it.
 | |
|   NodeList DRNs, DINs;
 | |
|   for (auto I : Nodes) {
 | |
|     auto BA = DFG.addr<NodeBase*>(I);
 | |
|     uint16_t Type = BA.Addr->getType();
 | |
|     if (Type == NodeAttrs::Ref) {
 | |
|       DRNs.push_back(DFG.addr<RefNode*>(I));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If it's a code node, add all ref nodes from it.
 | |
|     uint16_t Kind = BA.Addr->getKind();
 | |
|     if (Kind == NodeAttrs::Stmt || Kind == NodeAttrs::Phi) {
 | |
|       for (auto N : NodeAddr<CodeNode*>(BA).Addr->members(DFG))
 | |
|         DRNs.push_back(N);
 | |
|       DINs.push_back(DFG.addr<InstrNode*>(I));
 | |
|     } else {
 | |
|       llvm_unreachable("Unexpected code node");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort the list so that use nodes are removed first. This makes the
 | |
|   // "unlink" functions a bit faster.
 | |
|   auto UsesFirst = [] (NodeAddr<RefNode*> A, NodeAddr<RefNode*> B) -> bool {
 | |
|     uint16_t KindA = A.Addr->getKind(), KindB = B.Addr->getKind();
 | |
|     if (KindA == NodeAttrs::Use && KindB == NodeAttrs::Def)
 | |
|       return true;
 | |
|     if (KindA == NodeAttrs::Def && KindB == NodeAttrs::Use)
 | |
|       return false;
 | |
|     return A.Id < B.Id;
 | |
|   };
 | |
|   std::sort(DRNs.begin(), DRNs.end(), UsesFirst);
 | |
| 
 | |
|   if (trace())
 | |
|     dbgs() << "Removing dead ref nodes:\n";
 | |
|   for (NodeAddr<RefNode*> RA : DRNs) {
 | |
|     if (trace())
 | |
|       dbgs() << "  " << PrintNode<RefNode*>(RA, DFG) << '\n';
 | |
|     if (DFG.IsUse(RA))
 | |
|       DFG.unlinkUse(RA, true);
 | |
|     else if (DFG.IsDef(RA))
 | |
|       DFG.unlinkDef(RA, true);
 | |
|   }
 | |
| 
 | |
|   // Now, remove all dead instruction nodes.
 | |
|   for (NodeAddr<InstrNode*> IA : DINs) {
 | |
|     NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
 | |
|     BA.Addr->removeMember(IA, DFG);
 | |
|     if (!DFG.IsCode<NodeAttrs::Stmt>(IA))
 | |
|       continue;
 | |
| 
 | |
|     MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
 | |
|     if (trace())
 | |
|       dbgs() << "erasing: " << *MI;
 | |
|     MI->eraseFromParent();
 | |
|   }
 | |
|   return true;
 | |
| }
 |