You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			1145 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1145 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BitTracker.cpp -----------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // SSA-based bit propagation.
 | |
| //
 | |
| // The purpose of this code is, for a given virtual register, to provide
 | |
| // information about the value of each bit in the register. The values
 | |
| // of bits are represented by the class BitValue, and take one of four
 | |
| // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
 | |
| // "ref" value means that the bit is a copy of another bit (which itself
 | |
| // cannot be a copy of yet another bit---such chains are not allowed).
 | |
| // A "ref" value is associated with a BitRef structure, which indicates
 | |
| // which virtual register, and which bit in that register is the origin
 | |
| // of the value. For example, given an instruction
 | |
| //   %2 = ASL %1, 1
 | |
| // assuming that nothing is known about bits of %1, bit 1 of %2
 | |
| // will be a "ref" to (%1, 0). If there is a subsequent instruction
 | |
| //   %3 = ASL %2, 2
 | |
| // then bit 3 of %3 will be a "ref" to (%1, 0) as well.
 | |
| // The "bottom" case means that the bit's value cannot be determined,
 | |
| // and that this virtual register actually defines it. The "bottom" case
 | |
| // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
 | |
| // to self", so for the %1 above, the bit 0 of it will be a "ref" to
 | |
| // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
 | |
| //
 | |
| // The tracker implements the Wegman-Zadeck algorithm, originally developed
 | |
| // for SSA-based constant propagation. Each register is represented as
 | |
| // a sequence of bits, with the convention that bit 0 is the least signi-
 | |
| // ficant bit. Each bit is propagated individually. The class RegisterCell
 | |
| // implements the register's representation, and is also the subject of
 | |
| // the lattice operations in the tracker.
 | |
| //
 | |
| // The intended usage of the bit tracker is to create a target-specific
 | |
| // machine instruction evaluator, pass the evaluator to the BitTracker
 | |
| // object, and run the tracker. The tracker will then collect the bit
 | |
| // value information for a given machine function. After that, it can be
 | |
| // queried for the cells for each virtual register.
 | |
| // Sample code:
 | |
| //   const TargetSpecificEvaluator TSE(TRI, MRI);
 | |
| //   BitTracker BT(TSE, MF);
 | |
| //   BT.run();
 | |
| //   ...
 | |
| //   unsigned Reg = interestingRegister();
 | |
| //   RegisterCell RC = BT.get(Reg);
 | |
| //   if (RC[3].is(1))
 | |
| //      Reg0bit3 = 1;
 | |
| //
 | |
| // The code below is intended to be fully target-independent.
 | |
| 
 | |
| #include "BitTracker.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| using BT = BitTracker;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   // Local trickery to pretty print a register (without the whole "%number"
 | |
|   // business).
 | |
|   struct printv {
 | |
|     printv(unsigned r) : R(r) {}
 | |
| 
 | |
|     unsigned R;
 | |
|   };
 | |
| 
 | |
|   raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
 | |
|     if (PV.R)
 | |
|       OS << 'v' << TargetRegisterInfo::virtReg2Index(PV.R);
 | |
|     else
 | |
|       OS << 's';
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
 | |
|     switch (BV.Type) {
 | |
|       case BT::BitValue::Top:
 | |
|         OS << 'T';
 | |
|         break;
 | |
|       case BT::BitValue::Zero:
 | |
|         OS << '0';
 | |
|         break;
 | |
|       case BT::BitValue::One:
 | |
|         OS << '1';
 | |
|         break;
 | |
|       case BT::BitValue::Ref:
 | |
|         OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
 | |
|         break;
 | |
|     }
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
|   raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
 | |
|     unsigned n = RC.Bits.size();
 | |
|     OS << "{ w:" << n;
 | |
|     // Instead of printing each bit value individually, try to group them
 | |
|     // into logical segments, such as sequences of 0 or 1 bits or references
 | |
|     // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
 | |
|     // "Start" will be the index of the beginning of the most recent segment.
 | |
|     unsigned Start = 0;
 | |
|     bool SeqRef = false;    // A sequence of refs to consecutive bits.
 | |
|     bool ConstRef = false;  // A sequence of refs to the same bit.
 | |
| 
 | |
|     for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
 | |
|       const BT::BitValue &V = RC[i];
 | |
|       const BT::BitValue &SV = RC[Start];
 | |
|       bool IsRef = (V.Type == BT::BitValue::Ref);
 | |
|       // If the current value is the same as Start, skip to the next one.
 | |
|       if (!IsRef && V == SV)
 | |
|         continue;
 | |
|       if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
 | |
|         if (Start+1 == i) {
 | |
|           SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
 | |
|           ConstRef = (V.RefI.Pos == SV.RefI.Pos);
 | |
|         }
 | |
|         if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
 | |
|           continue;
 | |
|         if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       // The current value is different. Print the previous one and reset
 | |
|       // the Start.
 | |
|       OS << " [" << Start;
 | |
|       unsigned Count = i - Start;
 | |
|       if (Count == 1) {
 | |
|         OS << "]:" << SV;
 | |
|       } else {
 | |
|         OS << '-' << i-1 << "]:";
 | |
|         if (SV.Type == BT::BitValue::Ref && SeqRef)
 | |
|           OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
 | |
|              << SV.RefI.Pos+(Count-1) << ']';
 | |
|         else
 | |
|           OS << SV;
 | |
|       }
 | |
|       Start = i;
 | |
|       SeqRef = ConstRef = false;
 | |
|     }
 | |
| 
 | |
|     OS << " [" << Start;
 | |
|     unsigned Count = n - Start;
 | |
|     if (n-Start == 1) {
 | |
|       OS << "]:" << RC[Start];
 | |
|     } else {
 | |
|       OS << '-' << n-1 << "]:";
 | |
|       const BT::BitValue &SV = RC[Start];
 | |
|       if (SV.Type == BT::BitValue::Ref && SeqRef)
 | |
|         OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
 | |
|            << SV.RefI.Pos+(Count-1) << ']';
 | |
|       else
 | |
|         OS << SV;
 | |
|     }
 | |
|     OS << " }";
 | |
| 
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| void BitTracker::print_cells(raw_ostream &OS) const {
 | |
|   for (const std::pair<unsigned, RegisterCell> P : Map)
 | |
|     dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n";
 | |
| }
 | |
| 
 | |
| BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
 | |
|     : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) {
 | |
| }
 | |
| 
 | |
| BitTracker::~BitTracker() {
 | |
|   delete ⤅
 | |
| }
 | |
| 
 | |
| // If we were allowed to update a cell for a part of a register, the meet
 | |
| // operation would need to be parametrized by the register number and the
 | |
| // exact part of the register, so that the computer BitRefs correspond to
 | |
| // the actual bits of the "self" register.
 | |
| // While this cannot happen in the current implementation, I'm not sure
 | |
| // if this should be ruled out in the future.
 | |
| bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
 | |
|   // An example when "meet" can be invoked with SelfR == 0 is a phi node
 | |
|   // with a physical register as an operand.
 | |
|   assert(SelfR == 0 || TargetRegisterInfo::isVirtualRegister(SelfR));
 | |
|   bool Changed = false;
 | |
|   for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
 | |
|     const BitValue &RCV = RC[i];
 | |
|     Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Insert the entire cell RC into the current cell at position given by M.
 | |
| BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
 | |
|       const BitMask &M) {
 | |
|   uint16_t B = M.first(), E = M.last(), W = width();
 | |
|   // Sanity: M must be a valid mask for *this.
 | |
|   assert(B < W && E < W);
 | |
|   // Sanity: the masked part of *this must have the same number of bits
 | |
|   // as the source.
 | |
|   assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|.
 | |
|   assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|.
 | |
|   if (B <= E) {
 | |
|     for (uint16_t i = 0; i <= E-B; ++i)
 | |
|       Bits[i+B] = RC[i];
 | |
|   } else {
 | |
|     for (uint16_t i = 0; i < W-B; ++i)
 | |
|       Bits[i+B] = RC[i];
 | |
|     for (uint16_t i = 0; i <= E; ++i)
 | |
|       Bits[i] = RC[i+(W-B)];
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
 | |
|   uint16_t B = M.first(), E = M.last(), W = width();
 | |
|   assert(B < W && E < W);
 | |
|   if (B <= E) {
 | |
|     RegisterCell RC(E-B+1);
 | |
|     for (uint16_t i = B; i <= E; ++i)
 | |
|       RC.Bits[i-B] = Bits[i];
 | |
|     return RC;
 | |
|   }
 | |
| 
 | |
|   RegisterCell RC(E+(W-B)+1);
 | |
|   for (uint16_t i = 0; i < W-B; ++i)
 | |
|     RC.Bits[i] = Bits[i+B];
 | |
|   for (uint16_t i = 0; i <= E; ++i)
 | |
|     RC.Bits[i+(W-B)] = Bits[i];
 | |
|   return RC;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
 | |
|   // Rotate left (i.e. towards increasing bit indices).
 | |
|   // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1]
 | |
|   uint16_t W = width();
 | |
|   Sh = Sh % W;
 | |
|   if (Sh == 0)
 | |
|     return *this;
 | |
| 
 | |
|   RegisterCell Tmp(W-Sh);
 | |
|   // Tmp = [0..W-Sh-1].
 | |
|   for (uint16_t i = 0; i < W-Sh; ++i)
 | |
|     Tmp[i] = Bits[i];
 | |
|   // Shift [W-Sh..W-1] to [0..Sh-1].
 | |
|   for (uint16_t i = 0; i < Sh; ++i)
 | |
|     Bits[i] = Bits[W-Sh+i];
 | |
|   // Copy Tmp to [Sh..W-1].
 | |
|   for (uint16_t i = 0; i < W-Sh; ++i)
 | |
|     Bits[i+Sh] = Tmp.Bits[i];
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
 | |
|       const BitValue &V) {
 | |
|   assert(B <= E);
 | |
|   while (B < E)
 | |
|     Bits[B++] = V;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
 | |
|   // Append the cell given as the argument to the "this" cell.
 | |
|   // Bit 0 of RC becomes bit W of the result, where W is this->width().
 | |
|   uint16_t W = width(), WRC = RC.width();
 | |
|   Bits.resize(W+WRC);
 | |
|   for (uint16_t i = 0; i < WRC; ++i)
 | |
|     Bits[i+W] = RC.Bits[i];
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| uint16_t BT::RegisterCell::ct(bool B) const {
 | |
|   uint16_t W = width();
 | |
|   uint16_t C = 0;
 | |
|   BitValue V = B;
 | |
|   while (C < W && Bits[C] == V)
 | |
|     C++;
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| uint16_t BT::RegisterCell::cl(bool B) const {
 | |
|   uint16_t W = width();
 | |
|   uint16_t C = 0;
 | |
|   BitValue V = B;
 | |
|   while (C < W && Bits[W-(C+1)] == V)
 | |
|     C++;
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
 | |
|   uint16_t W = Bits.size();
 | |
|   if (RC.Bits.size() != W)
 | |
|     return false;
 | |
|   for (uint16_t i = 0; i < W; ++i)
 | |
|     if (Bits[i] != RC[i])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
 | |
|   for (unsigned i = 0, n = width(); i < n; ++i) {
 | |
|     const BitValue &V = Bits[i];
 | |
|     if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
 | |
|       Bits[i].RefI = BitRef(R, i);
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
 | |
|   // The general problem is with finding a register class that corresponds
 | |
|   // to a given reference reg:sub. There can be several such classes, and
 | |
|   // since we only care about the register size, it does not matter which
 | |
|   // such class we would find.
 | |
|   // The easiest way to accomplish what we want is to
 | |
|   // 1. find a physical register PhysR from the same class as RR.Reg,
 | |
|   // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
 | |
|   // 3. find a register class that contains PhysS.
 | |
|   if (TargetRegisterInfo::isVirtualRegister(RR.Reg)) {
 | |
|     const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub);
 | |
|     return TRI.getRegSizeInBits(VC);
 | |
|   }
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(RR.Reg));
 | |
|   unsigned PhysR = (RR.Sub == 0) ? RR.Reg : TRI.getSubReg(RR.Reg, RR.Sub);
 | |
|   return getPhysRegBitWidth(PhysR);
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
 | |
|       const CellMapType &M) const {
 | |
|   uint16_t BW = getRegBitWidth(RR);
 | |
| 
 | |
|   // Physical registers are assumed to be present in the map with an unknown
 | |
|   // value. Don't actually insert anything in the map, just return the cell.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(RR.Reg))
 | |
|     return RegisterCell::self(0, BW);
 | |
| 
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(RR.Reg));
 | |
|   // For virtual registers that belong to a class that is not tracked,
 | |
|   // generate an "unknown" value as well.
 | |
|   const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
 | |
|   if (!track(C))
 | |
|     return RegisterCell::self(0, BW);
 | |
| 
 | |
|   CellMapType::const_iterator F = M.find(RR.Reg);
 | |
|   if (F != M.end()) {
 | |
|     if (!RR.Sub)
 | |
|       return F->second;
 | |
|     BitMask M = mask(RR.Reg, RR.Sub);
 | |
|     return F->second.extract(M);
 | |
|   }
 | |
|   // If not found, create a "top" entry, but do not insert it in the map.
 | |
|   return RegisterCell::top(BW);
 | |
| }
 | |
| 
 | |
| void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
 | |
|       CellMapType &M) const {
 | |
|   // While updating the cell map can be done in a meaningful way for
 | |
|   // a part of a register, it makes little sense to implement it as the
 | |
|   // SSA representation would never contain such "partial definitions".
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | |
|     return;
 | |
|   assert(RR.Sub == 0 && "Unexpected sub-register in definition");
 | |
|   // Eliminate all ref-to-reg-0 bit values: replace them with "self".
 | |
|   M[RR.Reg] = RC.regify(RR.Reg);
 | |
| }
 | |
| 
 | |
| // Check if the cell represents a compile-time integer value.
 | |
| bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
 | |
|   uint16_t W = A.width();
 | |
|   for (uint16_t i = 0; i < W; ++i)
 | |
|     if (!A[i].is(0) && !A[i].is(1))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Convert a cell to the integer value. The result must fit in uint64_t.
 | |
| uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
 | |
|   assert(isInt(A));
 | |
|   uint64_t Val = 0;
 | |
|   uint16_t W = A.width();
 | |
|   for (uint16_t i = 0; i < W; ++i) {
 | |
|     Val <<= 1;
 | |
|     Val |= A[i].is(1);
 | |
|   }
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| // Evaluator helper functions. These implement some common operation on
 | |
| // register cells that can be used to implement target-specific instructions
 | |
| // in a target-specific evaluator.
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
 | |
|   RegisterCell Res(W);
 | |
|   // For bits beyond the 63rd, this will generate the sign bit of V.
 | |
|   for (uint16_t i = 0; i < W; ++i) {
 | |
|     Res[i] = BitValue(V & 1);
 | |
|     V >>= 1;
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
 | |
|   const APInt &A = CI->getValue();
 | |
|   uint16_t BW = A.getBitWidth();
 | |
|   assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
 | |
|   RegisterCell Res(BW);
 | |
|   for (uint16_t i = 0; i < BW; ++i)
 | |
|     Res[i] = A[i];
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
 | |
|       const RegisterCell &A2) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(W == A2.width());
 | |
|   RegisterCell Res(W);
 | |
|   bool Carry = false;
 | |
|   uint16_t I;
 | |
|   for (I = 0; I < W; ++I) {
 | |
|     const BitValue &V1 = A1[I];
 | |
|     const BitValue &V2 = A2[I];
 | |
|     if (!V1.num() || !V2.num())
 | |
|       break;
 | |
|     unsigned S = bool(V1) + bool(V2) + Carry;
 | |
|     Res[I] = BitValue(S & 1);
 | |
|     Carry = (S > 1);
 | |
|   }
 | |
|   for (; I < W; ++I) {
 | |
|     const BitValue &V1 = A1[I];
 | |
|     const BitValue &V2 = A2[I];
 | |
|     // If the next bit is same as Carry, the result will be 0 plus the
 | |
|     // other bit. The Carry bit will remain unchanged.
 | |
|     if (V1.is(Carry))
 | |
|       Res[I] = BitValue::ref(V2);
 | |
|     else if (V2.is(Carry))
 | |
|       Res[I] = BitValue::ref(V1);
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   for (; I < W; ++I)
 | |
|     Res[I] = BitValue::self();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
 | |
|       const RegisterCell &A2) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(W == A2.width());
 | |
|   RegisterCell Res(W);
 | |
|   bool Borrow = false;
 | |
|   uint16_t I;
 | |
|   for (I = 0; I < W; ++I) {
 | |
|     const BitValue &V1 = A1[I];
 | |
|     const BitValue &V2 = A2[I];
 | |
|     if (!V1.num() || !V2.num())
 | |
|       break;
 | |
|     unsigned S = bool(V1) - bool(V2) - Borrow;
 | |
|     Res[I] = BitValue(S & 1);
 | |
|     Borrow = (S > 1);
 | |
|   }
 | |
|   for (; I < W; ++I) {
 | |
|     const BitValue &V1 = A1[I];
 | |
|     const BitValue &V2 = A2[I];
 | |
|     if (V1.is(Borrow)) {
 | |
|       Res[I] = BitValue::ref(V2);
 | |
|       break;
 | |
|     }
 | |
|     if (V2.is(Borrow))
 | |
|       Res[I] = BitValue::ref(V1);
 | |
|     else
 | |
|       break;
 | |
|   }
 | |
|   for (; I < W; ++I)
 | |
|     Res[I] = BitValue::self();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
 | |
|       const RegisterCell &A2) const {
 | |
|   uint16_t W = A1.width() + A2.width();
 | |
|   uint16_t Z = A1.ct(false) + A2.ct(false);
 | |
|   RegisterCell Res(W);
 | |
|   Res.fill(0, Z, BitValue::Zero);
 | |
|   Res.fill(Z, W, BitValue::self());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
 | |
|       const RegisterCell &A2) const {
 | |
|   uint16_t W = A1.width() + A2.width();
 | |
|   uint16_t Z = A1.ct(false) + A2.ct(false);
 | |
|   RegisterCell Res(W);
 | |
|   Res.fill(0, Z, BitValue::Zero);
 | |
|   Res.fill(Z, W, BitValue::self());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
 | |
|       uint16_t Sh) const {
 | |
|   assert(Sh <= A1.width());
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   Res.rol(Sh);
 | |
|   Res.fill(0, Sh, BitValue::Zero);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
 | |
|       uint16_t Sh) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(Sh <= W);
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   Res.rol(W-Sh);
 | |
|   Res.fill(W-Sh, W, BitValue::Zero);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
 | |
|       uint16_t Sh) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(Sh <= W);
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   BitValue Sign = Res[W-1];
 | |
|   Res.rol(W-Sh);
 | |
|   Res.fill(W-Sh, W, Sign);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
 | |
|       const RegisterCell &A2) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(W == A2.width());
 | |
|   RegisterCell Res(W);
 | |
|   for (uint16_t i = 0; i < W; ++i) {
 | |
|     const BitValue &V1 = A1[i];
 | |
|     const BitValue &V2 = A2[i];
 | |
|     if (V1.is(1))
 | |
|       Res[i] = BitValue::ref(V2);
 | |
|     else if (V2.is(1))
 | |
|       Res[i] = BitValue::ref(V1);
 | |
|     else if (V1.is(0) || V2.is(0))
 | |
|       Res[i] = BitValue::Zero;
 | |
|     else if (V1 == V2)
 | |
|       Res[i] = V1;
 | |
|     else
 | |
|       Res[i] = BitValue::self();
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
 | |
|       const RegisterCell &A2) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(W == A2.width());
 | |
|   RegisterCell Res(W);
 | |
|   for (uint16_t i = 0; i < W; ++i) {
 | |
|     const BitValue &V1 = A1[i];
 | |
|     const BitValue &V2 = A2[i];
 | |
|     if (V1.is(1) || V2.is(1))
 | |
|       Res[i] = BitValue::One;
 | |
|     else if (V1.is(0))
 | |
|       Res[i] = BitValue::ref(V2);
 | |
|     else if (V2.is(0))
 | |
|       Res[i] = BitValue::ref(V1);
 | |
|     else if (V1 == V2)
 | |
|       Res[i] = V1;
 | |
|     else
 | |
|       Res[i] = BitValue::self();
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
 | |
|       const RegisterCell &A2) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(W == A2.width());
 | |
|   RegisterCell Res(W);
 | |
|   for (uint16_t i = 0; i < W; ++i) {
 | |
|     const BitValue &V1 = A1[i];
 | |
|     const BitValue &V2 = A2[i];
 | |
|     if (V1.is(0))
 | |
|       Res[i] = BitValue::ref(V2);
 | |
|     else if (V2.is(0))
 | |
|       Res[i] = BitValue::ref(V1);
 | |
|     else if (V1 == V2)
 | |
|       Res[i] = BitValue::Zero;
 | |
|     else
 | |
|       Res[i] = BitValue::self();
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
 | |
|   uint16_t W = A1.width();
 | |
|   RegisterCell Res(W);
 | |
|   for (uint16_t i = 0; i < W; ++i) {
 | |
|     const BitValue &V = A1[i];
 | |
|     if (V.is(0))
 | |
|       Res[i] = BitValue::One;
 | |
|     else if (V.is(1))
 | |
|       Res[i] = BitValue::Zero;
 | |
|     else
 | |
|       Res[i] = BitValue::self();
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
 | |
|       uint16_t BitN) const {
 | |
|   assert(BitN < A1.width());
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   Res[BitN] = BitValue::One;
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
 | |
|       uint16_t BitN) const {
 | |
|   assert(BitN < A1.width());
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   Res[BitN] = BitValue::Zero;
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
 | |
|       uint16_t W) const {
 | |
|   uint16_t C = A1.cl(B), AW = A1.width();
 | |
|   // If the last leading non-B bit is not a constant, then we don't know
 | |
|   // the real count.
 | |
|   if ((C < AW && A1[AW-1-C].num()) || C == AW)
 | |
|     return eIMM(C, W);
 | |
|   return RegisterCell::self(0, W);
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
 | |
|       uint16_t W) const {
 | |
|   uint16_t C = A1.ct(B), AW = A1.width();
 | |
|   // If the last trailing non-B bit is not a constant, then we don't know
 | |
|   // the real count.
 | |
|   if ((C < AW && A1[C].num()) || C == AW)
 | |
|     return eIMM(C, W);
 | |
|   return RegisterCell::self(0, W);
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
 | |
|       uint16_t FromN) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(FromN <= W);
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   BitValue Sign = Res[FromN-1];
 | |
|   // Sign-extend "inreg".
 | |
|   Res.fill(FromN, W, Sign);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
 | |
|       uint16_t FromN) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(FromN <= W);
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   Res.fill(FromN, W, BitValue::Zero);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
 | |
|       uint16_t B, uint16_t E) const {
 | |
|   uint16_t W = A1.width();
 | |
|   assert(B < W && E <= W);
 | |
|   if (B == E)
 | |
|     return RegisterCell(0);
 | |
|   uint16_t Last = (E > 0) ? E-1 : W-1;
 | |
|   RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
 | |
|   // Return shorter cell.
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
 | |
|       const RegisterCell &A2, uint16_t AtN) const {
 | |
|   uint16_t W1 = A1.width(), W2 = A2.width();
 | |
|   (void)W1;
 | |
|   assert(AtN < W1 && AtN+W2 <= W1);
 | |
|   // Copy bits from A1, insert A2 at position AtN.
 | |
|   RegisterCell Res = RegisterCell::ref(A1);
 | |
|   if (W2 > 0)
 | |
|     Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
 | |
|   assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
 | |
|   uint16_t W = getRegBitWidth(Reg);
 | |
|   assert(W > 0 && "Cannot generate mask for empty register");
 | |
|   return BitMask(0, W-1);
 | |
| }
 | |
| 
 | |
| uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const {
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
 | |
|   const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg);
 | |
|   return TRI.getRegSizeInBits(PC);
 | |
| }
 | |
| 
 | |
| bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
 | |
|                                     const CellMapType &Inputs,
 | |
|                                     CellMapType &Outputs) const {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   switch (Opc) {
 | |
|     case TargetOpcode::REG_SEQUENCE: {
 | |
|       RegisterRef RD = MI.getOperand(0);
 | |
|       assert(RD.Sub == 0);
 | |
|       RegisterRef RS = MI.getOperand(1);
 | |
|       unsigned SS = MI.getOperand(2).getImm();
 | |
|       RegisterRef RT = MI.getOperand(3);
 | |
|       unsigned ST = MI.getOperand(4).getImm();
 | |
|       assert(SS != ST);
 | |
| 
 | |
|       uint16_t W = getRegBitWidth(RD);
 | |
|       RegisterCell Res(W);
 | |
|       Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
 | |
|       Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
 | |
|       putCell(RD, Res, Outputs);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TargetOpcode::COPY: {
 | |
|       // COPY can transfer a smaller register into a wider one.
 | |
|       // If that is the case, fill the remaining high bits with 0.
 | |
|       RegisterRef RD = MI.getOperand(0);
 | |
|       RegisterRef RS = MI.getOperand(1);
 | |
|       assert(RD.Sub == 0);
 | |
|       uint16_t WD = getRegBitWidth(RD);
 | |
|       uint16_t WS = getRegBitWidth(RS);
 | |
|       assert(WD >= WS);
 | |
|       RegisterCell Src = getCell(RS, Inputs);
 | |
|       RegisterCell Res(WD);
 | |
|       Res.insert(Src, BitMask(0, WS-1));
 | |
|       Res.fill(WS, WD, BitValue::Zero);
 | |
|       putCell(RD, Res, Outputs);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA,
 | |
|                                        const MachineInstr *InstB) const {
 | |
|   // This is a comparison function for a priority queue: give higher priority
 | |
|   // to earlier instructions.
 | |
|   // This operator is used as "less", so returning "true" gives InstB higher
 | |
|   // priority (because then InstA < InstB).
 | |
|   if (InstA == InstB)
 | |
|     return false;
 | |
|   const MachineBasicBlock *BA = InstA->getParent();
 | |
|   const MachineBasicBlock *BB = InstB->getParent();
 | |
|   if (BA != BB) {
 | |
|     // If the blocks are different, ideally the dominating block would
 | |
|     // have a higher priority, but it may be too expensive to check.
 | |
|     return BA->getNumber() > BB->getNumber();
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::const_iterator ItA = InstA->getIterator();
 | |
|   MachineBasicBlock::const_iterator ItB = InstB->getIterator();
 | |
|   MachineBasicBlock::const_iterator End = BA->end();
 | |
|   while (ItA != End) {
 | |
|     if (ItA == ItB)
 | |
|       return false;   // ItA was before ItB.
 | |
|     ++ItA;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Main W-Z implementation.
 | |
| 
 | |
| void BT::visitPHI(const MachineInstr &PI) {
 | |
|   int ThisN = PI.getParent()->getNumber();
 | |
|   if (Trace)
 | |
|     dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI;
 | |
| 
 | |
|   const MachineOperand &MD = PI.getOperand(0);
 | |
|   assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
 | |
|   RegisterRef DefRR(MD);
 | |
|   uint16_t DefBW = ME.getRegBitWidth(DefRR);
 | |
| 
 | |
|   RegisterCell DefC = ME.getCell(DefRR, Map);
 | |
|   if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow
 | |
|     return;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
 | |
|     const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
 | |
|     int PredN = PB->getNumber();
 | |
|     if (Trace)
 | |
|       dbgs() << "  edge " << printMBBReference(*PB) << "->"
 | |
|              << printMBBReference(*PI.getParent());
 | |
|     if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
 | |
|       if (Trace)
 | |
|         dbgs() << " not executable\n";
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     RegisterRef RU = PI.getOperand(i);
 | |
|     RegisterCell ResC = ME.getCell(RU, Map);
 | |
|     if (Trace)
 | |
|       dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
 | |
|              << " cell: " << ResC << "\n";
 | |
|     Changed |= DefC.meet(ResC, DefRR.Reg);
 | |
|   }
 | |
| 
 | |
|   if (Changed) {
 | |
|     if (Trace)
 | |
|       dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
 | |
|              << " cell: " << DefC << "\n";
 | |
|     ME.putCell(DefRR, DefC, Map);
 | |
|     visitUsesOf(DefRR.Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BT::visitNonBranch(const MachineInstr &MI) {
 | |
|   if (Trace)
 | |
|     dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI;
 | |
|   if (MI.isDebugValue())
 | |
|     return;
 | |
|   assert(!MI.isBranch() && "Unexpected branch instruction");
 | |
| 
 | |
|   CellMapType ResMap;
 | |
|   bool Eval = ME.evaluate(MI, Map, ResMap);
 | |
| 
 | |
|   if (Trace && Eval) {
 | |
|     for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
 | |
|       const MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isUse())
 | |
|         continue;
 | |
|       RegisterRef RU(MO);
 | |
|       dbgs() << "  input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
 | |
|              << " cell: " << ME.getCell(RU, Map) << "\n";
 | |
|     }
 | |
|     dbgs() << "Outputs:\n";
 | |
|     for (const std::pair<unsigned, RegisterCell> &P : ResMap) {
 | |
|       RegisterRef RD(P.first);
 | |
|       dbgs() << "  " << printReg(P.first, &ME.TRI) << " cell: "
 | |
|              << ME.getCell(RD, ResMap) << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iterate over all definitions of the instruction, and update the
 | |
|   // cells accordingly.
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     // Visit register defs only.
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     RegisterRef RD(MO);
 | |
|     assert(RD.Sub == 0 && "Unexpected sub-register in definition");
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(RD.Reg))
 | |
|       continue;
 | |
| 
 | |
|     bool Changed = false;
 | |
|     if (!Eval || ResMap.count(RD.Reg) == 0) {
 | |
|       // Set to "ref" (aka "bottom").
 | |
|       uint16_t DefBW = ME.getRegBitWidth(RD);
 | |
|       RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
 | |
|       if (RefC != ME.getCell(RD, Map)) {
 | |
|         ME.putCell(RD, RefC, Map);
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else {
 | |
|       RegisterCell DefC = ME.getCell(RD, Map);
 | |
|       RegisterCell ResC = ME.getCell(RD, ResMap);
 | |
|       // This is a non-phi instruction, so the values of the inputs come
 | |
|       // from the same registers each time this instruction is evaluated.
 | |
|       // During the propagation, the values of the inputs can become lowered
 | |
|       // in the sense of the lattice operation, which may cause different
 | |
|       // results to be calculated in subsequent evaluations. This should
 | |
|       // not cause the bottoming of the result in the map, since the new
 | |
|       // result is already reflecting the lowered inputs.
 | |
|       for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
 | |
|         BitValue &V = DefC[i];
 | |
|         // Bits that are already "bottom" should not be updated.
 | |
|         if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
 | |
|           continue;
 | |
|         // Same for those that are identical in DefC and ResC.
 | |
|         if (V == ResC[i])
 | |
|           continue;
 | |
|         V = ResC[i];
 | |
|         Changed = true;
 | |
|       }
 | |
|       if (Changed)
 | |
|         ME.putCell(RD, DefC, Map);
 | |
|     }
 | |
|     if (Changed)
 | |
|       visitUsesOf(RD.Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BT::visitBranchesFrom(const MachineInstr &BI) {
 | |
|   const MachineBasicBlock &B = *BI.getParent();
 | |
|   MachineBasicBlock::const_iterator It = BI, End = B.end();
 | |
|   BranchTargetList Targets, BTs;
 | |
|   bool FallsThrough = true, DefaultToAll = false;
 | |
|   int ThisN = B.getNumber();
 | |
| 
 | |
|   do {
 | |
|     BTs.clear();
 | |
|     const MachineInstr &MI = *It;
 | |
|     if (Trace)
 | |
|       dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI;
 | |
|     assert(MI.isBranch() && "Expecting branch instruction");
 | |
|     InstrExec.insert(&MI);
 | |
|     bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
 | |
|     if (!Eval) {
 | |
|       // If the evaluation failed, we will add all targets. Keep going in
 | |
|       // the loop to mark all executable branches as such.
 | |
|       DefaultToAll = true;
 | |
|       FallsThrough = true;
 | |
|       if (Trace)
 | |
|         dbgs() << "  failed to evaluate: will add all CFG successors\n";
 | |
|     } else if (!DefaultToAll) {
 | |
|       // If evaluated successfully add the targets to the cumulative list.
 | |
|       if (Trace) {
 | |
|         dbgs() << "  adding targets:";
 | |
|         for (unsigned i = 0, n = BTs.size(); i < n; ++i)
 | |
|           dbgs() << " " << printMBBReference(*BTs[i]);
 | |
|         if (FallsThrough)
 | |
|           dbgs() << "\n  falls through\n";
 | |
|         else
 | |
|           dbgs() << "\n  does not fall through\n";
 | |
|       }
 | |
|       Targets.insert(BTs.begin(), BTs.end());
 | |
|     }
 | |
|     ++It;
 | |
|   } while (FallsThrough && It != End);
 | |
| 
 | |
|   if (!DefaultToAll) {
 | |
|     // Need to add all CFG successors that lead to EH landing pads.
 | |
|     // There won't be explicit branches to these blocks, but they must
 | |
|     // be processed.
 | |
|     for (const MachineBasicBlock *SB : B.successors()) {
 | |
|       if (SB->isEHPad())
 | |
|         Targets.insert(SB);
 | |
|     }
 | |
|     if (FallsThrough) {
 | |
|       MachineFunction::const_iterator BIt = B.getIterator();
 | |
|       MachineFunction::const_iterator Next = std::next(BIt);
 | |
|       if (Next != MF.end())
 | |
|         Targets.insert(&*Next);
 | |
|     }
 | |
|   } else {
 | |
|     for (const MachineBasicBlock *SB : B.successors())
 | |
|       Targets.insert(SB);
 | |
|   }
 | |
| 
 | |
|   for (const MachineBasicBlock *TB : Targets)
 | |
|     FlowQ.push(CFGEdge(ThisN, TB->getNumber()));
 | |
| }
 | |
| 
 | |
| void BT::visitUsesOf(unsigned Reg) {
 | |
|   if (Trace)
 | |
|     dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI)
 | |
|            << " cell: " << ME.getCell(Reg, Map) << '\n';
 | |
| 
 | |
|   for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg))
 | |
|     UseQ.push(&UseI);
 | |
| }
 | |
| 
 | |
| BT::RegisterCell BT::get(RegisterRef RR) const {
 | |
|   return ME.getCell(RR, Map);
 | |
| }
 | |
| 
 | |
| void BT::put(RegisterRef RR, const RegisterCell &RC) {
 | |
|   ME.putCell(RR, RC, Map);
 | |
| }
 | |
| 
 | |
| // Replace all references to bits from OldRR with the corresponding bits
 | |
| // in NewRR.
 | |
| void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
 | |
|   assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
 | |
|   BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
 | |
|   BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
 | |
|   uint16_t OMB = OM.first(), OME = OM.last();
 | |
|   uint16_t NMB = NM.first(), NME = NM.last();
 | |
|   (void)NME;
 | |
|   assert((OME-OMB == NME-NMB) &&
 | |
|          "Substituting registers of different lengths");
 | |
|   for (std::pair<const unsigned, RegisterCell> &P : Map) {
 | |
|     RegisterCell &RC = P.second;
 | |
|     for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
 | |
|       BitValue &V = RC[i];
 | |
|       if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
 | |
|         continue;
 | |
|       if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
 | |
|         continue;
 | |
|       V.RefI.Reg = NewRR.Reg;
 | |
|       V.RefI.Pos += NMB-OMB;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check if the block has been "executed" during propagation. (If not, the
 | |
| // block is dead, but it may still appear to be reachable.)
 | |
| bool BT::reached(const MachineBasicBlock *B) const {
 | |
|   int BN = B->getNumber();
 | |
|   assert(BN >= 0);
 | |
|   return ReachedBB.count(BN);
 | |
| }
 | |
| 
 | |
| // Visit an individual instruction. This could be a newly added instruction,
 | |
| // or one that has been modified by an optimization.
 | |
| void BT::visit(const MachineInstr &MI) {
 | |
|   assert(!MI.isBranch() && "Only non-branches are allowed");
 | |
|   InstrExec.insert(&MI);
 | |
|   visitNonBranch(MI);
 | |
|   // Make sure to flush all the pending use updates.
 | |
|   runUseQueue();
 | |
|   // The call to visitNonBranch could propagate the changes until a branch
 | |
|   // is actually visited. This could result in adding CFG edges to the flow
 | |
|   // queue. Since the queue won't be processed, clear it.
 | |
|   while (!FlowQ.empty())
 | |
|     FlowQ.pop();
 | |
| }
 | |
| 
 | |
| void BT::reset() {
 | |
|   EdgeExec.clear();
 | |
|   InstrExec.clear();
 | |
|   Map.clear();
 | |
|   ReachedBB.clear();
 | |
|   ReachedBB.reserve(MF.size());
 | |
| }
 | |
| 
 | |
| void BT::runEdgeQueue(BitVector &BlockScanned) {
 | |
|   while (!FlowQ.empty()) {
 | |
|     CFGEdge Edge = FlowQ.front();
 | |
|     FlowQ.pop();
 | |
| 
 | |
|     if (EdgeExec.count(Edge))
 | |
|       return;
 | |
|     EdgeExec.insert(Edge);
 | |
|     ReachedBB.insert(Edge.second);
 | |
| 
 | |
|     const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
 | |
|     MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
 | |
|     // Visit PHI nodes first.
 | |
|     while (It != End && It->isPHI()) {
 | |
|       const MachineInstr &PI = *It++;
 | |
|       InstrExec.insert(&PI);
 | |
|       visitPHI(PI);
 | |
|     }
 | |
| 
 | |
|     // If this block has already been visited through a flow graph edge,
 | |
|     // then the instructions have already been processed. Any updates to
 | |
|     // the cells would now only happen through visitUsesOf...
 | |
|     if (BlockScanned[Edge.second])
 | |
|       return;
 | |
|     BlockScanned[Edge.second] = true;
 | |
| 
 | |
|     // Visit non-branch instructions.
 | |
|     while (It != End && !It->isBranch()) {
 | |
|       const MachineInstr &MI = *It++;
 | |
|       InstrExec.insert(&MI);
 | |
|       visitNonBranch(MI);
 | |
|     }
 | |
|     // If block end has been reached, add the fall-through edge to the queue.
 | |
|     if (It == End) {
 | |
|       MachineFunction::const_iterator BIt = B.getIterator();
 | |
|       MachineFunction::const_iterator Next = std::next(BIt);
 | |
|       if (Next != MF.end() && B.isSuccessor(&*Next)) {
 | |
|         int ThisN = B.getNumber();
 | |
|         int NextN = Next->getNumber();
 | |
|         FlowQ.push(CFGEdge(ThisN, NextN));
 | |
|       }
 | |
|     } else {
 | |
|       // Handle the remaining sequence of branches. This function will update
 | |
|       // the work queue.
 | |
|       visitBranchesFrom(*It);
 | |
|     }
 | |
|   } // while (!FlowQ->empty())
 | |
| }
 | |
| 
 | |
| void BT::runUseQueue() {
 | |
|   while (!UseQ.empty()) {
 | |
|     MachineInstr &UseI = *UseQ.front();
 | |
|     UseQ.pop();
 | |
| 
 | |
|     if (!InstrExec.count(&UseI))
 | |
|       continue;
 | |
|     if (UseI.isPHI())
 | |
|       visitPHI(UseI);
 | |
|     else if (!UseI.isBranch())
 | |
|       visitNonBranch(UseI);
 | |
|     else
 | |
|       visitBranchesFrom(UseI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BT::run() {
 | |
|   reset();
 | |
|   assert(FlowQ.empty());
 | |
| 
 | |
|   using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>;
 | |
|   const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
 | |
| 
 | |
|   unsigned MaxBN = 0;
 | |
|   for (const MachineBasicBlock &B : MF) {
 | |
|     assert(B.getNumber() >= 0 && "Disconnected block");
 | |
|     unsigned BN = B.getNumber();
 | |
|     if (BN > MaxBN)
 | |
|       MaxBN = BN;
 | |
|   }
 | |
| 
 | |
|   // Keep track of visited blocks.
 | |
|   BitVector BlockScanned(MaxBN+1);
 | |
| 
 | |
|   int EntryN = Entry->getNumber();
 | |
|   // Generate a fake edge to get something to start with.
 | |
|   FlowQ.push(CFGEdge(-1, EntryN));
 | |
| 
 | |
|   while (!FlowQ.empty() || !UseQ.empty()) {
 | |
|     runEdgeQueue(BlockScanned);
 | |
|     runUseQueue();
 | |
|   }
 | |
| 
 | |
|   if (Trace)
 | |
|     print_cells(dbgs() << "Cells after propagation:\n");
 | |
| }
 |