You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			2059 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2059 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// \brief SI Machine Scheduler interface
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SIMachineScheduler.h"
 | |
| #include "AMDGPU.h"
 | |
| #include "SIInstrInfo.h"
 | |
| #include "SIRegisterInfo.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineScheduler.h"
 | |
| #include "llvm/CodeGen/RegisterPressure.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "machine-scheduler"
 | |
| 
 | |
| // This scheduler implements a different scheduling algorithm than
 | |
| // GenericScheduler.
 | |
| //
 | |
| // There are several specific architecture behaviours that can't be modelled
 | |
| // for GenericScheduler:
 | |
| // . When accessing the result of an SGPR load instruction, you have to wait
 | |
| // for all the SGPR load instructions before your current instruction to
 | |
| // have finished.
 | |
| // . When accessing the result of an VGPR load instruction, you have to wait
 | |
| // for all the VGPR load instructions previous to the VGPR load instruction
 | |
| // you are interested in to finish.
 | |
| // . The less the register pressure, the best load latencies are hidden
 | |
| //
 | |
| // Moreover some specifities (like the fact a lot of instructions in the shader
 | |
| // have few dependencies) makes the generic scheduler have some unpredictable
 | |
| // behaviours. For example when register pressure becomes high, it can either
 | |
| // manage to prevent register pressure from going too high, or it can
 | |
| // increase register pressure even more than if it hadn't taken register
 | |
| // pressure into account.
 | |
| //
 | |
| // Also some other bad behaviours are generated, like loading at the beginning
 | |
| // of the shader a constant in VGPR you won't need until the end of the shader.
 | |
| //
 | |
| // The scheduling problem for SI can distinguish three main parts:
 | |
| // . Hiding high latencies (texture sampling, etc)
 | |
| // . Hiding low latencies (SGPR constant loading, etc)
 | |
| // . Keeping register usage low for better latency hiding and general
 | |
| //   performance
 | |
| //
 | |
| // Some other things can also affect performance, but are hard to predict
 | |
| // (cache usage, the fact the HW can issue several instructions from different
 | |
| // wavefronts if different types, etc)
 | |
| //
 | |
| // This scheduler tries to solve the scheduling problem by dividing it into
 | |
| // simpler sub-problems. It divides the instructions into blocks, schedules
 | |
| // locally inside the blocks where it takes care of low latencies, and then
 | |
| // chooses the order of the blocks by taking care of high latencies.
 | |
| // Dividing the instructions into blocks helps control keeping register
 | |
| // usage low.
 | |
| //
 | |
| // First the instructions are put into blocks.
 | |
| //   We want the blocks help control register usage and hide high latencies
 | |
| //   later. To help control register usage, we typically want all local
 | |
| //   computations, when for example you create a result that can be comsummed
 | |
| //   right away, to be contained in a block. Block inputs and outputs would
 | |
| //   typically be important results that are needed in several locations of
 | |
| //   the shader. Since we do want blocks to help hide high latencies, we want
 | |
| //   the instructions inside the block to have a minimal set of dependencies
 | |
| //   on high latencies. It will make it easy to pick blocks to hide specific
 | |
| //   high latencies.
 | |
| //   The block creation algorithm is divided into several steps, and several
 | |
| //   variants can be tried during the scheduling process.
 | |
| //
 | |
| // Second the order of the instructions inside the blocks is chosen.
 | |
| //   At that step we do take into account only register usage and hiding
 | |
| //   low latency instructions
 | |
| //
 | |
| // Third the block order is chosen, there we try to hide high latencies
 | |
| // and keep register usage low.
 | |
| //
 | |
| // After the third step, a pass is done to improve the hiding of low
 | |
| // latencies.
 | |
| //
 | |
| // Actually when talking about 'low latency' or 'high latency' it includes
 | |
| // both the latency to get the cache (or global mem) data go to the register,
 | |
| // and the bandwidth limitations.
 | |
| // Increasing the number of active wavefronts helps hide the former, but it
 | |
| // doesn't solve the latter, thus why even if wavefront count is high, we have
 | |
| // to try have as many instructions hiding high latencies as possible.
 | |
| // The OpenCL doc says for example latency of 400 cycles for a global mem access,
 | |
| // which is hidden by 10 instructions if the wavefront count is 10.
 | |
| 
 | |
| // Some figures taken from AMD docs:
 | |
| // Both texture and constant L1 caches are 4-way associative with 64 bytes
 | |
| // lines.
 | |
| // Constant cache is shared with 4 CUs.
 | |
| // For texture sampling, the address generation unit receives 4 texture
 | |
| // addresses per cycle, thus we could expect texture sampling latency to be
 | |
| // equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
 | |
| // instructions in a wavefront group are executed every 4 cycles),
 | |
| // or 16 instructions if the other wavefronts associated to the 3 other VALUs
 | |
| // of the CU do texture sampling too. (Don't take these figures too seriously,
 | |
| // as I'm not 100% sure of the computation)
 | |
| // Data exports should get similar latency.
 | |
| // For constant loading, the cache is shader with 4 CUs.
 | |
| // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
 | |
| // I guess if the other CU don't read the cache, it can go up to 64B/cycle.
 | |
| // It means a simple s_buffer_load should take one instruction to hide, as
 | |
| // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
 | |
| // cache line.
 | |
| //
 | |
| // As of today the driver doesn't preload the constants in cache, thus the
 | |
| // first loads get extra latency. The doc says global memory access can be
 | |
| // 300-600 cycles. We do not specially take that into account when scheduling
 | |
| // As we expect the driver to be able to preload the constants soon.
 | |
| 
 | |
| // common code //
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| 
 | |
| static const char *getReasonStr(SIScheduleCandReason Reason) {
 | |
|   switch (Reason) {
 | |
|   case NoCand:         return "NOCAND";
 | |
|   case RegUsage:       return "REGUSAGE";
 | |
|   case Latency:        return "LATENCY";
 | |
|   case Successor:      return "SUCCESSOR";
 | |
|   case Depth:          return "DEPTH";
 | |
|   case NodeOrder:      return "ORDER";
 | |
|   }
 | |
|   llvm_unreachable("Unknown reason!");
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static bool tryLess(int TryVal, int CandVal,
 | |
|                     SISchedulerCandidate &TryCand,
 | |
|                     SISchedulerCandidate &Cand,
 | |
|                     SIScheduleCandReason Reason) {
 | |
|   if (TryVal < CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal > CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   Cand.setRepeat(Reason);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool tryGreater(int TryVal, int CandVal,
 | |
|                        SISchedulerCandidate &TryCand,
 | |
|                        SISchedulerCandidate &Cand,
 | |
|                        SIScheduleCandReason Reason) {
 | |
|   if (TryVal > CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal < CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   Cand.setRepeat(Reason);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // SIScheduleBlock //
 | |
| 
 | |
| void SIScheduleBlock::addUnit(SUnit *SU) {
 | |
|   NodeNum2Index[SU->NodeNum] = SUnits.size();
 | |
|   SUnits.push_back(SU);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
 | |
| 
 | |
|   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
 | |
|                                           SISchedCandidate &TryCand) {
 | |
|   // Initialize the candidate if needed.
 | |
|   if (!Cand.isValid()) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Cand.SGPRUsage > 60 &&
 | |
|       tryLess(TryCand.SGPRUsage, Cand.SGPRUsage, TryCand, Cand, RegUsage))
 | |
|     return;
 | |
| 
 | |
|   // Schedule low latency instructions as top as possible.
 | |
|   // Order of priority is:
 | |
|   // . Low latency instructions which do not depend on other low latency
 | |
|   //   instructions we haven't waited for
 | |
|   // . Other instructions which do not depend on low latency instructions
 | |
|   //   we haven't waited for
 | |
|   // . Low latencies
 | |
|   // . All other instructions
 | |
|   // Goal is to get: low latency instructions - independent instructions
 | |
|   //     - (eventually some more low latency instructions)
 | |
|   //     - instructions that depend on the first low latency instructions.
 | |
|   // If in the block there is a lot of constant loads, the SGPR usage
 | |
|   // could go quite high, thus above the arbitrary limit of 60 will encourage
 | |
|   // use the already loaded constants (in order to release some SGPRs) before
 | |
|   // loading more.
 | |
|   if (tryLess(TryCand.HasLowLatencyNonWaitedParent,
 | |
|               Cand.HasLowLatencyNonWaitedParent,
 | |
|               TryCand, Cand, SIScheduleCandReason::Depth))
 | |
|     return;
 | |
| 
 | |
|   if (tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
 | |
|                  TryCand, Cand, SIScheduleCandReason::Depth))
 | |
|     return;
 | |
| 
 | |
|   if (TryCand.IsLowLatency &&
 | |
|       tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
 | |
|               TryCand, Cand, SIScheduleCandReason::Depth))
 | |
|     return;
 | |
| 
 | |
|   if (tryLess(TryCand.VGPRUsage, Cand.VGPRUsage, TryCand, Cand, RegUsage))
 | |
|     return;
 | |
| 
 | |
|   // Fall through to original instruction order.
 | |
|   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SUnit* SIScheduleBlock::pickNode() {
 | |
|   SISchedCandidate TopCand;
 | |
| 
 | |
|   for (SUnit* SU : TopReadySUs) {
 | |
|     SISchedCandidate TryCand;
 | |
|     std::vector<unsigned> pressure;
 | |
|     std::vector<unsigned> MaxPressure;
 | |
|     // Predict register usage after this instruction.
 | |
|     TryCand.SU = SU;
 | |
|     TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
 | |
|     TryCand.SGPRUsage = pressure[DAG->getSGPRSetID()];
 | |
|     TryCand.VGPRUsage = pressure[DAG->getVGPRSetID()];
 | |
|     TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
 | |
|     TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
 | |
|     TryCand.HasLowLatencyNonWaitedParent =
 | |
|       HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
 | |
|     tryCandidateTopDown(TopCand, TryCand);
 | |
|     if (TryCand.Reason != NoCand)
 | |
|       TopCand.setBest(TryCand);
 | |
|   }
 | |
| 
 | |
|   return TopCand.SU;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Schedule something valid.
 | |
| void SIScheduleBlock::fastSchedule() {
 | |
|   TopReadySUs.clear();
 | |
|   if (Scheduled)
 | |
|     undoSchedule();
 | |
| 
 | |
|   for (SUnit* SU : SUnits) {
 | |
|     if (!SU->NumPredsLeft)
 | |
|       TopReadySUs.push_back(SU);
 | |
|   }
 | |
| 
 | |
|   while (!TopReadySUs.empty()) {
 | |
|     SUnit *SU = TopReadySUs[0];
 | |
|     ScheduledSUnits.push_back(SU);
 | |
|     nodeScheduled(SU);
 | |
|   }
 | |
| 
 | |
|   Scheduled = true;
 | |
| }
 | |
| 
 | |
| // Returns if the register was set between first and last.
 | |
| static bool isDefBetween(unsigned Reg,
 | |
|                            SlotIndex First, SlotIndex Last,
 | |
|                            const MachineRegisterInfo *MRI,
 | |
|                            const LiveIntervals *LIS) {
 | |
|   for (MachineRegisterInfo::def_instr_iterator
 | |
|        UI = MRI->def_instr_begin(Reg),
 | |
|        UE = MRI->def_instr_end(); UI != UE; ++UI) {
 | |
|     const MachineInstr* MI = &*UI;
 | |
|     if (MI->isDebugValue())
 | |
|       continue;
 | |
|     SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
 | |
|     if (InstSlot >= First && InstSlot <= Last)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
 | |
|                                       MachineBasicBlock::iterator EndBlock) {
 | |
|   IntervalPressure Pressure, BotPressure;
 | |
|   RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
 | |
|   LiveIntervals *LIS = DAG->getLIS();
 | |
|   MachineRegisterInfo *MRI = DAG->getMRI();
 | |
|   DAG->initRPTracker(TopRPTracker);
 | |
|   DAG->initRPTracker(BotRPTracker);
 | |
|   DAG->initRPTracker(RPTracker);
 | |
| 
 | |
|   // Goes though all SU. RPTracker captures what had to be alive for the SUs
 | |
|   // to execute, and what is still alive at the end.
 | |
|   for (SUnit* SU : ScheduledSUnits) {
 | |
|     RPTracker.setPos(SU->getInstr());
 | |
|     RPTracker.advance();
 | |
|   }
 | |
| 
 | |
|   // Close the RPTracker to finalize live ins/outs.
 | |
|   RPTracker.closeRegion();
 | |
| 
 | |
|   // Initialize the live ins and live outs.
 | |
|   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | |
|   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | |
| 
 | |
|   // Do not Track Physical Registers, because it messes up.
 | |
|   for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
 | |
|     if (TargetRegisterInfo::isVirtualRegister(RegMaskPair.RegUnit))
 | |
|       LiveInRegs.insert(RegMaskPair.RegUnit);
 | |
|   }
 | |
|   LiveOutRegs.clear();
 | |
|   // There is several possibilities to distinguish:
 | |
|   // 1) Reg is not input to any instruction in the block, but is output of one
 | |
|   // 2) 1) + read in the block and not needed after it
 | |
|   // 3) 1) + read in the block but needed in another block
 | |
|   // 4) Reg is input of an instruction but another block will read it too
 | |
|   // 5) Reg is input of an instruction and then rewritten in the block.
 | |
|   //    result is not read in the block (implies used in another block)
 | |
|   // 6) Reg is input of an instruction and then rewritten in the block.
 | |
|   //    result is read in the block and not needed in another block
 | |
|   // 7) Reg is input of an instruction and then rewritten in the block.
 | |
|   //    result is read in the block but also needed in another block
 | |
|   // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
 | |
|   // We want LiveOutRegs to contain only Regs whose content will be read after
 | |
|   // in another block, and whose content was written in the current block,
 | |
|   // that is we want it to get 1, 3, 5, 7
 | |
|   // Since we made the MIs of a block to be packed all together before
 | |
|   // scheduling, then the LiveIntervals were correct, and the RPTracker was
 | |
|   // able to correctly handle 5 vs 6, 2 vs 3.
 | |
|   // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
 | |
|   // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
 | |
|   // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
 | |
|   // The use of findDefBetween removes the case 4.
 | |
|   for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
 | |
|     unsigned Reg = RegMaskPair.RegUnit;
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|         isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
 | |
|                      LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
 | |
|                      LIS)) {
 | |
|       LiveOutRegs.insert(Reg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Pressure = sum_alive_registers register size
 | |
|   // Internally llvm will represent some registers as big 128 bits registers
 | |
|   // for example, but they actually correspond to 4 actual 32 bits registers.
 | |
|   // Thus Pressure is not equal to num_alive_registers * constant.
 | |
|   LiveInPressure = TopPressure.MaxSetPressure;
 | |
|   LiveOutPressure = BotPressure.MaxSetPressure;
 | |
| 
 | |
|   // Prepares TopRPTracker for top down scheduling.
 | |
|   TopRPTracker.closeTop();
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
 | |
|                                MachineBasicBlock::iterator EndBlock) {
 | |
|   if (!Scheduled)
 | |
|     fastSchedule();
 | |
| 
 | |
|   // PreScheduling phase to set LiveIn and LiveOut.
 | |
|   initRegPressure(BeginBlock, EndBlock);
 | |
|   undoSchedule();
 | |
| 
 | |
|   // Schedule for real now.
 | |
| 
 | |
|   TopReadySUs.clear();
 | |
| 
 | |
|   for (SUnit* SU : SUnits) {
 | |
|     if (!SU->NumPredsLeft)
 | |
|       TopReadySUs.push_back(SU);
 | |
|   }
 | |
| 
 | |
|   while (!TopReadySUs.empty()) {
 | |
|     SUnit *SU = pickNode();
 | |
|     ScheduledSUnits.push_back(SU);
 | |
|     TopRPTracker.setPos(SU->getInstr());
 | |
|     TopRPTracker.advance();
 | |
|     nodeScheduled(SU);
 | |
|   }
 | |
| 
 | |
|   // TODO: compute InternalAdditionnalPressure.
 | |
|   InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
 | |
| 
 | |
|   // Check everything is right.
 | |
| #ifndef NDEBUG
 | |
|   assert(SUnits.size() == ScheduledSUnits.size() &&
 | |
|             TopReadySUs.empty());
 | |
|   for (SUnit* SU : SUnits) {
 | |
|     assert(SU->isScheduled &&
 | |
|               SU->NumPredsLeft == 0);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   Scheduled = true;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::undoSchedule() {
 | |
|   for (SUnit* SU : SUnits) {
 | |
|     SU->isScheduled = false;
 | |
|     for (SDep& Succ : SU->Succs) {
 | |
|       if (BC->isSUInBlock(Succ.getSUnit(), ID))
 | |
|         undoReleaseSucc(SU, &Succ);
 | |
|     }
 | |
|   }
 | |
|   HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
 | |
|   ScheduledSUnits.clear();
 | |
|   Scheduled = false;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
| 
 | |
|   if (SuccEdge->isWeak()) {
 | |
|     ++SuccSU->WeakPredsLeft;
 | |
|     return;
 | |
|   }
 | |
|   ++SuccSU->NumPredsLeft;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
| 
 | |
|   if (SuccEdge->isWeak()) {
 | |
|     --SuccSU->WeakPredsLeft;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     SuccSU->dump(DAG);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   --SuccSU->NumPredsLeft;
 | |
| }
 | |
| 
 | |
| /// Release Successors of the SU that are in the block or not.
 | |
| void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
 | |
|   for (SDep& Succ : SU->Succs) {
 | |
|     SUnit *SuccSU = Succ.getSUnit();
 | |
| 
 | |
|     if (SuccSU->NodeNum >= DAG->SUnits.size())
 | |
|         continue;
 | |
| 
 | |
|     if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
 | |
|       continue;
 | |
| 
 | |
|     releaseSucc(SU, &Succ);
 | |
|     if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
 | |
|       TopReadySUs.push_back(SuccSU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::nodeScheduled(SUnit *SU) {
 | |
|   // Is in TopReadySUs
 | |
|   assert (!SU->NumPredsLeft);
 | |
|   std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
 | |
|   if (I == TopReadySUs.end()) {
 | |
|     dbgs() << "Data Structure Bug in SI Scheduler\n";
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
|   TopReadySUs.erase(I);
 | |
| 
 | |
|   releaseSuccessors(SU, true);
 | |
|   // Scheduling this node will trigger a wait,
 | |
|   // thus propagate to other instructions that they do not need to wait either.
 | |
|   if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
 | |
|     HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
 | |
| 
 | |
|   if (DAG->IsLowLatencySU[SU->NodeNum]) {
 | |
|      for (SDep& Succ : SU->Succs) {
 | |
|       std::map<unsigned, unsigned>::iterator I =
 | |
|         NodeNum2Index.find(Succ.getSUnit()->NodeNum);
 | |
|       if (I != NodeNum2Index.end())
 | |
|         HasLowLatencyNonWaitedParent[I->second] = 1;
 | |
|     }
 | |
|   }
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::finalizeUnits() {
 | |
|   // We remove links from outside blocks to enable scheduling inside the block.
 | |
|   for (SUnit* SU : SUnits) {
 | |
|     releaseSuccessors(SU, false);
 | |
|     if (DAG->IsHighLatencySU[SU->NodeNum])
 | |
|       HighLatencyBlock = true;
 | |
|   }
 | |
|   HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
 | |
| }
 | |
| 
 | |
| // we maintain ascending order of IDs
 | |
| void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
 | |
|   unsigned PredID = Pred->getID();
 | |
| 
 | |
|   // Check if not already predecessor.
 | |
|   for (SIScheduleBlock* P : Preds) {
 | |
|     if (PredID == P->getID())
 | |
|       return;
 | |
|   }
 | |
|   Preds.push_back(Pred);
 | |
| 
 | |
|   assert(none_of(Succs,
 | |
|                  [=](std::pair<SIScheduleBlock*,
 | |
|                      SIScheduleBlockLinkKind> S) {
 | |
|                    return PredID == S.first->getID();
 | |
|                     }) &&
 | |
|          "Loop in the Block Graph!");
 | |
| }
 | |
| 
 | |
| void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
 | |
|                               SIScheduleBlockLinkKind Kind) {
 | |
|   unsigned SuccID = Succ->getID();
 | |
| 
 | |
|   // Check if not already predecessor.
 | |
|   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
 | |
|     if (SuccID == S.first->getID()) {
 | |
|       if (S.second == SIScheduleBlockLinkKind::NoData &&
 | |
|           Kind == SIScheduleBlockLinkKind::Data)
 | |
|         S.second = Kind;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   if (Succ->isHighLatencyBlock())
 | |
|     ++NumHighLatencySuccessors;
 | |
|   Succs.push_back(std::make_pair(Succ, Kind));
 | |
| 
 | |
|   assert(none_of(Preds,
 | |
|                  [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
 | |
|          "Loop in the Block Graph!");
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| void SIScheduleBlock::printDebug(bool full) {
 | |
|   dbgs() << "Block (" << ID << ")\n";
 | |
|   if (!full)
 | |
|     return;
 | |
| 
 | |
|   dbgs() << "\nContains High Latency Instruction: "
 | |
|          << HighLatencyBlock << '\n';
 | |
|   dbgs() << "\nDepends On:\n";
 | |
|   for (SIScheduleBlock* P : Preds) {
 | |
|     P->printDebug(false);
 | |
|   }
 | |
| 
 | |
|   dbgs() << "\nSuccessors:\n";
 | |
|   for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
 | |
|     if (S.second == SIScheduleBlockLinkKind::Data)
 | |
|       dbgs() << "(Data Dep) ";
 | |
|     S.first->printDebug(false);
 | |
|   }
 | |
| 
 | |
|   if (Scheduled) {
 | |
|     dbgs() << "LiveInPressure " << LiveInPressure[DAG->getSGPRSetID()] << ' '
 | |
|            << LiveInPressure[DAG->getVGPRSetID()] << '\n';
 | |
|     dbgs() << "LiveOutPressure " << LiveOutPressure[DAG->getSGPRSetID()] << ' '
 | |
|            << LiveOutPressure[DAG->getVGPRSetID()] << "\n\n";
 | |
|     dbgs() << "LiveIns:\n";
 | |
|     for (unsigned Reg : LiveInRegs)
 | |
|       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
 | |
| 
 | |
|     dbgs() << "\nLiveOuts:\n";
 | |
|     for (unsigned Reg : LiveOutRegs)
 | |
|       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
 | |
|   }
 | |
| 
 | |
|   dbgs() << "\nInstructions:\n";
 | |
|   if (!Scheduled) {
 | |
|     for (SUnit* SU : SUnits) {
 | |
|       SU->dump(DAG);
 | |
|     }
 | |
|   } else {
 | |
|     for (SUnit* SU : SUnits) {
 | |
|       SU->dump(DAG);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   dbgs() << "///////////////////////\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // SIScheduleBlockCreator //
 | |
| 
 | |
| SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) :
 | |
| DAG(DAG) {
 | |
| }
 | |
| 
 | |
| SIScheduleBlockCreator::~SIScheduleBlockCreator() = default;
 | |
| 
 | |
| SIScheduleBlocks
 | |
| SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
 | |
|   std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
 | |
|     Blocks.find(BlockVariant);
 | |
|   if (B == Blocks.end()) {
 | |
|     SIScheduleBlocks Res;
 | |
|     createBlocksForVariant(BlockVariant);
 | |
|     topologicalSort();
 | |
|     scheduleInsideBlocks();
 | |
|     fillStats();
 | |
|     Res.Blocks = CurrentBlocks;
 | |
|     Res.TopDownIndex2Block = TopDownIndex2Block;
 | |
|     Res.TopDownBlock2Index = TopDownBlock2Index;
 | |
|     Blocks[BlockVariant] = Res;
 | |
|     return Res;
 | |
|   } else {
 | |
|     return B->second;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
 | |
|   if (SU->NodeNum >= DAG->SUnits.size())
 | |
|     return false;
 | |
|   return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorHighLatenciesAlone() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
| 
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &DAG->SUnits[i];
 | |
|     if (DAG->IsHighLatencySU[SU->NodeNum]) {
 | |
|       CurrentColoring[SU->NodeNum] = NextReservedID++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool
 | |
| hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
 | |
|   for (const auto &PredDep : SU.Preds) {
 | |
|     if (PredDep.getSUnit() == &FromSU &&
 | |
|         PredDep.getKind() == llvm::SDep::Data)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorHighLatenciesGroups() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   unsigned NumHighLatencies = 0;
 | |
|   unsigned GroupSize;
 | |
|   int Color = NextReservedID;
 | |
|   unsigned Count = 0;
 | |
|   std::set<unsigned> FormingGroup;
 | |
| 
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &DAG->SUnits[i];
 | |
|     if (DAG->IsHighLatencySU[SU->NodeNum])
 | |
|       ++NumHighLatencies;
 | |
|   }
 | |
| 
 | |
|   if (NumHighLatencies == 0)
 | |
|     return;
 | |
| 
 | |
|   if (NumHighLatencies <= 6)
 | |
|     GroupSize = 2;
 | |
|   else if (NumHighLatencies <= 12)
 | |
|     GroupSize = 3;
 | |
|   else
 | |
|     GroupSize = 4;
 | |
| 
 | |
|   for (unsigned SUNum : DAG->TopDownIndex2SU) {
 | |
|     const SUnit &SU = DAG->SUnits[SUNum];
 | |
|     if (DAG->IsHighLatencySU[SU.NodeNum]) {
 | |
|       unsigned CompatibleGroup = true;
 | |
|       int ProposedColor = Color;
 | |
|       std::vector<int> AdditionalElements;
 | |
| 
 | |
|       // We don't want to put in the same block
 | |
|       // two high latency instructions that depend
 | |
|       // on each other.
 | |
|       // One way would be to check canAddEdge
 | |
|       // in both directions, but that currently is not
 | |
|       // enough because there the high latency order is
 | |
|       // enforced (via links).
 | |
|       // Instead, look at the dependencies between the
 | |
|       // high latency instructions and deduce if it is
 | |
|       // a data dependency or not.
 | |
|       for (unsigned j : FormingGroup) {
 | |
|         bool HasSubGraph;
 | |
|         std::vector<int> SubGraph;
 | |
|         // By construction (topological order), if SU and
 | |
|         // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
 | |
|         // in the parent graph of SU.
 | |
| #ifndef NDEBUG
 | |
|         SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
 | |
|                                                HasSubGraph);
 | |
|         assert(!HasSubGraph);
 | |
| #endif
 | |
|         SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
 | |
|                                                HasSubGraph);
 | |
|         if (!HasSubGraph)
 | |
|           continue; // No dependencies between each other
 | |
|         else if (SubGraph.size() > 5) {
 | |
|           // Too many elements would be required to be added to the block.
 | |
|           CompatibleGroup = false;
 | |
|           break;
 | |
|         }
 | |
|         else {
 | |
|           // Check the type of dependency
 | |
|           for (unsigned k : SubGraph) {
 | |
|             // If in the path to join the two instructions,
 | |
|             // there is another high latency instruction,
 | |
|             // or instructions colored for another block
 | |
|             // abort the merge.
 | |
|             if (DAG->IsHighLatencySU[k] ||
 | |
|                 (CurrentColoring[k] != ProposedColor &&
 | |
|                  CurrentColoring[k] != 0)) {
 | |
|               CompatibleGroup = false;
 | |
|               break;
 | |
|             }
 | |
|             // If one of the SU in the subgraph depends on the result of SU j,
 | |
|             // there'll be a data dependency.
 | |
|             if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
 | |
|               CompatibleGroup = false;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|           if (!CompatibleGroup)
 | |
|             break;
 | |
|           // Same check for the SU
 | |
|           if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
 | |
|             CompatibleGroup = false;
 | |
|             break;
 | |
|           }
 | |
|           // Add all the required instructions to the block
 | |
|           // These cannot live in another block (because they
 | |
|           // depend (order dependency) on one of the
 | |
|           // instruction in the block, and are required for the
 | |
|           // high latency instruction we add.
 | |
|           AdditionalElements.insert(AdditionalElements.end(),
 | |
|                                     SubGraph.begin(), SubGraph.end());
 | |
|         }
 | |
|       }
 | |
|       if (CompatibleGroup) {
 | |
|         FormingGroup.insert(SU.NodeNum);
 | |
|         for (unsigned j : AdditionalElements)
 | |
|           CurrentColoring[j] = ProposedColor;
 | |
|         CurrentColoring[SU.NodeNum] = ProposedColor;
 | |
|         ++Count;
 | |
|       }
 | |
|       // Found one incompatible instruction,
 | |
|       // or has filled a big enough group.
 | |
|       // -> start a new one.
 | |
|       if (!CompatibleGroup) {
 | |
|         FormingGroup.clear();
 | |
|         Color = ++NextReservedID;
 | |
|         ProposedColor = Color;
 | |
|         FormingGroup.insert(SU.NodeNum);
 | |
|         CurrentColoring[SU.NodeNum] = ProposedColor;
 | |
|         Count = 0;
 | |
|       } else if (Count == GroupSize) {
 | |
|         FormingGroup.clear();
 | |
|         Color = ++NextReservedID;
 | |
|         ProposedColor = Color;
 | |
|         Count = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorComputeReservedDependencies() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   std::map<std::set<unsigned>, unsigned> ColorCombinations;
 | |
| 
 | |
|   CurrentTopDownReservedDependencyColoring.clear();
 | |
|   CurrentBottomUpReservedDependencyColoring.clear();
 | |
| 
 | |
|   CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
 | |
|   CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
 | |
| 
 | |
|   // Traverse TopDown, and give different colors to SUs depending
 | |
|   // on which combination of High Latencies they depend on.
 | |
| 
 | |
|   for (unsigned SUNum : DAG->TopDownIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     std::set<unsigned> SUColors;
 | |
| 
 | |
|     // Already given.
 | |
|     if (CurrentColoring[SU->NodeNum]) {
 | |
|       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
 | |
|         CurrentColoring[SU->NodeNum];
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|    for (SDep& PredDep : SU->Preds) {
 | |
|       SUnit *Pred = PredDep.getSUnit();
 | |
|       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
 | |
|         SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
 | |
|     }
 | |
|     // Color 0 by default.
 | |
|     if (SUColors.empty())
 | |
|       continue;
 | |
|     // Same color than parents.
 | |
|     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
 | |
|       CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
 | |
|         *SUColors.begin();
 | |
|     else {
 | |
|       std::map<std::set<unsigned>, unsigned>::iterator Pos =
 | |
|         ColorCombinations.find(SUColors);
 | |
|       if (Pos != ColorCombinations.end()) {
 | |
|           CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
 | |
|       } else {
 | |
|         CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
 | |
|           NextNonReservedID;
 | |
|         ColorCombinations[SUColors] = NextNonReservedID++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ColorCombinations.clear();
 | |
| 
 | |
|   // Same as before, but BottomUp.
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     std::set<unsigned> SUColors;
 | |
| 
 | |
|     // Already given.
 | |
|     if (CurrentColoring[SU->NodeNum]) {
 | |
|       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
 | |
|         CurrentColoring[SU->NodeNum];
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (SDep& SuccDep : SU->Succs) {
 | |
|       SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
 | |
|         SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
 | |
|     }
 | |
|     // Keep color 0.
 | |
|     if (SUColors.empty())
 | |
|       continue;
 | |
|     // Same color than parents.
 | |
|     if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
 | |
|       CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
 | |
|         *SUColors.begin();
 | |
|     else {
 | |
|       std::map<std::set<unsigned>, unsigned>::iterator Pos =
 | |
|         ColorCombinations.find(SUColors);
 | |
|       if (Pos != ColorCombinations.end()) {
 | |
|         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
 | |
|       } else {
 | |
|         CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
 | |
|           NextNonReservedID;
 | |
|         ColorCombinations[SUColors] = NextNonReservedID++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
 | |
| 
 | |
|   // Every combination of colors given by the top down
 | |
|   // and bottom up Reserved node dependency
 | |
| 
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &DAG->SUnits[i];
 | |
|     std::pair<unsigned, unsigned> SUColors;
 | |
| 
 | |
|     // High latency instructions: already given.
 | |
|     if (CurrentColoring[SU->NodeNum])
 | |
|       continue;
 | |
| 
 | |
|     SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
 | |
|     SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
 | |
| 
 | |
|     std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
 | |
|       ColorCombinations.find(SUColors);
 | |
|     if (Pos != ColorCombinations.end()) {
 | |
|       CurrentColoring[SU->NodeNum] = Pos->second;
 | |
|     } else {
 | |
|       CurrentColoring[SU->NodeNum] = NextNonReservedID;
 | |
|       ColorCombinations[SUColors] = NextNonReservedID++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   std::vector<int> PendingColoring = CurrentColoring;
 | |
| 
 | |
|   assert(DAGSize >= 1 &&
 | |
|          CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
 | |
|          CurrentTopDownReservedDependencyColoring.size() == DAGSize);
 | |
|   // If there is no reserved block at all, do nothing. We don't want
 | |
|   // everything in one block.
 | |
|   if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
 | |
|                         CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
 | |
|       *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
 | |
|                         CurrentTopDownReservedDependencyColoring.end()) == 0)
 | |
|     return;
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     std::set<unsigned> SUColors;
 | |
|     std::set<unsigned> SUColorsPending;
 | |
| 
 | |
|     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | |
|       continue;
 | |
| 
 | |
|     if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
 | |
|         CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
 | |
|       continue;
 | |
| 
 | |
|     for (SDep& SuccDep : SU->Succs) {
 | |
|       SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
 | |
|           CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
 | |
|         SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | |
|       SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
 | |
|     }
 | |
|     // If there is only one child/parent block, and that block
 | |
|     // is not among the ones we are removing in this path, then
 | |
|     // merge the instruction to that block
 | |
|     if (SUColors.size() == 1 && SUColorsPending.size() == 1)
 | |
|       PendingColoring[SU->NodeNum] = *SUColors.begin();
 | |
|     else // TODO: Attribute new colors depending on color
 | |
|          // combination of children.
 | |
|       PendingColoring[SU->NodeNum] = NextNonReservedID++;
 | |
|   }
 | |
|   CurrentColoring = PendingColoring;
 | |
| }
 | |
| 
 | |
| 
 | |
| void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   unsigned PreviousColor;
 | |
|   std::set<unsigned> SeenColors;
 | |
| 
 | |
|   if (DAGSize <= 1)
 | |
|     return;
 | |
| 
 | |
|   PreviousColor = CurrentColoring[0];
 | |
| 
 | |
|   for (unsigned i = 1, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &DAG->SUnits[i];
 | |
|     unsigned CurrentColor = CurrentColoring[i];
 | |
|     unsigned PreviousColorSave = PreviousColor;
 | |
|     assert(i == SU->NodeNum);
 | |
| 
 | |
|     if (CurrentColor != PreviousColor)
 | |
|       SeenColors.insert(PreviousColor);
 | |
|     PreviousColor = CurrentColor;
 | |
| 
 | |
|     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | |
|       continue;
 | |
| 
 | |
|     if (SeenColors.find(CurrentColor) == SeenColors.end())
 | |
|       continue;
 | |
| 
 | |
|     if (PreviousColorSave != CurrentColor)
 | |
|       CurrentColoring[i] = NextNonReservedID++;
 | |
|     else
 | |
|       CurrentColoring[i] = CurrentColoring[i-1];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     std::set<unsigned> SUColors;
 | |
| 
 | |
|     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | |
|       continue;
 | |
| 
 | |
|     // No predecessor: Vgpr constant loading.
 | |
|     // Low latency instructions usually have a predecessor (the address)
 | |
|     if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
 | |
|       continue;
 | |
| 
 | |
|     for (SDep& SuccDep : SU->Succs) {
 | |
|       SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | |
|     }
 | |
|     if (SUColors.size() == 1)
 | |
|       CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     std::set<unsigned> SUColors;
 | |
| 
 | |
|     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | |
|       continue;
 | |
| 
 | |
|     for (SDep& SuccDep : SU->Succs) {
 | |
|        SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | |
|     }
 | |
|     if (SUColors.size() == 1)
 | |
|       CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     std::set<unsigned> SUColors;
 | |
| 
 | |
|     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | |
|       continue;
 | |
| 
 | |
|     for (SDep& SuccDep : SU->Succs) {
 | |
|        SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | |
|     }
 | |
|     if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
 | |
|       CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   std::map<unsigned, unsigned> ColorCount;
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     unsigned color = CurrentColoring[SU->NodeNum];
 | |
|      ++ColorCount[color];
 | |
|   }
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     unsigned color = CurrentColoring[SU->NodeNum];
 | |
|     std::set<unsigned> SUColors;
 | |
| 
 | |
|     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | |
|       continue;
 | |
| 
 | |
|     if (ColorCount[color] > 1)
 | |
|       continue;
 | |
| 
 | |
|     for (SDep& SuccDep : SU->Succs) {
 | |
|        SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | |
|     }
 | |
|     if (SUColors.size() == 1 && *SUColors.begin() != color) {
 | |
|       --ColorCount[color];
 | |
|       CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | |
|       ++ColorCount[*SUColors.begin()];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::cutHugeBlocks() {
 | |
|   // TODO
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::regroupNoUserInstructions() {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   int GroupID = NextNonReservedID++;
 | |
| 
 | |
|   for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | |
|     SUnit *SU = &DAG->SUnits[SUNum];
 | |
|     bool hasSuccessor = false;
 | |
| 
 | |
|     if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | |
|       continue;
 | |
| 
 | |
|     for (SDep& SuccDep : SU->Succs) {
 | |
|        SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       hasSuccessor = true;
 | |
|     }
 | |
|     if (!hasSuccessor)
 | |
|       CurrentColoring[SU->NodeNum] = GroupID;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::colorExports() {
 | |
|   unsigned ExportColor = NextNonReservedID++;
 | |
|   SmallVector<unsigned, 8> ExpGroup;
 | |
| 
 | |
|   // Put all exports together in a block.
 | |
|   // The block will naturally end up being scheduled last,
 | |
|   // thus putting exports at the end of the schedule, which
 | |
|   // is better for performance.
 | |
|   // However we must ensure, for safety, the exports can be put
 | |
|   // together in the same block without any other instruction.
 | |
|   // This could happen, for example, when scheduling after regalloc
 | |
|   // if reloading a spilled register from memory using the same
 | |
|   // register than used in a previous export.
 | |
|   // If that happens, do not regroup the exports.
 | |
|   for (unsigned SUNum : DAG->TopDownIndex2SU) {
 | |
|     const SUnit &SU = DAG->SUnits[SUNum];
 | |
|     if (SIInstrInfo::isEXP(*SU.getInstr())) {
 | |
|       // Check the EXP can be added to the group safely,
 | |
|       // ie without needing any other instruction.
 | |
|       // The EXP is allowed to depend on other EXP
 | |
|       // (they will be in the same group).
 | |
|       for (unsigned j : ExpGroup) {
 | |
|         bool HasSubGraph;
 | |
|         std::vector<int> SubGraph;
 | |
|         // By construction (topological order), if SU and
 | |
|         // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
 | |
|         // in the parent graph of SU.
 | |
| #ifndef NDEBUG
 | |
|         SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
 | |
|                                                HasSubGraph);
 | |
|         assert(!HasSubGraph);
 | |
| #endif
 | |
|         SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
 | |
|                                                HasSubGraph);
 | |
|         if (!HasSubGraph)
 | |
|           continue; // No dependencies between each other
 | |
| 
 | |
|         // SubGraph contains all the instructions required
 | |
|         // between EXP SUnits[j] and EXP SU.
 | |
|         for (unsigned k : SubGraph) {
 | |
|           if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
 | |
|             // Other instructions than EXP would be required in the group.
 | |
|             // Abort the groupping.
 | |
|             return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       ExpGroup.push_back(SUNum);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The group can be formed. Give the color.
 | |
|   for (unsigned j : ExpGroup)
 | |
|     CurrentColoring[j] = ExportColor;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
 | |
|   unsigned DAGSize = DAG->SUnits.size();
 | |
|   std::map<unsigned,unsigned> RealID;
 | |
| 
 | |
|   CurrentBlocks.clear();
 | |
|   CurrentColoring.clear();
 | |
|   CurrentColoring.resize(DAGSize, 0);
 | |
|   Node2CurrentBlock.clear();
 | |
| 
 | |
|   // Restore links previous scheduling variant has overridden.
 | |
|   DAG->restoreSULinksLeft();
 | |
| 
 | |
|   NextReservedID = 1;
 | |
|   NextNonReservedID = DAGSize + 1;
 | |
| 
 | |
|   DEBUG(dbgs() << "Coloring the graph\n");
 | |
| 
 | |
|   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
 | |
|     colorHighLatenciesGroups();
 | |
|   else
 | |
|     colorHighLatenciesAlone();
 | |
|   colorComputeReservedDependencies();
 | |
|   colorAccordingToReservedDependencies();
 | |
|   colorEndsAccordingToDependencies();
 | |
|   if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
 | |
|     colorForceConsecutiveOrderInGroup();
 | |
|   regroupNoUserInstructions();
 | |
|   colorMergeConstantLoadsNextGroup();
 | |
|   colorMergeIfPossibleNextGroupOnlyForReserved();
 | |
|   colorExports();
 | |
| 
 | |
|   // Put SUs of same color into same block
 | |
|   Node2CurrentBlock.resize(DAGSize, -1);
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &DAG->SUnits[i];
 | |
|     unsigned Color = CurrentColoring[SU->NodeNum];
 | |
|     if (RealID.find(Color) == RealID.end()) {
 | |
|       int ID = CurrentBlocks.size();
 | |
|       BlockPtrs.push_back(llvm::make_unique<SIScheduleBlock>(DAG, this, ID));
 | |
|       CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
 | |
|       RealID[Color] = ID;
 | |
|     }
 | |
|     CurrentBlocks[RealID[Color]]->addUnit(SU);
 | |
|     Node2CurrentBlock[SU->NodeNum] = RealID[Color];
 | |
|   }
 | |
| 
 | |
|   // Build dependencies between blocks.
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SUnit *SU = &DAG->SUnits[i];
 | |
|     int SUID = Node2CurrentBlock[i];
 | |
|      for (SDep& SuccDep : SU->Succs) {
 | |
|        SUnit *Succ = SuccDep.getSUnit();
 | |
|       if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       if (Node2CurrentBlock[Succ->NodeNum] != SUID)
 | |
|         CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
 | |
|                                      SuccDep.isCtrl() ? NoData : Data);
 | |
|     }
 | |
|     for (SDep& PredDep : SU->Preds) {
 | |
|       SUnit *Pred = PredDep.getSUnit();
 | |
|       if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       if (Node2CurrentBlock[Pred->NodeNum] != SUID)
 | |
|         CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Free root and leafs of all blocks to enable scheduling inside them.
 | |
|   for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
 | |
|     SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|     Block->finalizeUnits();
 | |
|   }
 | |
|   DEBUG(
 | |
|     dbgs() << "Blocks created:\n\n";
 | |
|     for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
 | |
|       SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|       Block->printDebug(true);
 | |
|     }
 | |
|   );
 | |
| }
 | |
| 
 | |
| // Two functions taken from Codegen/MachineScheduler.cpp
 | |
| 
 | |
| /// Non-const version.
 | |
| static MachineBasicBlock::iterator
 | |
| nextIfDebug(MachineBasicBlock::iterator I,
 | |
|             MachineBasicBlock::const_iterator End) {
 | |
|   for (; I != End; ++I) {
 | |
|     if (!I->isDebugValue())
 | |
|       break;
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::topologicalSort() {
 | |
|   unsigned DAGSize = CurrentBlocks.size();
 | |
|   std::vector<int> WorkList;
 | |
| 
 | |
|   DEBUG(dbgs() << "Topological Sort\n");
 | |
| 
 | |
|   WorkList.reserve(DAGSize);
 | |
|   TopDownIndex2Block.resize(DAGSize);
 | |
|   TopDownBlock2Index.resize(DAGSize);
 | |
|   BottomUpIndex2Block.resize(DAGSize);
 | |
| 
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|     unsigned Degree = Block->getSuccs().size();
 | |
|     TopDownBlock2Index[i] = Degree;
 | |
|     if (Degree == 0) {
 | |
|       WorkList.push_back(i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int Id = DAGSize;
 | |
|   while (!WorkList.empty()) {
 | |
|     int i = WorkList.back();
 | |
|     SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|     WorkList.pop_back();
 | |
|     TopDownBlock2Index[i] = --Id;
 | |
|     TopDownIndex2Block[Id] = i;
 | |
|     for (SIScheduleBlock* Pred : Block->getPreds()) {
 | |
|       if (!--TopDownBlock2Index[Pred->getID()])
 | |
|         WorkList.push_back(Pred->getID());
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check correctness of the ordering.
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|     for (SIScheduleBlock* Pred : Block->getPreds()) {
 | |
|       assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
 | |
|       "Wrong Top Down topological sorting");
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
 | |
|                                          TopDownIndex2Block.rend());
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::scheduleInsideBlocks() {
 | |
|   unsigned DAGSize = CurrentBlocks.size();
 | |
| 
 | |
|   DEBUG(dbgs() << "\nScheduling Blocks\n\n");
 | |
| 
 | |
|   // We do schedule a valid scheduling such that a Block corresponds
 | |
|   // to a range of instructions.
 | |
|   DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|     Block->fastSchedule();
 | |
|   }
 | |
| 
 | |
|   // Note: the following code, and the part restoring previous position
 | |
|   // is by far the most expensive operation of the Scheduler.
 | |
| 
 | |
|   // Do not update CurrentTop.
 | |
|   MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
 | |
|   std::vector<MachineBasicBlock::iterator> PosOld;
 | |
|   std::vector<MachineBasicBlock::iterator> PosNew;
 | |
|   PosOld.reserve(DAG->SUnits.size());
 | |
|   PosNew.reserve(DAG->SUnits.size());
 | |
| 
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     int BlockIndice = TopDownIndex2Block[i];
 | |
|     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
 | |
|     std::vector<SUnit*> SUs = Block->getScheduledUnits();
 | |
| 
 | |
|     for (SUnit* SU : SUs) {
 | |
|       MachineInstr *MI = SU->getInstr();
 | |
|       MachineBasicBlock::iterator Pos = MI;
 | |
|       PosOld.push_back(Pos);
 | |
|       if (&*CurrentTopFastSched == MI) {
 | |
|         PosNew.push_back(Pos);
 | |
|         CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
 | |
|                                           DAG->getCurrentBottom());
 | |
|       } else {
 | |
|         // Update the instruction stream.
 | |
|         DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
 | |
| 
 | |
|         // Update LiveIntervals.
 | |
|         // Note: Moving all instructions and calling handleMove every time
 | |
|         // is the most cpu intensive operation of the scheduler.
 | |
|         // It would gain a lot if there was a way to recompute the
 | |
|         // LiveIntervals for the entire scheduling region.
 | |
|         DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
 | |
|         PosNew.push_back(CurrentTopFastSched);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we have Block of SUs == Block of MI.
 | |
|   // We do the final schedule for the instructions inside the block.
 | |
|   // The property that all the SUs of the Block are grouped together as MI
 | |
|   // is used for correct reg usage tracking.
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|     std::vector<SUnit*> SUs = Block->getScheduledUnits();
 | |
|     Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Restoring MI Pos\n");
 | |
|   // Restore old ordering (which prevents a LIS->handleMove bug).
 | |
|   for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
 | |
|     MachineBasicBlock::iterator POld = PosOld[i-1];
 | |
|     MachineBasicBlock::iterator PNew = PosNew[i-1];
 | |
|     if (PNew != POld) {
 | |
|       // Update the instruction stream.
 | |
|       DAG->getBB()->splice(POld, DAG->getBB(), PNew);
 | |
| 
 | |
|       // Update LiveIntervals.
 | |
|       DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(
 | |
|     for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
 | |
|       SIScheduleBlock *Block = CurrentBlocks[i];
 | |
|       Block->printDebug(true);
 | |
|     }
 | |
|   );
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockCreator::fillStats() {
 | |
|   unsigned DAGSize = CurrentBlocks.size();
 | |
| 
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     int BlockIndice = TopDownIndex2Block[i];
 | |
|     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
 | |
|     if (Block->getPreds().empty())
 | |
|       Block->Depth = 0;
 | |
|     else {
 | |
|       unsigned Depth = 0;
 | |
|       for (SIScheduleBlock *Pred : Block->getPreds()) {
 | |
|         if (Depth < Pred->Depth + Pred->getCost())
 | |
|           Depth = Pred->Depth + Pred->getCost();
 | |
|       }
 | |
|       Block->Depth = Depth;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | |
|     int BlockIndice = BottomUpIndex2Block[i];
 | |
|     SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
 | |
|     if (Block->getSuccs().empty())
 | |
|       Block->Height = 0;
 | |
|     else {
 | |
|       unsigned Height = 0;
 | |
|       for (const auto &Succ : Block->getSuccs())
 | |
|         Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
 | |
|       Block->Height = Height;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // SIScheduleBlockScheduler //
 | |
| 
 | |
| SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
 | |
|                                                    SISchedulerBlockSchedulerVariant Variant,
 | |
|                                                    SIScheduleBlocks  BlocksStruct) :
 | |
|   DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
 | |
|   LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
 | |
|   SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
 | |
| 
 | |
|   // Fill the usage of every output
 | |
|   // Warning: while by construction we always have a link between two blocks
 | |
|   // when one needs a result from the other, the number of users of an output
 | |
|   // is not the sum of child blocks having as input the same virtual register.
 | |
|   // Here is an example. A produces x and y. B eats x and produces x'.
 | |
|   // C eats x' and y. The register coalescer may have attributed the same
 | |
|   // virtual register to x and x'.
 | |
|   // To count accurately, we do a topological sort. In case the register is
 | |
|   // found for several parents, we increment the usage of the one with the
 | |
|   // highest topological index.
 | |
|   LiveOutRegsNumUsages.resize(Blocks.size());
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     SIScheduleBlock *Block = Blocks[i];
 | |
|     for (unsigned Reg : Block->getInRegs()) {
 | |
|       bool Found = false;
 | |
|       int topoInd = -1;
 | |
|       for (SIScheduleBlock* Pred: Block->getPreds()) {
 | |
|         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
 | |
|         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
 | |
| 
 | |
|         if (RegPos != PredOutRegs.end()) {
 | |
|           Found = true;
 | |
|           if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
 | |
|             topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!Found)
 | |
|         continue;
 | |
| 
 | |
|       int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
 | |
|       ++LiveOutRegsNumUsages[PredID][Reg];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
 | |
|   BlockNumPredsLeft.resize(Blocks.size());
 | |
|   BlockNumSuccsLeft.resize(Blocks.size());
 | |
| 
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     SIScheduleBlock *Block = Blocks[i];
 | |
|     BlockNumPredsLeft[i] = Block->getPreds().size();
 | |
|     BlockNumSuccsLeft[i] = Block->getSuccs().size();
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     SIScheduleBlock *Block = Blocks[i];
 | |
|     assert(Block->getID() == i);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   std::set<unsigned> InRegs = DAG->getInRegs();
 | |
|   addLiveRegs(InRegs);
 | |
| 
 | |
|   // Increase LiveOutRegsNumUsages for blocks
 | |
|   // producing registers consumed in another
 | |
|   // scheduling region.
 | |
|   for (unsigned Reg : DAG->getOutRegs()) {
 | |
|     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|       // Do reverse traversal
 | |
|       int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
 | |
|       SIScheduleBlock *Block = Blocks[ID];
 | |
|       const std::set<unsigned> &OutRegs = Block->getOutRegs();
 | |
| 
 | |
|       if (OutRegs.find(Reg) == OutRegs.end())
 | |
|         continue;
 | |
| 
 | |
|       ++LiveOutRegsNumUsages[ID][Reg];
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fill LiveRegsConsumers for regs that were already
 | |
|   // defined before scheduling.
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     SIScheduleBlock *Block = Blocks[i];
 | |
|     for (unsigned Reg : Block->getInRegs()) {
 | |
|       bool Found = false;
 | |
|       for (SIScheduleBlock* Pred: Block->getPreds()) {
 | |
|         std::set<unsigned> PredOutRegs = Pred->getOutRegs();
 | |
|         std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
 | |
| 
 | |
|         if (RegPos != PredOutRegs.end()) {
 | |
|           Found = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!Found)
 | |
|         ++LiveRegsConsumers[Reg];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | |
|     SIScheduleBlock *Block = Blocks[i];
 | |
|     if (BlockNumPredsLeft[i] == 0) {
 | |
|       ReadyBlocks.push_back(Block);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (SIScheduleBlock *Block = pickBlock()) {
 | |
|     BlocksScheduled.push_back(Block);
 | |
|     blockScheduled(Block);
 | |
|   }
 | |
| 
 | |
|   DEBUG(
 | |
|     dbgs() << "Block Order:";
 | |
|     for (SIScheduleBlock* Block : BlocksScheduled) {
 | |
|       dbgs() << ' ' << Block->getID();
 | |
|     }
 | |
|     dbgs() << '\n';
 | |
|   );
 | |
| }
 | |
| 
 | |
| bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
 | |
|                                                    SIBlockSchedCandidate &TryCand) {
 | |
|   if (!Cand.isValid()) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try to hide high latencies.
 | |
|   if (tryLess(TryCand.LastPosHighLatParentScheduled,
 | |
|               Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
 | |
|     return true;
 | |
|   // Schedule high latencies early so you can hide them better.
 | |
|   if (tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
 | |
|                  TryCand, Cand, Latency))
 | |
|     return true;
 | |
|   if (TryCand.IsHighLatency && tryGreater(TryCand.Height, Cand.Height,
 | |
|                                           TryCand, Cand, Depth))
 | |
|     return true;
 | |
|   if (tryGreater(TryCand.NumHighLatencySuccessors,
 | |
|                  Cand.NumHighLatencySuccessors,
 | |
|                  TryCand, Cand, Successor))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
 | |
|                                                     SIBlockSchedCandidate &TryCand) {
 | |
|   if (!Cand.isValid()) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
 | |
|               TryCand, Cand, RegUsage))
 | |
|     return true;
 | |
|   if (tryGreater(TryCand.NumSuccessors > 0,
 | |
|                  Cand.NumSuccessors > 0,
 | |
|                  TryCand, Cand, Successor))
 | |
|     return true;
 | |
|   if (tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
 | |
|     return true;
 | |
|   if (tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
 | |
|               TryCand, Cand, RegUsage))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
 | |
|   SIBlockSchedCandidate Cand;
 | |
|   std::vector<SIScheduleBlock*>::iterator Best;
 | |
|   SIScheduleBlock *Block;
 | |
|   if (ReadyBlocks.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
 | |
|                         VregCurrentUsage, SregCurrentUsage);
 | |
|   if (VregCurrentUsage > maxVregUsage)
 | |
|     maxVregUsage = VregCurrentUsage;
 | |
|   if (SregCurrentUsage > maxSregUsage)
 | |
|     maxSregUsage = SregCurrentUsage;
 | |
|   DEBUG(
 | |
|     dbgs() << "Picking New Blocks\n";
 | |
|     dbgs() << "Available: ";
 | |
|     for (SIScheduleBlock* Block : ReadyBlocks)
 | |
|       dbgs() << Block->getID() << ' ';
 | |
|     dbgs() << "\nCurrent Live:\n";
 | |
|     for (unsigned Reg : LiveRegs)
 | |
|       dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
 | |
|     dbgs() << '\n';
 | |
|     dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
 | |
|     dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';
 | |
|   );
 | |
| 
 | |
|   Cand.Block = nullptr;
 | |
|   for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
 | |
|        E = ReadyBlocks.end(); I != E; ++I) {
 | |
|     SIBlockSchedCandidate TryCand;
 | |
|     TryCand.Block = *I;
 | |
|     TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
 | |
|     TryCand.VGPRUsageDiff =
 | |
|       checkRegUsageImpact(TryCand.Block->getInRegs(),
 | |
|                           TryCand.Block->getOutRegs())[DAG->getVGPRSetID()];
 | |
|     TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
 | |
|     TryCand.NumHighLatencySuccessors =
 | |
|       TryCand.Block->getNumHighLatencySuccessors();
 | |
|     TryCand.LastPosHighLatParentScheduled =
 | |
|       (unsigned int) std::max<int> (0,
 | |
|          LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
 | |
|            LastPosWaitedHighLatency);
 | |
|     TryCand.Height = TryCand.Block->Height;
 | |
|     // Try not to increase VGPR usage too much, else we may spill.
 | |
|     if (VregCurrentUsage > 120 ||
 | |
|         Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
 | |
|       if (!tryCandidateRegUsage(Cand, TryCand) &&
 | |
|           Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
 | |
|         tryCandidateLatency(Cand, TryCand);
 | |
|     } else {
 | |
|       if (!tryCandidateLatency(Cand, TryCand))
 | |
|         tryCandidateRegUsage(Cand, TryCand);
 | |
|     }
 | |
|     if (TryCand.Reason != NoCand) {
 | |
|       Cand.setBest(TryCand);
 | |
|       Best = I;
 | |
|       DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
 | |
|                    << getReasonStr(Cand.Reason) << '\n');
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(
 | |
|     dbgs() << "Picking: " << Cand.Block->getID() << '\n';
 | |
|     dbgs() << "Is a block with high latency instruction: "
 | |
|       << (Cand.IsHighLatency ? "yes\n" : "no\n");
 | |
|     dbgs() << "Position of last high latency dependency: "
 | |
|            << Cand.LastPosHighLatParentScheduled << '\n';
 | |
|     dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
 | |
|     dbgs() << '\n';
 | |
|   );
 | |
| 
 | |
|   Block = Cand.Block;
 | |
|   ReadyBlocks.erase(Best);
 | |
|   return Block;
 | |
| }
 | |
| 
 | |
| // Tracking of currently alive registers to determine VGPR Usage.
 | |
| 
 | |
| void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
 | |
|   for (unsigned Reg : Regs) {
 | |
|     // For now only track virtual registers.
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     // If not already in the live set, then add it.
 | |
|     (void) LiveRegs.insert(Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
 | |
|                                        std::set<unsigned> &Regs) {
 | |
|   for (unsigned Reg : Regs) {
 | |
|     // For now only track virtual registers.
 | |
|     std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
 | |
|     assert (Pos != LiveRegs.end() && // Reg must be live.
 | |
|                LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
 | |
|                LiveRegsConsumers[Reg] >= 1);
 | |
|     --LiveRegsConsumers[Reg];
 | |
|     if (LiveRegsConsumers[Reg] == 0)
 | |
|       LiveRegs.erase(Pos);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
 | |
|   for (const auto &Block : Parent->getSuccs()) {
 | |
|     if (--BlockNumPredsLeft[Block.first->getID()] == 0)
 | |
|       ReadyBlocks.push_back(Block.first);
 | |
| 
 | |
|     if (Parent->isHighLatencyBlock() &&
 | |
|         Block.second == SIScheduleBlockLinkKind::Data)
 | |
|       LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
 | |
|   decreaseLiveRegs(Block, Block->getInRegs());
 | |
|   addLiveRegs(Block->getOutRegs());
 | |
|   releaseBlockSuccs(Block);
 | |
|   for (std::map<unsigned, unsigned>::iterator RegI =
 | |
|        LiveOutRegsNumUsages[Block->getID()].begin(),
 | |
|        E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
 | |
|     std::pair<unsigned, unsigned> RegP = *RegI;
 | |
|     // We produce this register, thus it must not be previously alive.
 | |
|     assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
 | |
|            LiveRegsConsumers[RegP.first] == 0);
 | |
|     LiveRegsConsumers[RegP.first] += RegP.second;
 | |
|   }
 | |
|   if (LastPosHighLatencyParentScheduled[Block->getID()] >
 | |
|         (unsigned)LastPosWaitedHighLatency)
 | |
|     LastPosWaitedHighLatency =
 | |
|       LastPosHighLatencyParentScheduled[Block->getID()];
 | |
|   ++NumBlockScheduled;
 | |
| }
 | |
| 
 | |
| std::vector<int>
 | |
| SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
 | |
|                                      std::set<unsigned> &OutRegs) {
 | |
|   std::vector<int> DiffSetPressure;
 | |
|   DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
 | |
| 
 | |
|   for (unsigned Reg : InRegs) {
 | |
|     // For now only track virtual registers.
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     if (LiveRegsConsumers[Reg] > 1)
 | |
|       continue;
 | |
|     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
 | |
|     for (; PSetI.isValid(); ++PSetI) {
 | |
|       DiffSetPressure[*PSetI] -= PSetI.getWeight();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned Reg : OutRegs) {
 | |
|     // For now only track virtual registers.
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
 | |
|     for (; PSetI.isValid(); ++PSetI) {
 | |
|       DiffSetPressure[*PSetI] += PSetI.getWeight();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return DiffSetPressure;
 | |
| }
 | |
| 
 | |
| // SIScheduler //
 | |
| 
 | |
| struct SIScheduleBlockResult
 | |
| SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
 | |
|                              SISchedulerBlockSchedulerVariant ScheduleVariant) {
 | |
|   SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
 | |
|   SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
 | |
|   std::vector<SIScheduleBlock*> ScheduledBlocks;
 | |
|   struct SIScheduleBlockResult Res;
 | |
| 
 | |
|   ScheduledBlocks = Scheduler.getBlocks();
 | |
| 
 | |
|   for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
 | |
|     SIScheduleBlock *Block = ScheduledBlocks[b];
 | |
|     std::vector<SUnit*> SUs = Block->getScheduledUnits();
 | |
| 
 | |
|     for (SUnit* SU : SUs)
 | |
|       Res.SUs.push_back(SU->NodeNum);
 | |
|   }
 | |
| 
 | |
|   Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
 | |
|   Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| // SIScheduleDAGMI //
 | |
| 
 | |
| SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
 | |
|   ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)) {
 | |
|   SITII = static_cast<const SIInstrInfo*>(TII);
 | |
|   SITRI = static_cast<const SIRegisterInfo*>(TRI);
 | |
| 
 | |
|   VGPRSetID = SITRI->getVGPRPressureSet();
 | |
|   SGPRSetID = SITRI->getSGPRPressureSet();
 | |
| }
 | |
| 
 | |
| SIScheduleDAGMI::~SIScheduleDAGMI() = default;
 | |
| 
 | |
| // Code adapted from scheduleDAG.cpp
 | |
| // Does a topological sort over the SUs.
 | |
| // Both TopDown and BottomUp
 | |
| void SIScheduleDAGMI::topologicalSort() {
 | |
|   Topo.InitDAGTopologicalSorting();
 | |
| 
 | |
|   TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
 | |
|   BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
 | |
| }
 | |
| 
 | |
| // Move low latencies further from their user without
 | |
| // increasing SGPR usage (in general)
 | |
| // This is to be replaced by a better pass that would
 | |
| // take into account SGPR usage (based on VGPR Usage
 | |
| // and the corresponding wavefront count), that would
 | |
| // try to merge groups of loads if it make sense, etc
 | |
| void SIScheduleDAGMI::moveLowLatencies() {
 | |
|    unsigned DAGSize = SUnits.size();
 | |
|    int LastLowLatencyUser = -1;
 | |
|    int LastLowLatencyPos = -1;
 | |
| 
 | |
|    for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[ScheduledSUnits[i]];
 | |
|     bool IsLowLatencyUser = false;
 | |
|     unsigned MinPos = 0;
 | |
| 
 | |
|     for (SDep& PredDep : SU->Preds) {
 | |
|       SUnit *Pred = PredDep.getSUnit();
 | |
|       if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
 | |
|         IsLowLatencyUser = true;
 | |
|       }
 | |
|       if (Pred->NodeNum >= DAGSize)
 | |
|         continue;
 | |
|       unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
 | |
|       if (PredPos >= MinPos)
 | |
|         MinPos = PredPos + 1;
 | |
|     }
 | |
| 
 | |
|     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
 | |
|       unsigned BestPos = LastLowLatencyUser + 1;
 | |
|       if ((int)BestPos <= LastLowLatencyPos)
 | |
|         BestPos = LastLowLatencyPos + 1;
 | |
|       if (BestPos < MinPos)
 | |
|         BestPos = MinPos;
 | |
|       if (BestPos < i) {
 | |
|         for (unsigned u = i; u > BestPos; --u) {
 | |
|           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
 | |
|           ScheduledSUnits[u] = ScheduledSUnits[u-1];
 | |
|         }
 | |
|         ScheduledSUnits[BestPos] = SU->NodeNum;
 | |
|         ScheduledSUnitsInv[SU->NodeNum] = BestPos;
 | |
|       }
 | |
|       LastLowLatencyPos = BestPos;
 | |
|       if (IsLowLatencyUser)
 | |
|         LastLowLatencyUser = BestPos;
 | |
|     } else if (IsLowLatencyUser) {
 | |
|       LastLowLatencyUser = i;
 | |
|     // Moves COPY instructions on which depends
 | |
|     // the low latency instructions too.
 | |
|     } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
 | |
|       bool CopyForLowLat = false;
 | |
|       for (SDep& SuccDep : SU->Succs) {
 | |
|         SUnit *Succ = SuccDep.getSUnit();
 | |
|         if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
 | |
|           CopyForLowLat = true;
 | |
|         }
 | |
|       }
 | |
|       if (!CopyForLowLat)
 | |
|         continue;
 | |
|       if (MinPos < i) {
 | |
|         for (unsigned u = i; u > MinPos; --u) {
 | |
|           ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
 | |
|           ScheduledSUnits[u] = ScheduledSUnits[u-1];
 | |
|         }
 | |
|         ScheduledSUnits[MinPos] = SU->NodeNum;
 | |
|         ScheduledSUnitsInv[SU->NodeNum] = MinPos;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleDAGMI::restoreSULinksLeft() {
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     SUnits[i].isScheduled = false;
 | |
|     SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
 | |
|     SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
 | |
|     SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
 | |
|     SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the Vgpr and Sgpr usage corresponding to some virtual registers.
 | |
| template<typename _Iterator> void
 | |
| SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
 | |
|                                   unsigned &VgprUsage, unsigned &SgprUsage) {
 | |
|   VgprUsage = 0;
 | |
|   SgprUsage = 0;
 | |
|   for (_Iterator RegI = First; RegI != End; ++RegI) {
 | |
|     unsigned Reg = *RegI;
 | |
|     // For now only track virtual registers
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     PSetIterator PSetI = MRI.getPressureSets(Reg);
 | |
|     for (; PSetI.isValid(); ++PSetI) {
 | |
|       if (*PSetI == VGPRSetID)
 | |
|         VgprUsage += PSetI.getWeight();
 | |
|       else if (*PSetI == SGPRSetID)
 | |
|         SgprUsage += PSetI.getWeight();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SIScheduleDAGMI::schedule()
 | |
| {
 | |
|   SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | |
|   SIScheduleBlockResult Best, Temp;
 | |
|   DEBUG(dbgs() << "Preparing Scheduling\n");
 | |
| 
 | |
|   buildDAGWithRegPressure();
 | |
|   DEBUG(
 | |
|     for(SUnit& SU : SUnits)
 | |
|        SU.dumpAll(this)
 | |
|   );
 | |
| 
 | |
|   topologicalSort();
 | |
|   findRootsAndBiasEdges(TopRoots, BotRoots);
 | |
|   // We reuse several ScheduleDAGMI and ScheduleDAGMILive
 | |
|   // functions, but to make them happy we must initialize
 | |
|   // the default Scheduler implementation (even if we do not
 | |
|   // run it)
 | |
|   SchedImpl->initialize(this);
 | |
|   initQueues(TopRoots, BotRoots);
 | |
| 
 | |
|   // Fill some stats to help scheduling.
 | |
| 
 | |
|   SUnitsLinksBackup = SUnits;
 | |
|   IsLowLatencySU.clear();
 | |
|   LowLatencyOffset.clear();
 | |
|   IsHighLatencySU.clear();
 | |
| 
 | |
|   IsLowLatencySU.resize(SUnits.size(), 0);
 | |
|   LowLatencyOffset.resize(SUnits.size(), 0);
 | |
|   IsHighLatencySU.resize(SUnits.size(), 0);
 | |
| 
 | |
|   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     unsigned BaseLatReg;
 | |
|     int64_t OffLatReg;
 | |
|     if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
 | |
|       IsLowLatencySU[i] = 1;
 | |
|       if (SITII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseLatReg, OffLatReg,
 | |
|                                        TRI))
 | |
|         LowLatencyOffset[i] = OffLatReg;
 | |
|     } else if (SITII->isHighLatencyInstruction(*SU->getInstr()))
 | |
|       IsHighLatencySU[i] = 1;
 | |
|   }
 | |
| 
 | |
|   SIScheduler Scheduler(this);
 | |
|   Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
 | |
|                                    SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
 | |
| 
 | |
|   // if VGPR usage is extremely high, try other good performing variants
 | |
|   // which could lead to lower VGPR usage
 | |
|   if (Best.MaxVGPRUsage > 180) {
 | |
|     static const std::pair<SISchedulerBlockCreatorVariant,
 | |
|                            SISchedulerBlockSchedulerVariant>
 | |
|         Variants[] = {
 | |
|       { LatenciesAlone, BlockRegUsageLatency },
 | |
| //      { LatenciesAlone, BlockRegUsage },
 | |
|       { LatenciesGrouped, BlockLatencyRegUsage },
 | |
| //      { LatenciesGrouped, BlockRegUsageLatency },
 | |
| //      { LatenciesGrouped, BlockRegUsage },
 | |
|       { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
 | |
| //      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
 | |
| //      { LatenciesAlonePlusConsecutive, BlockRegUsage }
 | |
|     };
 | |
|     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
 | |
|       Temp = Scheduler.scheduleVariant(v.first, v.second);
 | |
|       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
 | |
|         Best = Temp;
 | |
|     }
 | |
|   }
 | |
|   // if VGPR usage is still extremely high, we may spill. Try other variants
 | |
|   // which are less performing, but that could lead to lower VGPR usage.
 | |
|   if (Best.MaxVGPRUsage > 200) {
 | |
|     static const std::pair<SISchedulerBlockCreatorVariant,
 | |
|                            SISchedulerBlockSchedulerVariant>
 | |
|         Variants[] = {
 | |
| //      { LatenciesAlone, BlockRegUsageLatency },
 | |
|       { LatenciesAlone, BlockRegUsage },
 | |
| //      { LatenciesGrouped, BlockLatencyRegUsage },
 | |
|       { LatenciesGrouped, BlockRegUsageLatency },
 | |
|       { LatenciesGrouped, BlockRegUsage },
 | |
| //      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
 | |
|       { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
 | |
|       { LatenciesAlonePlusConsecutive, BlockRegUsage }
 | |
|     };
 | |
|     for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
 | |
|       Temp = Scheduler.scheduleVariant(v.first, v.second);
 | |
|       if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
 | |
|         Best = Temp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ScheduledSUnits = Best.SUs;
 | |
|   ScheduledSUnitsInv.resize(SUnits.size());
 | |
| 
 | |
|   for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
 | |
|     ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
 | |
|   }
 | |
| 
 | |
|   moveLowLatencies();
 | |
| 
 | |
|   // Tell the outside world about the result of the scheduling.
 | |
| 
 | |
|   assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
 | |
|   TopRPTracker.setPos(CurrentTop);
 | |
| 
 | |
|   for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
 | |
|        E = ScheduledSUnits.end(); I != E; ++I) {
 | |
|     SUnit *SU = &SUnits[*I];
 | |
| 
 | |
|     scheduleMI(SU, true);
 | |
| 
 | |
|     DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
 | |
|                  << *SU->getInstr());
 | |
|   }
 | |
| 
 | |
|   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | |
| 
 | |
|   placeDebugValues();
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs() << "*** Final schedule for "
 | |
|            << printMBBReference(*begin()->getParent()) << " ***\n";
 | |
|     dumpSchedule();
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| }
 |