You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			551 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			TableGen
		
	
	
	
	
	
			
		
		
	
	
			551 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			TableGen
		
	
	
	
	
	
| //===-- X86InstrFMA.td - FMA Instruction Set ---------------*- tablegen -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file describes FMA (Fused Multiply-Add) instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // FMA3 - Intel 3 operand Fused Multiply-Add instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // For all FMA opcodes declared in fma3p_rm_* and fma3s_rm_* multiclasses
 | |
| // defined below, both the register and memory variants are commutable.
 | |
| // For the register form the commutable operands are 1, 2 and 3.
 | |
| // For the memory variant the folded operand must be in 3. Thus,
 | |
| // in that case, only the operands 1 and 2 can be swapped.
 | |
| // Commuting some of operands may require the opcode change.
 | |
| // FMA*213*:
 | |
| //   operands 1 and 2 (memory & register forms): *213* --> *213*(no changes);
 | |
| //   operands 1 and 3 (register forms only):     *213* --> *231*;
 | |
| //   operands 2 and 3 (register forms only):     *213* --> *132*.
 | |
| // FMA*132*:
 | |
| //   operands 1 and 2 (memory & register forms): *132* --> *231*;
 | |
| //   operands 1 and 3 (register forms only):     *132* --> *132*(no changes);
 | |
| //   operands 2 and 3 (register forms only):     *132* --> *213*.
 | |
| // FMA*231*:
 | |
| //   operands 1 and 2 (memory & register forms): *231* --> *132*;
 | |
| //   operands 1 and 3 (register forms only):     *231* --> *213*;
 | |
| //   operands 2 and 3 (register forms only):     *231* --> *231*(no changes).
 | |
| 
 | |
| multiclass fma3p_rm_213<bits<8> opc, string OpcodeStr, RegisterClass RC,
 | |
|                         ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
 | |
|                         SDNode Op> {
 | |
|   def r     : FMA3<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                    (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                    !strconcat(OpcodeStr,
 | |
|                               "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                    [(set RC:$dst, (VT (Op RC:$src2, RC:$src1, RC:$src3)))]>,
 | |
|                    Sched<[WriteFMA]>;
 | |
| 
 | |
|   let mayLoad = 1 in
 | |
|   def m     : FMA3<opc, MRMSrcMem, (outs RC:$dst),
 | |
|                    (ins RC:$src1, RC:$src2, x86memop:$src3),
 | |
|                    !strconcat(OpcodeStr,
 | |
|                               "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                    [(set RC:$dst, (VT (Op RC:$src2, RC:$src1,
 | |
|                                           (MemFrag addr:$src3))))]>,
 | |
|                    Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| }
 | |
| 
 | |
| multiclass fma3p_rm_231<bits<8> opc, string OpcodeStr, RegisterClass RC,
 | |
|                         ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
 | |
|                         SDNode Op> {
 | |
|   let hasSideEffects = 0 in
 | |
|   def r     : FMA3<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                    (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                    !strconcat(OpcodeStr,
 | |
|                               "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                    []>, Sched<[WriteFMA]>;
 | |
| 
 | |
|   let mayLoad = 1 in
 | |
|   def m     : FMA3<opc, MRMSrcMem, (outs RC:$dst),
 | |
|                    (ins RC:$src1, RC:$src2, x86memop:$src3),
 | |
|                    !strconcat(OpcodeStr,
 | |
|                               "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                    [(set RC:$dst, (VT (Op RC:$src2, (MemFrag addr:$src3),
 | |
|                                           RC:$src1)))]>, Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| }
 | |
| 
 | |
| multiclass fma3p_rm_132<bits<8> opc, string OpcodeStr, RegisterClass RC,
 | |
|                         ValueType VT, X86MemOperand x86memop, PatFrag MemFrag,
 | |
|                         SDNode Op> {
 | |
|   let hasSideEffects = 0 in
 | |
|   def r     : FMA3<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                    (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                    !strconcat(OpcodeStr,
 | |
|                               "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                    []>, Sched<[WriteFMA]>;
 | |
| 
 | |
|   // Pattern is 312 order so that the load is in a different place from the
 | |
|   // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
 | |
|   let mayLoad = 1 in
 | |
|   def m     : FMA3<opc, MRMSrcMem, (outs RC:$dst),
 | |
|                    (ins RC:$src1, RC:$src2, x86memop:$src3),
 | |
|                    !strconcat(OpcodeStr,
 | |
|                               "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                    [(set RC:$dst, (VT (Op (MemFrag addr:$src3), RC:$src1,
 | |
|                                           RC:$src2)))]>, Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| }
 | |
| 
 | |
| let Constraints = "$src1 = $dst", hasSideEffects = 0, isCommutable = 1 in
 | |
| multiclass fma3p_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
 | |
|                        string OpcodeStr, string PackTy, string Suff,
 | |
|                        PatFrag MemFrag128, PatFrag MemFrag256,
 | |
|                        SDNode Op, ValueType OpTy128, ValueType OpTy256> {
 | |
|   defm NAME#213#Suff : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
 | |
|                                     VR128, OpTy128, f128mem, MemFrag128, Op>;
 | |
|   defm NAME#231#Suff : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
 | |
|                                     VR128, OpTy128, f128mem, MemFrag128, Op>;
 | |
|   defm NAME#132#Suff : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
 | |
|                                     VR128, OpTy128, f128mem, MemFrag128, Op>;
 | |
| 
 | |
|   defm NAME#213#Suff#Y : fma3p_rm_213<opc213, !strconcat(OpcodeStr, "213", PackTy),
 | |
|                                       VR256, OpTy256, f256mem, MemFrag256, Op>,
 | |
|                                       VEX_L;
 | |
|   defm NAME#231#Suff#Y : fma3p_rm_231<opc231, !strconcat(OpcodeStr, "231", PackTy),
 | |
|                                       VR256, OpTy256, f256mem, MemFrag256, Op>,
 | |
|                                       VEX_L;
 | |
|   defm NAME#132#Suff#Y : fma3p_rm_132<opc132, !strconcat(OpcodeStr, "132", PackTy),
 | |
|                                       VR256, OpTy256, f256mem, MemFrag256, Op>,
 | |
|                                       VEX_L;
 | |
| }
 | |
| 
 | |
| // Fused Multiply-Add
 | |
| let ExeDomain = SSEPackedSingle in {
 | |
|   defm VFMADD    : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "ps", "PS",
 | |
|                                loadv4f32, loadv8f32, X86Fmadd, v4f32, v8f32>;
 | |
|   defm VFMSUB    : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "ps", "PS",
 | |
|                                loadv4f32, loadv8f32, X86Fmsub, v4f32, v8f32>;
 | |
|   defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "ps", "PS",
 | |
|                                loadv4f32, loadv8f32, X86Fmaddsub, v4f32, v8f32>;
 | |
|   defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "ps", "PS",
 | |
|                                loadv4f32, loadv8f32, X86Fmsubadd, v4f32, v8f32>;
 | |
| }
 | |
| 
 | |
| let ExeDomain = SSEPackedDouble in {
 | |
|   defm VFMADD    : fma3p_forms<0x98, 0xA8, 0xB8, "vfmadd", "pd", "PD",
 | |
|                                loadv2f64, loadv4f64, X86Fmadd, v2f64,
 | |
|                                v4f64>, VEX_W;
 | |
|   defm VFMSUB    : fma3p_forms<0x9A, 0xAA, 0xBA, "vfmsub", "pd", "PD",
 | |
|                                loadv2f64, loadv4f64, X86Fmsub, v2f64,
 | |
|                                v4f64>, VEX_W;
 | |
|   defm VFMADDSUB : fma3p_forms<0x96, 0xA6, 0xB6, "vfmaddsub", "pd", "PD",
 | |
|                                loadv2f64, loadv4f64, X86Fmaddsub,
 | |
|                                v2f64, v4f64>, VEX_W;
 | |
|   defm VFMSUBADD : fma3p_forms<0x97, 0xA7, 0xB7, "vfmsubadd", "pd", "PD",
 | |
|                                loadv2f64, loadv4f64, X86Fmsubadd,
 | |
|                                v2f64, v4f64>, VEX_W;
 | |
| }
 | |
| 
 | |
| // Fused Negative Multiply-Add
 | |
| let ExeDomain = SSEPackedSingle in {
 | |
|   defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "ps", "PS", loadv4f32,
 | |
|                              loadv8f32, X86Fnmadd, v4f32, v8f32>;
 | |
|   defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "ps", "PS", loadv4f32,
 | |
|                              loadv8f32, X86Fnmsub, v4f32, v8f32>;
 | |
| }
 | |
| let ExeDomain = SSEPackedDouble in {
 | |
|   defm VFNMADD : fma3p_forms<0x9C, 0xAC, 0xBC, "vfnmadd", "pd", "PD", loadv2f64,
 | |
|                              loadv4f64, X86Fnmadd, v2f64, v4f64>, VEX_W;
 | |
|   defm VFNMSUB : fma3p_forms<0x9E, 0xAE, 0xBE, "vfnmsub", "pd", "PD", loadv2f64,
 | |
|                              loadv4f64, X86Fnmsub, v2f64, v4f64>, VEX_W;
 | |
| }
 | |
| 
 | |
| // All source register operands of FMA opcodes defined in fma3s_rm multiclass
 | |
| // can be commuted. In many cases such commute transformation requres an opcode
 | |
| // adjustment, for example, commuting the operands 1 and 2 in FMA*132 form
 | |
| // would require an opcode change to FMA*231:
 | |
| //     FMA*132* reg1, reg2, reg3; // reg1 * reg3 + reg2;
 | |
| //     -->
 | |
| //     FMA*231* reg2, reg1, reg3; // reg1 * reg3 + reg2;
 | |
| // Please see more detailed comment at the very beginning of the section
 | |
| // defining FMA3 opcodes above.
 | |
| multiclass fma3s_rm_213<bits<8> opc, string OpcodeStr,
 | |
|                         X86MemOperand x86memop, RegisterClass RC,
 | |
|                         SDPatternOperator OpNode> {
 | |
|   def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                 (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                 !strconcat(OpcodeStr,
 | |
|                            "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                 [(set RC:$dst, (OpNode RC:$src2, RC:$src1, RC:$src3))]>,
 | |
|                 Sched<[WriteFMA]>;
 | |
| 
 | |
|   let mayLoad = 1 in
 | |
|   def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
 | |
|                 (ins RC:$src1, RC:$src2, x86memop:$src3),
 | |
|                 !strconcat(OpcodeStr,
 | |
|                            "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                 [(set RC:$dst,
 | |
|                   (OpNode RC:$src2, RC:$src1, (load addr:$src3)))]>,
 | |
|                 Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| }
 | |
| 
 | |
| multiclass fma3s_rm_231<bits<8> opc, string OpcodeStr,
 | |
|                         X86MemOperand x86memop, RegisterClass RC,
 | |
|                         SDPatternOperator OpNode> {
 | |
|   let hasSideEffects = 0 in
 | |
|   def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                 (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                 !strconcat(OpcodeStr,
 | |
|                            "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                 []>, Sched<[WriteFMA]>;
 | |
| 
 | |
|   let mayLoad = 1 in
 | |
|   def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
 | |
|                 (ins RC:$src1, RC:$src2, x86memop:$src3),
 | |
|                 !strconcat(OpcodeStr,
 | |
|                            "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                 [(set RC:$dst,
 | |
|                   (OpNode RC:$src2, (load addr:$src3), RC:$src1))]>,
 | |
|                 Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| }
 | |
| 
 | |
| multiclass fma3s_rm_132<bits<8> opc, string OpcodeStr,
 | |
|                         X86MemOperand x86memop, RegisterClass RC,
 | |
|                         SDPatternOperator OpNode> {
 | |
|   let hasSideEffects = 0 in
 | |
|   def r : FMA3S<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                 (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                 !strconcat(OpcodeStr,
 | |
|                            "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                 []>, Sched<[WriteFMA]>;
 | |
| 
 | |
|   // Pattern is 312 order so that the load is in a different place from the
 | |
|   // 213 and 231 patterns this helps tablegen's duplicate pattern detection.
 | |
|   let mayLoad = 1 in
 | |
|   def m : FMA3S<opc, MRMSrcMem, (outs RC:$dst),
 | |
|                 (ins RC:$src1, RC:$src2, x86memop:$src3),
 | |
|                 !strconcat(OpcodeStr,
 | |
|                            "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                 [(set RC:$dst,
 | |
|                   (OpNode (load addr:$src3), RC:$src1, RC:$src2))]>,
 | |
|                 Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| }
 | |
| 
 | |
| let Constraints = "$src1 = $dst", isCommutable = 1, hasSideEffects = 0 in
 | |
| multiclass fma3s_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
 | |
|                        string OpStr, string PackTy, string Suff,
 | |
|                        SDNode OpNode, RegisterClass RC,
 | |
|                        X86MemOperand x86memop> {
 | |
|   defm NAME#213#Suff : fma3s_rm_213<opc213, !strconcat(OpStr, "213", PackTy),
 | |
|                                     x86memop, RC, OpNode>;
 | |
|   defm NAME#231#Suff : fma3s_rm_231<opc231, !strconcat(OpStr, "231", PackTy),
 | |
|                                     x86memop, RC, OpNode>;
 | |
|   defm NAME#132#Suff : fma3s_rm_132<opc132, !strconcat(OpStr, "132", PackTy),
 | |
|                                     x86memop, RC, OpNode>;
 | |
| }
 | |
| 
 | |
| // These FMA*_Int instructions are defined specially for being used when
 | |
| // the scalar FMA intrinsics are lowered to machine instructions, and in that
 | |
| // sense, they are similar to existing ADD*_Int, SUB*_Int, MUL*_Int, etc.
 | |
| // instructions.
 | |
| //
 | |
| // All of the FMA*_Int opcodes are defined as commutable here.
 | |
| // Commuting the 2nd and 3rd source register operands of FMAs is quite trivial
 | |
| // and the corresponding optimizations have been developed.
 | |
| // Commuting the 1st operand of FMA*_Int requires some additional analysis,
 | |
| // the commute optimization is legal only if all users of FMA*_Int use only
 | |
| // the lowest element of the FMA*_Int instruction. Even though such analysis
 | |
| // may be not implemented yet we allow the routines doing the actual commute
 | |
| // transformation to decide if one or another instruction is commutable or not.
 | |
| let Constraints = "$src1 = $dst", isCommutable = 1, isCodeGenOnly = 1,
 | |
|     hasSideEffects = 0 in
 | |
| multiclass fma3s_rm_int<bits<8> opc, string OpcodeStr,
 | |
|                         Operand memopr, RegisterClass RC> {
 | |
|   def r_Int : FMA3S_Int<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                         (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                         !strconcat(OpcodeStr,
 | |
|                                    "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                         []>, Sched<[WriteFMA]>;
 | |
| 
 | |
|   let mayLoad = 1 in
 | |
|   def m_Int : FMA3S_Int<opc, MRMSrcMem, (outs RC:$dst),
 | |
|                         (ins RC:$src1, RC:$src2, memopr:$src3),
 | |
|                         !strconcat(OpcodeStr,
 | |
|                                    "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
 | |
|                         []>, Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| }
 | |
| 
 | |
| // The FMA 213 form is created for lowering of scalar FMA intrinscis
 | |
| // to machine instructions.
 | |
| // The FMA 132 form can trivially be get by commuting the 2nd and 3rd operands
 | |
| // of FMA 213 form.
 | |
| // The FMA 231 form can be get only by commuting the 1st operand of 213 or 132
 | |
| // forms and is possible only after special analysis of all uses of the initial
 | |
| // instruction. Such analysis do not exist yet and thus introducing the 231
 | |
| // form of FMA*_Int instructions is done using an optimistic assumption that
 | |
| // such analysis will be implemented eventually.
 | |
| multiclass fma3s_int_forms<bits<8> opc132, bits<8> opc213, bits<8> opc231,
 | |
|                            string OpStr, string PackTy, string Suff,
 | |
|                            RegisterClass RC, Operand memop> {
 | |
|   defm NAME#132#Suff : fma3s_rm_int<opc132, !strconcat(OpStr, "132", PackTy),
 | |
|                                     memop, RC>;
 | |
|   defm NAME#213#Suff : fma3s_rm_int<opc213, !strconcat(OpStr, "213", PackTy),
 | |
|                                     memop, RC>;
 | |
|   defm NAME#231#Suff : fma3s_rm_int<opc231, !strconcat(OpStr, "231", PackTy),
 | |
|                                     memop, RC>;
 | |
| }
 | |
| 
 | |
| multiclass fma3s<bits<8> opc132, bits<8> opc213, bits<8> opc231,
 | |
|                  string OpStr, SDNode OpNodeIntrin, SDNode OpNode> {
 | |
|   let ExeDomain = SSEPackedSingle in
 | |
|   defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "ss", "SS", OpNode,
 | |
|                           FR32, f32mem>,
 | |
|               fma3s_int_forms<opc132, opc213, opc231, OpStr, "ss", "SS",
 | |
|                               VR128, ssmem>;
 | |
| 
 | |
|   let ExeDomain = SSEPackedDouble in
 | |
|   defm NAME : fma3s_forms<opc132, opc213, opc231, OpStr, "sd", "SD", OpNode,
 | |
|                         FR64, f64mem>,
 | |
|               fma3s_int_forms<opc132, opc213, opc231, OpStr, "sd", "SD",
 | |
|                               VR128, sdmem>, VEX_W;
 | |
| 
 | |
|   // These patterns use the 123 ordering, instead of 213, even though
 | |
|   // they match the intrinsic to the 213 version of the instruction.
 | |
|   // This is because src1 is tied to dest, and the scalar intrinsics
 | |
|   // require the pass-through values to come from the first source
 | |
|   // operand, not the second.
 | |
|   let Predicates = [HasFMA, NoAVX512] in {
 | |
|     def : Pat<(v4f32 (OpNodeIntrin VR128:$src1, VR128:$src2, VR128:$src3)),
 | |
|               (!cast<Instruction>(NAME#"213SSr_Int")
 | |
|                VR128:$src1, VR128:$src2, VR128:$src3)>;
 | |
| 
 | |
|     def : Pat<(v2f64 (OpNodeIntrin VR128:$src1, VR128:$src2, VR128:$src3)),
 | |
|               (!cast<Instruction>(NAME#"213SDr_Int")
 | |
|                VR128:$src1, VR128:$src2, VR128:$src3)>;
 | |
| 
 | |
|     def : Pat<(v4f32 (OpNodeIntrin VR128:$src1, VR128:$src2,
 | |
|                                    sse_load_f32:$src3)),
 | |
|               (!cast<Instruction>(NAME#"213SSm_Int")
 | |
|                VR128:$src1, VR128:$src2, sse_load_f32:$src3)>;
 | |
| 
 | |
|     def : Pat<(v2f64 (OpNodeIntrin VR128:$src1, VR128:$src2,
 | |
|                                    sse_load_f64:$src3)),
 | |
|               (!cast<Instruction>(NAME#"213SDm_Int")
 | |
|                VR128:$src1, VR128:$src2, sse_load_f64:$src3)>;
 | |
| 
 | |
|     def : Pat<(v4f32 (OpNodeIntrin VR128:$src1, sse_load_f32:$src3,
 | |
|                                    VR128:$src2)),
 | |
|               (!cast<Instruction>(NAME#"132SSm_Int")
 | |
|                VR128:$src1, VR128:$src2, sse_load_f32:$src3)>;
 | |
| 
 | |
|     def : Pat<(v2f64 (OpNodeIntrin VR128:$src1, sse_load_f64:$src3,
 | |
|                                    VR128:$src2)),
 | |
|               (!cast<Instruction>(NAME#"132SDm_Int")
 | |
|                VR128:$src1, VR128:$src2, sse_load_f64:$src3)>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| defm VFMADD : fma3s<0x99, 0xA9, 0xB9, "vfmadd", X86Fmadds1, X86Fmadd>, VEX_LIG;
 | |
| defm VFMSUB : fma3s<0x9B, 0xAB, 0xBB, "vfmsub", X86Fmsubs1, X86Fmsub>, VEX_LIG;
 | |
| 
 | |
| defm VFNMADD : fma3s<0x9D, 0xAD, 0xBD, "vfnmadd", X86Fnmadds1, X86Fnmadd>,
 | |
|                      VEX_LIG;
 | |
| defm VFNMSUB : fma3s<0x9F, 0xAF, 0xBF, "vfnmsub", X86Fnmsubs1, X86Fnmsub>,
 | |
|                      VEX_LIG;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // FMA4 - AMD 4 operand Fused Multiply-Add instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| multiclass fma4s<bits<8> opc, string OpcodeStr, RegisterClass RC,
 | |
|                  X86MemOperand x86memop, ValueType OpVT, SDNode OpNode,
 | |
|                  PatFrag mem_frag> {
 | |
|   let isCommutable = 1 in
 | |
|   def rr : FMA4S<opc, MRMSrcRegOp4, (outs RC:$dst),
 | |
|            (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set RC:$dst,
 | |
|              (OpVT (OpNode RC:$src1, RC:$src2, RC:$src3)))]>, VEX_W, VEX_LIG,
 | |
|            Sched<[WriteFMA]>;
 | |
|   def rm : FMA4S<opc, MRMSrcMemOp4, (outs RC:$dst),
 | |
|            (ins RC:$src1, RC:$src2, x86memop:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set RC:$dst, (OpNode RC:$src1, RC:$src2,
 | |
|                            (mem_frag addr:$src3)))]>, VEX_W, VEX_LIG,
 | |
|            Sched<[WriteFMALd, ReadAfterLd]>;
 | |
|   def mr : FMA4S<opc, MRMSrcMem, (outs RC:$dst),
 | |
|            (ins RC:$src1, x86memop:$src2, RC:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set RC:$dst,
 | |
|              (OpNode RC:$src1, (mem_frag addr:$src2), RC:$src3))]>, VEX_LIG,
 | |
|            Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| // For disassembler
 | |
| let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
 | |
|   def rr_REV : FMA4S<opc, MRMSrcReg, (outs RC:$dst),
 | |
|                (ins RC:$src1, RC:$src2, RC:$src3),
 | |
|                !strconcat(OpcodeStr,
 | |
|                "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
 | |
|                VEX_LIG, FoldGenData<NAME#rr>, Sched<[WriteFMA]>;
 | |
| }
 | |
| 
 | |
| multiclass fma4s_int<bits<8> opc, string OpcodeStr, Operand memop,
 | |
|                      ValueType VT, ComplexPattern mem_cpat, SDNode OpNode> {
 | |
| let isCodeGenOnly = 1 in {
 | |
|   def rr_Int : FMA4S_Int<opc, MRMSrcRegOp4, (outs VR128:$dst),
 | |
|                (ins VR128:$src1, VR128:$src2, VR128:$src3),
 | |
|                !strconcat(OpcodeStr,
 | |
|                "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|                [(set VR128:$dst,
 | |
|                  (VT (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>, VEX_W,
 | |
|                VEX_LIG, Sched<[WriteFMA]>;
 | |
|   def rm_Int : FMA4S_Int<opc, MRMSrcMemOp4, (outs VR128:$dst),
 | |
|                (ins VR128:$src1, VR128:$src2, memop:$src3),
 | |
|                !strconcat(OpcodeStr,
 | |
|                "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|                [(set VR128:$dst, (VT (OpNode VR128:$src1, VR128:$src2,
 | |
|                                   mem_cpat:$src3)))]>, VEX_W, VEX_LIG,
 | |
|                Sched<[WriteFMALd, ReadAfterLd]>;
 | |
|   def mr_Int : FMA4S_Int<opc, MRMSrcMem, (outs VR128:$dst),
 | |
|                (ins VR128:$src1, memop:$src2, VR128:$src3),
 | |
|                !strconcat(OpcodeStr,
 | |
|                "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|                [(set VR128:$dst,
 | |
|                  (VT (OpNode VR128:$src1, mem_cpat:$src2, VR128:$src3)))]>,
 | |
|                VEX_LIG, Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| let hasSideEffects = 0 in
 | |
|   def rr_Int_REV : FMA4S_Int<opc, MRMSrcReg, (outs VR128:$dst),
 | |
|                (ins VR128:$src1, VR128:$src2, VR128:$src3),
 | |
|                !strconcat(OpcodeStr,
 | |
|                "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|                []>, VEX_LIG, FoldGenData<NAME#rr_Int>, Sched<[WriteFMA]>;
 | |
| } // isCodeGenOnly = 1
 | |
| }
 | |
| 
 | |
| multiclass fma4p<bits<8> opc, string OpcodeStr, SDNode OpNode,
 | |
|                  ValueType OpVT128, ValueType OpVT256,
 | |
|                  PatFrag ld_frag128, PatFrag ld_frag256> {
 | |
|   let isCommutable = 1 in
 | |
|   def rr : FMA4<opc, MRMSrcRegOp4, (outs VR128:$dst),
 | |
|            (ins VR128:$src1, VR128:$src2, VR128:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set VR128:$dst,
 | |
|              (OpVT128 (OpNode VR128:$src1, VR128:$src2, VR128:$src3)))]>,
 | |
|            VEX_W, Sched<[WriteFMA]>;
 | |
|   def rm : FMA4<opc, MRMSrcMemOp4, (outs VR128:$dst),
 | |
|            (ins VR128:$src1, VR128:$src2, f128mem:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set VR128:$dst, (OpNode VR128:$src1, VR128:$src2,
 | |
|                               (ld_frag128 addr:$src3)))]>, VEX_W,
 | |
|            Sched<[WriteFMALd, ReadAfterLd]>;
 | |
|   def mr : FMA4<opc, MRMSrcMem, (outs VR128:$dst),
 | |
|            (ins VR128:$src1, f128mem:$src2, VR128:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set VR128:$dst,
 | |
|              (OpNode VR128:$src1, (ld_frag128 addr:$src2), VR128:$src3))]>,
 | |
|            Sched<[WriteFMALd, ReadAfterLd]>;
 | |
|   let isCommutable = 1 in
 | |
|   def Yrr : FMA4<opc, MRMSrcRegOp4, (outs VR256:$dst),
 | |
|            (ins VR256:$src1, VR256:$src2, VR256:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set VR256:$dst,
 | |
|              (OpVT256 (OpNode VR256:$src1, VR256:$src2, VR256:$src3)))]>,
 | |
|            VEX_W, VEX_L, Sched<[WriteFMA]>;
 | |
|   def Yrm : FMA4<opc, MRMSrcMemOp4, (outs VR256:$dst),
 | |
|            (ins VR256:$src1, VR256:$src2, f256mem:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set VR256:$dst, (OpNode VR256:$src1, VR256:$src2,
 | |
|                               (ld_frag256 addr:$src3)))]>, VEX_W, VEX_L,
 | |
|            Sched<[WriteFMALd, ReadAfterLd]>;
 | |
|   def Ymr : FMA4<opc, MRMSrcMem, (outs VR256:$dst),
 | |
|            (ins VR256:$src1, f256mem:$src2, VR256:$src3),
 | |
|            !strconcat(OpcodeStr,
 | |
|            "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
 | |
|            [(set VR256:$dst, (OpNode VR256:$src1,
 | |
|                               (ld_frag256 addr:$src2), VR256:$src3))]>, VEX_L,
 | |
|            Sched<[WriteFMALd, ReadAfterLd]>;
 | |
| // For disassembler
 | |
| let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
 | |
|   def rr_REV : FMA4<opc, MRMSrcReg, (outs VR128:$dst),
 | |
|                (ins VR128:$src1, VR128:$src2, VR128:$src3),
 | |
|                !strconcat(OpcodeStr,
 | |
|                "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
 | |
|                Sched<[WriteFMA]>, FoldGenData<NAME#rr>;
 | |
|   def Yrr_REV : FMA4<opc, MRMSrcReg, (outs VR256:$dst),
 | |
|                 (ins VR256:$src1, VR256:$src2, VR256:$src3),
 | |
|                 !strconcat(OpcodeStr,
 | |
|                 "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), []>,
 | |
|                 VEX_L, Sched<[WriteFMA]>, FoldGenData<NAME#Yrr>;
 | |
| } // isCodeGenOnly = 1
 | |
| }
 | |
| 
 | |
| let ExeDomain = SSEPackedSingle in {
 | |
|   // Scalar Instructions
 | |
|   defm VFMADDSS4  : fma4s<0x6A, "vfmaddss", FR32, f32mem, f32, X86Fmadd, loadf32>,
 | |
|                     fma4s_int<0x6A, "vfmaddss", ssmem, v4f32, sse_load_f32,
 | |
|                               X86Fmadd4s>;
 | |
|   defm VFMSUBSS4  : fma4s<0x6E, "vfmsubss", FR32, f32mem, f32, X86Fmsub, loadf32>,
 | |
|                     fma4s_int<0x6E, "vfmsubss", ssmem, v4f32, sse_load_f32,
 | |
|                               X86Fmsub4s>;
 | |
|   defm VFNMADDSS4 : fma4s<0x7A, "vfnmaddss", FR32, f32mem, f32,
 | |
|                           X86Fnmadd, loadf32>,
 | |
|                     fma4s_int<0x7A, "vfnmaddss", ssmem, v4f32, sse_load_f32,
 | |
|                               X86Fnmadd4s>;
 | |
|   defm VFNMSUBSS4 : fma4s<0x7E, "vfnmsubss", FR32, f32mem, f32,
 | |
|                           X86Fnmsub, loadf32>,
 | |
|                     fma4s_int<0x7E, "vfnmsubss", ssmem, v4f32, sse_load_f32,
 | |
|                               X86Fnmsub4s>;
 | |
|   // Packed Instructions
 | |
|   defm VFMADDPS4    : fma4p<0x68, "vfmaddps", X86Fmadd, v4f32, v8f32,
 | |
|                             loadv4f32, loadv8f32>;
 | |
|   defm VFMSUBPS4    : fma4p<0x6C, "vfmsubps", X86Fmsub, v4f32, v8f32,
 | |
|                             loadv4f32, loadv8f32>;
 | |
|   defm VFNMADDPS4   : fma4p<0x78, "vfnmaddps", X86Fnmadd, v4f32, v8f32,
 | |
|                             loadv4f32, loadv8f32>;
 | |
|   defm VFNMSUBPS4   : fma4p<0x7C, "vfnmsubps", X86Fnmsub, v4f32, v8f32,
 | |
|                             loadv4f32, loadv8f32>;
 | |
|   defm VFMADDSUBPS4 : fma4p<0x5C, "vfmaddsubps", X86Fmaddsub, v4f32, v8f32,
 | |
|                             loadv4f32, loadv8f32>;
 | |
|   defm VFMSUBADDPS4 : fma4p<0x5E, "vfmsubaddps", X86Fmsubadd, v4f32, v8f32,
 | |
|                             loadv4f32, loadv8f32>;
 | |
| }
 | |
| 
 | |
| let ExeDomain = SSEPackedDouble in {
 | |
|   // Scalar Instructions
 | |
|   defm VFMADDSD4  : fma4s<0x6B, "vfmaddsd", FR64, f64mem, f64, X86Fmadd, loadf64>,
 | |
|                     fma4s_int<0x6B, "vfmaddsd", sdmem, v2f64, sse_load_f64,
 | |
|                               X86Fmadd4s>;
 | |
|   defm VFMSUBSD4  : fma4s<0x6F, "vfmsubsd", FR64, f64mem, f64, X86Fmsub, loadf64>,
 | |
|                     fma4s_int<0x6F, "vfmsubsd", sdmem, v2f64, sse_load_f64,
 | |
|                               X86Fmsub4s>;
 | |
|   defm VFNMADDSD4 : fma4s<0x7B, "vfnmaddsd", FR64, f64mem, f64,
 | |
|                           X86Fnmadd, loadf64>,
 | |
|                     fma4s_int<0x7B, "vfnmaddsd", sdmem, v2f64, sse_load_f64,
 | |
|                               X86Fnmadd4s>;
 | |
|   defm VFNMSUBSD4 : fma4s<0x7F, "vfnmsubsd", FR64, f64mem, f64,
 | |
|                           X86Fnmsub, loadf64>,
 | |
|                     fma4s_int<0x7F, "vfnmsubsd", sdmem, v2f64, sse_load_f64,
 | |
|                               X86Fnmsub4s>;
 | |
|   // Packed Instructions
 | |
|   defm VFMADDPD4    : fma4p<0x69, "vfmaddpd", X86Fmadd, v2f64, v4f64,
 | |
|                             loadv2f64, loadv4f64>;
 | |
|   defm VFMSUBPD4    : fma4p<0x6D, "vfmsubpd", X86Fmsub, v2f64, v4f64,
 | |
|                             loadv2f64, loadv4f64>;
 | |
|   defm VFNMADDPD4   : fma4p<0x79, "vfnmaddpd", X86Fnmadd, v2f64, v4f64,
 | |
|                             loadv2f64, loadv4f64>;
 | |
|   defm VFNMSUBPD4   : fma4p<0x7D, "vfnmsubpd", X86Fnmsub, v2f64, v4f64,
 | |
|                             loadv2f64, loadv4f64>;
 | |
|   defm VFMADDSUBPD4 : fma4p<0x5D, "vfmaddsubpd", X86Fmaddsub, v2f64, v4f64,
 | |
|                             loadv2f64, loadv4f64>;
 | |
|   defm VFMSUBADDPD4 : fma4p<0x5F, "vfmsubaddpd", X86Fmsubadd, v2f64, v4f64,
 | |
|                             loadv2f64, loadv4f64>;
 | |
| }
 | |
| 
 |