You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			903 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			903 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/HexagonMCInstrInfo.h"
 | |
| #include "Hexagon.h"
 | |
| #include "MCTargetDesc/HexagonBaseInfo.h"
 | |
| #include "MCTargetDesc/HexagonMCChecker.h"
 | |
| #include "MCTargetDesc/HexagonMCExpr.h"
 | |
| #include "MCTargetDesc/HexagonMCShuffler.h"
 | |
| #include "MCTargetDesc/HexagonMCTargetDesc.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/MC/MCInstrInfo.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/MC/MCSubtargetInfo.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <limits>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| bool HexagonMCInstrInfo::PredicateInfo::isPredicated() const {
 | |
|   return Register != Hexagon::NoRegister;
 | |
| }
 | |
| 
 | |
| Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
 | |
|                                         MCInst const &Inst)
 | |
|     : MCII(MCII), BundleCurrent(Inst.begin() +
 | |
|                                 HexagonMCInstrInfo::bundleInstructionsOffset),
 | |
|       BundleEnd(Inst.end()), DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
 | |
| 
 | |
| Hexagon::PacketIterator::PacketIterator(MCInstrInfo const &MCII,
 | |
|                                         MCInst const &Inst, std::nullptr_t)
 | |
|     : MCII(MCII), BundleCurrent(Inst.end()), BundleEnd(Inst.end()),
 | |
|       DuplexCurrent(Inst.end()), DuplexEnd(Inst.end()) {}
 | |
| 
 | |
| Hexagon::PacketIterator &Hexagon::PacketIterator::operator++() {
 | |
|   if (DuplexCurrent != DuplexEnd) {
 | |
|     ++DuplexCurrent;
 | |
|     if (DuplexCurrent == DuplexEnd) {
 | |
|       DuplexCurrent = BundleEnd;
 | |
|       DuplexEnd = BundleEnd;
 | |
|       ++BundleCurrent;
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
|   ++BundleCurrent;
 | |
|   if (BundleCurrent != BundleEnd) {
 | |
|     MCInst const &Inst = *BundleCurrent->getInst();
 | |
|     if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
 | |
|       DuplexCurrent = Inst.begin();
 | |
|       DuplexEnd = Inst.end();
 | |
|     }
 | |
|   }
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| MCInst const &Hexagon::PacketIterator::operator*() const {
 | |
|   if (DuplexCurrent != DuplexEnd)
 | |
|     return *DuplexCurrent->getInst();
 | |
|   return *BundleCurrent->getInst();
 | |
| }
 | |
| 
 | |
| bool Hexagon::PacketIterator::operator==(PacketIterator const &Other) const {
 | |
|   return BundleCurrent == Other.BundleCurrent && BundleEnd == Other.BundleEnd &&
 | |
|          DuplexCurrent == Other.DuplexCurrent && DuplexEnd == Other.DuplexEnd;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
 | |
|                                      MCContext &Context) {
 | |
|   MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
 | |
|                                           MCInstrInfo const &MCII, MCInst &MCB,
 | |
|                                           MCInst const &MCI) {
 | |
|   assert(HexagonMCInstrInfo::isBundle(MCB));
 | |
|   MCOperand const &exOp =
 | |
|       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
 | |
| 
 | |
|   // Create the extender.
 | |
|   MCInst *XMCI =
 | |
|       new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
 | |
|   XMCI->setLoc(MCI.getLoc());
 | |
| 
 | |
|   MCB.addOperand(MCOperand::createInst(XMCI));
 | |
| }
 | |
| 
 | |
| iterator_range<Hexagon::PacketIterator>
 | |
| HexagonMCInstrInfo::bundleInstructions(MCInstrInfo const &MCII,
 | |
|                                        MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   return make_range(Hexagon::PacketIterator(MCII, MCI),
 | |
|                     Hexagon::PacketIterator(MCII, MCI, nullptr));
 | |
| }
 | |
| 
 | |
| iterator_range<MCInst::const_iterator>
 | |
| HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
 | |
| }
 | |
| 
 | |
| size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
 | |
|   if (HexagonMCInstrInfo::isBundle(MCI))
 | |
|     return (MCI.size() - bundleInstructionsOffset);
 | |
|   else
 | |
|     return (1);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
 | |
|                                             MCSubtargetInfo const &STI,
 | |
|                                             MCContext &Context, MCInst &MCB,
 | |
|                                             HexagonMCChecker *Check) {
 | |
|   // Check the bundle for errors.
 | |
|   bool CheckOk = Check ? Check->check(false) : true;
 | |
|   if (!CheckOk)
 | |
|     return false;
 | |
|   // Examine the packet and convert pairs of instructions to compound
 | |
|   // instructions when possible.
 | |
|   if (!HexagonDisableCompound)
 | |
|     HexagonMCInstrInfo::tryCompound(MCII, STI, Context, MCB);
 | |
|   HexagonMCShuffle(Context, false, MCII, STI, MCB);
 | |
|   // Examine the packet and convert pairs of instructions to duplex
 | |
|   // instructions when possible.
 | |
|   MCInst InstBundlePreDuplex = MCInst(MCB);
 | |
|   if (STI.getFeatureBits() [Hexagon::FeatureDuplex]) {
 | |
|     SmallVector<DuplexCandidate, 8> possibleDuplexes;
 | |
|     possibleDuplexes =
 | |
|         HexagonMCInstrInfo::getDuplexPossibilties(MCII, STI, MCB);
 | |
|     HexagonMCShuffle(Context, MCII, STI, MCB, possibleDuplexes);
 | |
|   }
 | |
|   // Examines packet and pad the packet, if needed, when an
 | |
|   // end-loop is in the bundle.
 | |
|   HexagonMCInstrInfo::padEndloop(MCB, Context);
 | |
|   // If compounding and duplexing didn't reduce the size below
 | |
|   // 4 or less we have a packet that is too big.
 | |
|   if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
 | |
|     return false;
 | |
|   // Check the bundle for errors.
 | |
|   CheckOk = Check ? Check->check(true) : true;
 | |
|   if (!CheckOk)
 | |
|     return false;
 | |
|   HexagonMCShuffle(Context, true, MCII, STI, MCB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII,
 | |
|                                        MCContext &Context, MCInst &MCI) {
 | |
|   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
 | |
|          HexagonMCInstrInfo::isExtended(MCII, MCI));
 | |
|   MCOperand &exOp =
 | |
|       MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
 | |
|   // If the extended value is a constant, then use it for the extended and
 | |
|   // for the extender instructions, masking off the lower 6 bits and
 | |
|   // including the assumed bits.
 | |
|   int64_t Value;
 | |
|   if (exOp.getExpr()->evaluateAsAbsolute(Value)) {
 | |
|     unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
 | |
|     exOp.setExpr(HexagonMCExpr::create(
 | |
|         MCConstantExpr::create((Value & 0x3f) << Shift, Context), Context));
 | |
|   }
 | |
| }
 | |
| 
 | |
| MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
 | |
|                                           MCInst const &Inst,
 | |
|                                           MCOperand const &MO) {
 | |
|   assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
 | |
|          HexagonMCInstrInfo::isExtended(MCII, Inst));
 | |
| 
 | |
|   MCInst XMI;
 | |
|   XMI.setOpcode(Hexagon::A4_ext);
 | |
|   if (MO.isImm())
 | |
|     XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
 | |
|   else if (MO.isExpr())
 | |
|     XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
 | |
|   else
 | |
|     llvm_unreachable("invalid extendable operand");
 | |
|   return XMI;
 | |
| }
 | |
| 
 | |
| MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
 | |
|                                          MCInst const &inst0,
 | |
|                                          MCInst const &inst1) {
 | |
|   assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
 | |
|   MCInst *duplexInst = new (Context) MCInst;
 | |
|   duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
 | |
| 
 | |
|   MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
 | |
|   MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
 | |
|   duplexInst->addOperand(MCOperand::createInst(SubInst0));
 | |
|   duplexInst->addOperand(MCOperand::createInst(SubInst1));
 | |
|   return duplexInst;
 | |
| }
 | |
| 
 | |
| MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
 | |
|                                                    size_t Index) {
 | |
|   assert(Index <= bundleSize(MCB));
 | |
|   if (Index == 0)
 | |
|     return nullptr;
 | |
|   MCInst const *Inst =
 | |
|       MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
 | |
|   if (isImmext(*Inst))
 | |
|     return Inst;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
 | |
|                                         MCInstrInfo const &MCII, MCInst &MCB,
 | |
|                                         MCInst const &MCI) {
 | |
|   if (isConstExtended(MCII, MCI))
 | |
|     addConstExtender(Context, MCII, MCB, MCI);
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getMemAccessSize(MCInstrInfo const &MCII,
 | |
|       MCInst const &MCI) {
 | |
|   uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   unsigned S = (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
 | |
|   return HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(S));
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getAddrMode(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return static_cast<unsigned>((F >> HexagonII::AddrModePos) &
 | |
|                                HexagonII::AddrModeMask);
 | |
| }
 | |
| 
 | |
| MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
 | |
|                                                MCInst const &MCI) {
 | |
|   return MCII.get(MCI.getOpcode());
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getDuplexRegisterNumbering(unsigned Reg) {
 | |
|   using namespace Hexagon;
 | |
| 
 | |
|   switch (Reg) {
 | |
|   default:
 | |
|     llvm_unreachable("unknown duplex register");
 | |
|   // Rs       Rss
 | |
|   case R0:
 | |
|   case D0:
 | |
|     return 0;
 | |
|   case R1:
 | |
|   case D1:
 | |
|     return 1;
 | |
|   case R2:
 | |
|   case D2:
 | |
|     return 2;
 | |
|   case R3:
 | |
|   case D3:
 | |
|     return 3;
 | |
|   case R4:
 | |
|   case D8:
 | |
|     return 4;
 | |
|   case R5:
 | |
|   case D9:
 | |
|     return 5;
 | |
|   case R6:
 | |
|   case D10:
 | |
|     return 6;
 | |
|   case R7:
 | |
|   case D11:
 | |
|     return 7;
 | |
|   case R16:
 | |
|     return 8;
 | |
|   case R17:
 | |
|     return 9;
 | |
|   case R18:
 | |
|     return 10;
 | |
|   case R19:
 | |
|     return 11;
 | |
|   case R20:
 | |
|     return 12;
 | |
|   case R21:
 | |
|     return 13;
 | |
|   case R22:
 | |
|     return 14;
 | |
|   case R23:
 | |
|     return 15;
 | |
|   }
 | |
| }
 | |
| 
 | |
| MCExpr const &HexagonMCInstrInfo::getExpr(MCExpr const &Expr) {
 | |
|   const auto &HExpr = cast<HexagonMCExpr>(Expr);
 | |
|   assert(HExpr.getExpr());
 | |
|   return *HExpr.getExpr();
 | |
| }
 | |
| 
 | |
| unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
 | |
|                                                    MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
 | |
| }
 | |
| 
 | |
| MCOperand const &
 | |
| HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
 | |
|   MCOperand const &MO = MCI.getOperand(O);
 | |
| 
 | |
|   assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
 | |
|           HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
 | |
|          (MO.isImm() || MO.isExpr()));
 | |
|   return (MO);
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
 | |
|                                                 MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
 | |
|                                            MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
 | |
| }
 | |
| 
 | |
| /// Return the maximum value of an extendable operand.
 | |
| int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   bool S = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
 | |
| 
 | |
|   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
 | |
|          HexagonMCInstrInfo::isExtended(MCII, MCI));
 | |
| 
 | |
|   if (S) // if value is signed
 | |
|     return (1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1)) - 1;
 | |
|   return (1 << HexagonMCInstrInfo::getExtentBits(MCII, MCI)) - 1;
 | |
| }
 | |
| 
 | |
| /// Return the minimum value of an extendable operand.
 | |
| int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   bool S = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
 | |
| 
 | |
|   assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
 | |
|          HexagonMCInstrInfo::isExtended(MCII, MCI));
 | |
| 
 | |
|   if (S) // if value is signed
 | |
|     return -(1 << (HexagonMCInstrInfo::getExtentBits(MCII, MCI) - 1));
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| StringRef HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   return MCII.getName(MCI.getOpcode());
 | |
| }
 | |
| 
 | |
| unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
 | |
|                                                  MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
 | |
| }
 | |
| 
 | |
| MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
 | |
|                                                         MCInst const &MCI) {
 | |
|   if (HexagonMCInstrInfo::hasTmpDst(MCII, MCI)) {
 | |
|     // VTMP doesn't actually exist in the encodings for these 184
 | |
|     // 3 instructions so go ahead and create it here.
 | |
|     static MCOperand MCO = MCOperand::createReg(Hexagon::VTMP);
 | |
|     return (MCO);
 | |
|   } else {
 | |
|     unsigned O = HexagonMCInstrInfo::getNewValueOp(MCII, MCI);
 | |
|     MCOperand const &MCO = MCI.getOperand(O);
 | |
| 
 | |
|     assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
 | |
|             HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
 | |
|            MCO.isReg());
 | |
|     return (MCO);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return the new value or the newly produced value.
 | |
| unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
 | |
|                                                   MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
 | |
| }
 | |
| 
 | |
| MCOperand const &
 | |
| HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
 | |
|                                         MCInst const &MCI) {
 | |
|   unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
 | |
|   MCOperand const &MCO = MCI.getOperand(O);
 | |
| 
 | |
|   assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
 | |
|           HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
 | |
|          MCO.isReg());
 | |
|   return (MCO);
 | |
| }
 | |
| 
 | |
| /// Return the Hexagon ISA class for the insn.
 | |
| unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
 | |
|                                      MCInst const &MCI) {
 | |
|   const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
 | |
|   return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
 | |
| }
 | |
| 
 | |
| /// Return the slots this instruction can execute out of
 | |
| unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
 | |
|                                       MCSubtargetInfo const &STI,
 | |
|                                       MCInst const &MCI) {
 | |
|   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
 | |
|   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
 | |
|   return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
 | |
| }
 | |
| 
 | |
| /// Return the slots this instruction consumes in addition to
 | |
| /// the slot(s) it can execute out of
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::getOtherReservedSlots(MCInstrInfo const &MCII,
 | |
|                                                    MCSubtargetInfo const &STI,
 | |
|                                                    MCInst const &MCI) {
 | |
|   const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
 | |
|   int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
 | |
|   unsigned Slots = 0;
 | |
| 
 | |
|   // FirstStage are slots that this instruction can execute in.
 | |
|   // FirstStage+1 are slots that are also consumed by this instruction.
 | |
|   // For example: vmemu can only execute in slot 0 but also consumes slot 1.
 | |
|   for (unsigned Stage = II[SchedClass].FirstStage + 1;
 | |
|        Stage < II[SchedClass].LastStage; ++Stage) {
 | |
|     unsigned Units = (Stage + HexagonStages)->getUnits();
 | |
|     if (Units > HexagonGetLastSlot())
 | |
|       break;
 | |
|     // fyi: getUnits() will return 0x1, 0x2, 0x4 or 0x8
 | |
|     Slots |= Units;
 | |
|   }
 | |
| 
 | |
|   // if 0 is returned, then no additional slots are consumed by this inst.
 | |
|   return Slots;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   if (!HexagonMCInstrInfo::isBundle(MCI))
 | |
|     return false;
 | |
| 
 | |
|   for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
 | |
|     if (HexagonMCInstrInfo::isDuplex(MCII, *I.getInst()))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
 | |
|   return extenderForIndex(MCB, Index) != nullptr;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
 | |
|   if (!HexagonMCInstrInfo::isBundle(MCI))
 | |
|     return false;
 | |
| 
 | |
|   for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
 | |
|     if (isImmext(*I.getInst()))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return whether the insn produces a value.
 | |
| bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
 | |
|                                      MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
 | |
| }
 | |
| 
 | |
| /// Return whether the insn produces a second value.
 | |
| bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
 | |
| }
 | |
| 
 | |
| MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
 | |
|   assert(isBundle(MCB));
 | |
|   assert(Index < HEXAGON_PACKET_SIZE);
 | |
|   return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
 | |
| }
 | |
| 
 | |
| /// Return where the instruction is an accumulator.
 | |
| bool HexagonMCInstrInfo::isAccumulator(MCInstrInfo const &MCII,
 | |
|                                        MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
 | |
|   auto Result = Hexagon::BUNDLE == MCI.getOpcode();
 | |
|   assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   if (HexagonMCInstrInfo::isExtended(MCII, MCI))
 | |
|     return true;
 | |
|   if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
 | |
|     return false;
 | |
|   MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
 | |
|   if (isa<HexagonMCExpr>(MO.getExpr()) &&
 | |
|       HexagonMCInstrInfo::mustExtend(*MO.getExpr()))
 | |
|     return true;
 | |
|   // Branch insns are handled as necessary by relaxation.
 | |
|   if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
 | |
|       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCJ &&
 | |
|        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
 | |
|       (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ &&
 | |
|        HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
 | |
|     return false;
 | |
|   // Otherwise loop instructions and other CR insts are handled by relaxation
 | |
|   else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
 | |
|            (MCI.getOpcode() != Hexagon::C4_addipc))
 | |
|     return false;
 | |
| 
 | |
|   assert(!MO.isImm());
 | |
|   if (isa<HexagonMCExpr>(MO.getExpr()) &&
 | |
|       HexagonMCInstrInfo::mustNotExtend(*MO.getExpr()))
 | |
|     return false;
 | |
|   int64_t Value;
 | |
|   if (!MO.getExpr()->evaluateAsAbsolute(Value))
 | |
|     return true;
 | |
|   int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
 | |
|   int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
 | |
|   return (MinValue > Value || Value > MaxValue);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   return !HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
 | |
|          !HexagonMCInstrInfo::isPrefix(MCII, MCI);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::CofMax1Pos) & HexagonII::CofMax1Mask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isCofRelax1(MCInstrInfo const &MCII,
 | |
|                                      MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::CofRelax1Pos) & HexagonII::CofRelax1Mask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isCofRelax2(MCInstrInfo const &MCII,
 | |
|                                      MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::CofRelax2Pos) & HexagonII::CofRelax2Mask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   return (getType(MCII, MCI) == HexagonII::TypeCJ);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isCVINew(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::CVINewPos) & HexagonII::CVINewMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
 | |
|   return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
 | |
|           (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isHVX(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t V = getType(MCII, MCI);
 | |
|   return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
 | |
|   return MCI.getOpcode() == Hexagon::A4_ext;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   int64_t Flags = MCI.getOperand(0).getImm();
 | |
|   return (Flags & innerLoopMask) != 0;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
 | |
|   return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
 | |
|   return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
 | |
|           (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
 | |
| }
 | |
| 
 | |
| /// Return whether the insn expects newly produced value.
 | |
| bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
 | |
|                                     MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
 | |
| }
 | |
| 
 | |
| /// Return whether the operand is extendable.
 | |
| bool HexagonMCInstrInfo::isOpExtendable(MCInstrInfo const &MCII,
 | |
|                                         MCInst const &MCI, unsigned short O) {
 | |
|   return (O == HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   int64_t Flags = MCI.getOperand(0).getImm();
 | |
|   return (Flags & outerLoopMask) != 0;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   return HexagonII::TypeEXTENDER == HexagonMCInstrInfo::getType(MCII, MCI);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
 | |
| }
 | |
| 
 | |
| /// Return whether the insn is newly predicated.
 | |
| bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
 | |
|                                          MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
 | |
|                                           MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (
 | |
|       !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
 | |
|   return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
 | |
| }
 | |
| 
 | |
| /// Return whether the insn can be packaged only with A and X-type insns.
 | |
| bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
 | |
| }
 | |
| 
 | |
| /// Return whether the insn can be packaged only with an A-type insn in slot #1.
 | |
| bool HexagonMCInstrInfo::isRestrictSlot1AOK(MCInstrInfo const &MCII,
 | |
|                                             MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::RestrictSlot1AOKPos) &
 | |
|           HexagonII::RestrictSlot1AOKMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isRestrictNoSlot1Store(MCInstrInfo const &MCII,
 | |
|                                                 MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return ((F >> HexagonII::RestrictNoSlot1StorePos) &
 | |
|           HexagonII::RestrictNoSlot1StoreMask);
 | |
| }
 | |
| 
 | |
| /// Return whether the insn is solo, i.e., cannot be in a packet.
 | |
| bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = MCII.get(MCI.getOpcode()).TSFlags;
 | |
|   return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   auto Flags = MCI.getOperand(0).getImm();
 | |
|   return (Flags & memReorderDisabledMask) != 0;
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isSubInstruction(MCInst const &MCI) {
 | |
|   switch (MCI.getOpcode()) {
 | |
|   default:
 | |
|     return false;
 | |
|   case Hexagon::SA1_addi:
 | |
|   case Hexagon::SA1_addrx:
 | |
|   case Hexagon::SA1_addsp:
 | |
|   case Hexagon::SA1_and1:
 | |
|   case Hexagon::SA1_clrf:
 | |
|   case Hexagon::SA1_clrfnew:
 | |
|   case Hexagon::SA1_clrt:
 | |
|   case Hexagon::SA1_clrtnew:
 | |
|   case Hexagon::SA1_cmpeqi:
 | |
|   case Hexagon::SA1_combine0i:
 | |
|   case Hexagon::SA1_combine1i:
 | |
|   case Hexagon::SA1_combine2i:
 | |
|   case Hexagon::SA1_combine3i:
 | |
|   case Hexagon::SA1_combinerz:
 | |
|   case Hexagon::SA1_combinezr:
 | |
|   case Hexagon::SA1_dec:
 | |
|   case Hexagon::SA1_inc:
 | |
|   case Hexagon::SA1_seti:
 | |
|   case Hexagon::SA1_setin1:
 | |
|   case Hexagon::SA1_sxtb:
 | |
|   case Hexagon::SA1_sxth:
 | |
|   case Hexagon::SA1_tfr:
 | |
|   case Hexagon::SA1_zxtb:
 | |
|   case Hexagon::SA1_zxth:
 | |
|   case Hexagon::SL1_loadri_io:
 | |
|   case Hexagon::SL1_loadrub_io:
 | |
|   case Hexagon::SL2_deallocframe:
 | |
|   case Hexagon::SL2_jumpr31:
 | |
|   case Hexagon::SL2_jumpr31_f:
 | |
|   case Hexagon::SL2_jumpr31_fnew:
 | |
|   case Hexagon::SL2_jumpr31_t:
 | |
|   case Hexagon::SL2_jumpr31_tnew:
 | |
|   case Hexagon::SL2_loadrb_io:
 | |
|   case Hexagon::SL2_loadrd_sp:
 | |
|   case Hexagon::SL2_loadrh_io:
 | |
|   case Hexagon::SL2_loadri_sp:
 | |
|   case Hexagon::SL2_loadruh_io:
 | |
|   case Hexagon::SL2_return:
 | |
|   case Hexagon::SL2_return_f:
 | |
|   case Hexagon::SL2_return_fnew:
 | |
|   case Hexagon::SL2_return_t:
 | |
|   case Hexagon::SL2_return_tnew:
 | |
|   case Hexagon::SS1_storeb_io:
 | |
|   case Hexagon::SS1_storew_io:
 | |
|   case Hexagon::SS2_allocframe:
 | |
|   case Hexagon::SS2_storebi0:
 | |
|   case Hexagon::SS2_storebi1:
 | |
|   case Hexagon::SS2_stored_sp:
 | |
|   case Hexagon::SS2_storeh_io:
 | |
|   case Hexagon::SS2_storew_sp:
 | |
|   case Hexagon::SS2_storewi0:
 | |
|   case Hexagon::SS2_storewi1:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
 | |
|       (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
 | |
|   auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
 | |
|                   << 8;
 | |
|   if (MCI.size() <= Index)
 | |
|     return Sentinal;
 | |
|   MCOperand const &MCO = MCI.getOperand(Index);
 | |
|   if (!MCO.isExpr())
 | |
|     return Sentinal;
 | |
|   int64_t Value;
 | |
|   if (!MCO.getExpr()->evaluateAsAbsolute(Value))
 | |
|     return Sentinal;
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setMustExtend(MCExpr const &Expr, bool Val) {
 | |
|   HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
 | |
|   HExpr.setMustExtend(Val);
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::mustExtend(MCExpr const &Expr) {
 | |
|   HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
 | |
|   return HExpr.mustExtend();
 | |
| }
 | |
| void HexagonMCInstrInfo::setMustNotExtend(MCExpr const &Expr, bool Val) {
 | |
|   HexagonMCExpr &HExpr = const_cast<HexagonMCExpr &>(cast<HexagonMCExpr>(Expr));
 | |
|   HExpr.setMustNotExtend(Val);
 | |
| }
 | |
| bool HexagonMCInstrInfo::mustNotExtend(MCExpr const &Expr) {
 | |
|   HexagonMCExpr const &HExpr = cast<HexagonMCExpr>(Expr);
 | |
|   return HExpr.mustNotExtend();
 | |
| }
 | |
| void HexagonMCInstrInfo::setS27_2_reloc(MCExpr const &Expr, bool Val) {
 | |
|   HexagonMCExpr &HExpr =
 | |
|       const_cast<HexagonMCExpr &>(*cast<HexagonMCExpr>(&Expr));
 | |
|   HExpr.setS27_2_reloc(Val);
 | |
| }
 | |
| bool HexagonMCInstrInfo::s27_2_reloc(MCExpr const &Expr) {
 | |
|   HexagonMCExpr const *HExpr = dyn_cast<HexagonMCExpr>(&Expr);
 | |
|   if (!HExpr)
 | |
|     return false;
 | |
|   return HExpr->s27_2_reloc();
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::padEndloop(MCInst &MCB, MCContext &Context) {
 | |
|   MCInst Nop;
 | |
|   Nop.setOpcode(Hexagon::A2_nop);
 | |
|   assert(isBundle(MCB));
 | |
|   while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
 | |
|           (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
 | |
|          ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
 | |
|            (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
 | |
|     MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
 | |
| }
 | |
| 
 | |
| HexagonMCInstrInfo::PredicateInfo
 | |
| HexagonMCInstrInfo::predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   if (!isPredicated(MCII, MCI))
 | |
|     return {0, 0, false};
 | |
|   MCInstrDesc const &Desc = getDesc(MCII, MCI);
 | |
|   for (auto I = Desc.getNumDefs(), N = Desc.getNumOperands(); I != N; ++I)
 | |
|     if (Desc.OpInfo[I].RegClass == Hexagon::PredRegsRegClassID)
 | |
|       return {MCI.getOperand(I).getReg(), I, isPredicatedTrue(MCII, MCI)};
 | |
|   return {0, 0, false};
 | |
| }
 | |
| 
 | |
| bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
 | |
|                                       MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::PrefersSlot3Pos) & HexagonII::PrefersSlot3Mask;
 | |
| }
 | |
| 
 | |
| /// return true if instruction has hasTmpDst attribute.
 | |
| bool HexagonMCInstrInfo::hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI) {
 | |
|   const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
 | |
|   return (F >> HexagonII::HasTmpDstPos) & HexagonII::HasTmpDstMask;
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
 | |
|                                        DuplexCandidate Candidate) {
 | |
|   assert(Candidate.packetIndexI < MCB.size());
 | |
|   assert(Candidate.packetIndexJ < MCB.size());
 | |
|   assert(isBundle(MCB));
 | |
|   MCInst *Duplex =
 | |
|       deriveDuplex(Context, Candidate.iClass,
 | |
|                    *MCB.getOperand(Candidate.packetIndexJ).getInst(),
 | |
|                    *MCB.getOperand(Candidate.packetIndexI).getInst());
 | |
|   assert(Duplex != nullptr);
 | |
|   MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
 | |
|   MCB.erase(MCB.begin() + Candidate.packetIndexJ);
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   MCOperand &Operand = MCI.getOperand(0);
 | |
|   Operand.setImm(Operand.getImm() | innerLoopMask);
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   MCOperand &Operand = MCI.getOperand(0);
 | |
|   Operand.setImm(Operand.getImm() | memReorderDisabledMask);
 | |
|   assert(isMemReorderDisabled(MCI));
 | |
| }
 | |
| 
 | |
| void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
 | |
|   assert(isBundle(MCI));
 | |
|   MCOperand &Operand = MCI.getOperand(0);
 | |
|   Operand.setImm(Operand.getImm() | outerLoopMask);
 | |
| }
 | |
| 
 | |
| unsigned HexagonMCInstrInfo::SubregisterBit(unsigned Consumer,
 | |
|                                             unsigned Producer,
 | |
|                                             unsigned Producer2) {
 | |
|   // If we're a single vector consumer of a double producer, set subreg bit
 | |
|   // based on if we're accessing the lower or upper register component
 | |
|   if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
 | |
|     if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
 | |
|       return (Consumer - Hexagon::V0) & 0x1;
 | |
|   if (Producer2 != Hexagon::NoRegister)
 | |
|     return Consumer == Producer;
 | |
|   return 0;
 | |
| }
 |