You've already forked linux-packaging-mono
acceptance-tests
data
debian
docs
external
Newtonsoft.Json
api-doc-tools
api-snapshot
aspnetwebstack
bdwgc
binary-reference-assemblies
bockbuild
boringssl
cecil
cecil-legacy
corefx
corert
helix-binaries
ikdasm
ikvm
illinker-test-assets
linker
llvm-project
clang
clang-tools-extra
compiler-rt
libcxx
libcxxabi
libunwind
lld
lldb
llvm
bindings
cmake
docs
examples
include
lib
Analysis
AsmParser
BinaryFormat
Bitcode
CodeGen
DebugInfo
Demangle
ExecutionEngine
FuzzMutate
Fuzzer
IR
IRReader
LTO
LineEditor
Linker
MC
Object
ObjectYAML
Option
Passes
ProfileData
Support
TableGen
Target
Testing
ToolDrivers
Transforms
Coroutines
Hello
IPO
InstCombine
Instrumentation
ObjCARC
Scalar
ADCE.cpp
AlignmentFromAssumptions.cpp
BDCE.cpp
CMakeLists.txt
CallSiteSplitting.cpp
ConstantHoisting.cpp
ConstantProp.cpp
CorrelatedValuePropagation.cpp
DCE.cpp
DeadStoreElimination.cpp
DivRemPairs.cpp
EarlyCSE.cpp
FlattenCFGPass.cpp
Float2Int.cpp
GVN.cpp
GVNHoist.cpp
GVNSink.cpp
GuardWidening.cpp
IVUsersPrinter.cpp
IndVarSimplify.cpp
InductiveRangeCheckElimination.cpp
InferAddressSpaces.cpp
JumpThreading.cpp
LICM.cpp
LLVMBuild.txt
LoopAccessAnalysisPrinter.cpp
LoopDataPrefetch.cpp
LoopDeletion.cpp
LoopDistribute.cpp
LoopIdiomRecognize.cpp
LoopInstSimplify.cpp
LoopInterchange.cpp
LoopLoadElimination.cpp
LoopPassManager.cpp
LoopPredication.cpp
LoopRerollPass.cpp
LoopRotation.cpp
LoopSimplifyCFG.cpp
LoopSink.cpp
LoopStrengthReduce.cpp.REMOVED.git-id
LoopUnrollPass.cpp
LoopUnswitch.cpp
LoopVersioningLICM.cpp
LowerAtomic.cpp
LowerExpectIntrinsic.cpp
LowerGuardIntrinsic.cpp
MemCpyOptimizer.cpp
MergeICmps.cpp
MergedLoadStoreMotion.cpp
NaryReassociate.cpp
NewGVN.cpp.REMOVED.git-id
PartiallyInlineLibCalls.cpp
PlaceSafepoints.cpp
Reassociate.cpp
Reg2Mem.cpp
RewriteStatepointsForGC.cpp.REMOVED.git-id
SCCP.cpp
SROA.cpp.REMOVED.git-id
Scalar.cpp
Scalarizer.cpp
SeparateConstOffsetFromGEP.cpp
SimpleLoopUnswitch.cpp
SimplifyCFGPass.cpp
Sink.cpp
SpeculateAroundPHIs.cpp
SpeculativeExecution.cpp
StraightLineStrengthReduce.cpp
StructurizeCFG.cpp
TailRecursionElimination.cpp
Utils
Vectorize
CMakeLists.txt
LLVMBuild.txt
WindowsManifest
XRay
CMakeLists.txt
LLVMBuild.txt
projects
resources
runtimes
scripts
test
tools
unittests
utils
.arcconfig
.clang-format
.clang-tidy
.gitattributes
.gitignore
CMakeLists.txt
CODE_OWNERS.TXT
CREDITS.TXT
LICENSE.TXT
LLVMBuild.txt
README.txt
RELEASE_TESTERS.TXT
configure
llvm.spec.in
openmp
polly
nuget-buildtasks
nunit-lite
roslyn-binaries
rx
xunit-binaries
how-to-bump-roslyn-binaries.md
ikvm-native
llvm
m4
man
mcs
mono
msvc
netcore
po
runtime
samples
scripts
support
tools
COPYING.LIB
LICENSE
Makefile.am
Makefile.in
NEWS
README.md
acinclude.m4
aclocal.m4
autogen.sh
code_of_conduct.md
compile
config.guess
config.h.in
config.rpath
config.sub
configure.REMOVED.git-id
configure.ac.REMOVED.git-id
depcomp
install-sh
ltmain.sh.REMOVED.git-id
missing
mkinstalldirs
mono-uninstalled.pc.in
test-driver
winconfig.h
823 lines
32 KiB
C++
823 lines
32 KiB
C++
//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass identifies expensive constants to hoist and coalesces them to
|
|
// better prepare it for SelectionDAG-based code generation. This works around
|
|
// the limitations of the basic-block-at-a-time approach.
|
|
//
|
|
// First it scans all instructions for integer constants and calculates its
|
|
// cost. If the constant can be folded into the instruction (the cost is
|
|
// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
|
|
// consider it expensive and leave it alone. This is the default behavior and
|
|
// the default implementation of getIntImmCost will always return TCC_Free.
|
|
//
|
|
// If the cost is more than TCC_BASIC, then the integer constant can't be folded
|
|
// into the instruction and it might be beneficial to hoist the constant.
|
|
// Similar constants are coalesced to reduce register pressure and
|
|
// materialization code.
|
|
//
|
|
// When a constant is hoisted, it is also hidden behind a bitcast to force it to
|
|
// be live-out of the basic block. Otherwise the constant would be just
|
|
// duplicated and each basic block would have its own copy in the SelectionDAG.
|
|
// The SelectionDAG recognizes such constants as opaque and doesn't perform
|
|
// certain transformations on them, which would create a new expensive constant.
|
|
//
|
|
// This optimization is only applied to integer constants in instructions and
|
|
// simple (this means not nested) constant cast expressions. For example:
|
|
// %0 = load i64* inttoptr (i64 big_constant to i64*)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/ConstantHoisting.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace consthoist;
|
|
|
|
#define DEBUG_TYPE "consthoist"
|
|
|
|
STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
|
|
STATISTIC(NumConstantsRebased, "Number of constants rebased");
|
|
|
|
static cl::opt<bool> ConstHoistWithBlockFrequency(
|
|
"consthoist-with-block-frequency", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable the use of the block frequency analysis to reduce the "
|
|
"chance to execute const materialization more frequently than "
|
|
"without hoisting."));
|
|
|
|
namespace {
|
|
|
|
/// \brief The constant hoisting pass.
|
|
class ConstantHoistingLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
ConstantHoistingLegacyPass() : FunctionPass(ID) {
|
|
initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &Fn) override;
|
|
|
|
StringRef getPassName() const override { return "Constant Hoisting"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
if (ConstHoistWithBlockFrequency)
|
|
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
}
|
|
|
|
void releaseMemory() override { Impl.releaseMemory(); }
|
|
|
|
private:
|
|
ConstantHoistingPass Impl;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char ConstantHoistingLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
|
|
"Constant Hoisting", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
|
|
"Constant Hoisting", false, false)
|
|
|
|
FunctionPass *llvm::createConstantHoistingPass() {
|
|
return new ConstantHoistingLegacyPass();
|
|
}
|
|
|
|
/// \brief Perform the constant hoisting optimization for the given function.
|
|
bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
|
|
if (skipFunction(Fn))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
|
|
DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
|
|
|
|
bool MadeChange =
|
|
Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
|
|
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
|
|
ConstHoistWithBlockFrequency
|
|
? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
|
|
: nullptr,
|
|
Fn.getEntryBlock());
|
|
|
|
if (MadeChange) {
|
|
DEBUG(dbgs() << "********** Function after Constant Hoisting: "
|
|
<< Fn.getName() << '\n');
|
|
DEBUG(dbgs() << Fn);
|
|
}
|
|
DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// \brief Find the constant materialization insertion point.
|
|
Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
|
|
unsigned Idx) const {
|
|
// If the operand is a cast instruction, then we have to materialize the
|
|
// constant before the cast instruction.
|
|
if (Idx != ~0U) {
|
|
Value *Opnd = Inst->getOperand(Idx);
|
|
if (auto CastInst = dyn_cast<Instruction>(Opnd))
|
|
if (CastInst->isCast())
|
|
return CastInst;
|
|
}
|
|
|
|
// The simple and common case. This also includes constant expressions.
|
|
if (!isa<PHINode>(Inst) && !Inst->isEHPad())
|
|
return Inst;
|
|
|
|
// We can't insert directly before a phi node or an eh pad. Insert before
|
|
// the terminator of the incoming or dominating block.
|
|
assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
|
|
if (Idx != ~0U && isa<PHINode>(Inst))
|
|
return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
|
|
|
|
// This must be an EH pad. Iterate over immediate dominators until we find a
|
|
// non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
|
|
// and terminators.
|
|
auto IDom = DT->getNode(Inst->getParent())->getIDom();
|
|
while (IDom->getBlock()->isEHPad()) {
|
|
assert(Entry != IDom->getBlock() && "eh pad in entry block");
|
|
IDom = IDom->getIDom();
|
|
}
|
|
|
|
return IDom->getBlock()->getTerminator();
|
|
}
|
|
|
|
/// \brief Given \p BBs as input, find another set of BBs which collectively
|
|
/// dominates \p BBs and have the minimal sum of frequencies. Return the BB
|
|
/// set found in \p BBs.
|
|
static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
|
|
BasicBlock *Entry,
|
|
SmallPtrSet<BasicBlock *, 8> &BBs) {
|
|
assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
|
|
// Nodes on the current path to the root.
|
|
SmallPtrSet<BasicBlock *, 8> Path;
|
|
// Candidates includes any block 'BB' in set 'BBs' that is not strictly
|
|
// dominated by any other blocks in set 'BBs', and all nodes in the path
|
|
// in the dominator tree from Entry to 'BB'.
|
|
SmallPtrSet<BasicBlock *, 16> Candidates;
|
|
for (auto BB : BBs) {
|
|
Path.clear();
|
|
// Walk up the dominator tree until Entry or another BB in BBs
|
|
// is reached. Insert the nodes on the way to the Path.
|
|
BasicBlock *Node = BB;
|
|
// The "Path" is a candidate path to be added into Candidates set.
|
|
bool isCandidate = false;
|
|
do {
|
|
Path.insert(Node);
|
|
if (Node == Entry || Candidates.count(Node)) {
|
|
isCandidate = true;
|
|
break;
|
|
}
|
|
assert(DT.getNode(Node)->getIDom() &&
|
|
"Entry doens't dominate current Node");
|
|
Node = DT.getNode(Node)->getIDom()->getBlock();
|
|
} while (!BBs.count(Node));
|
|
|
|
// If isCandidate is false, Node is another Block in BBs dominating
|
|
// current 'BB'. Drop the nodes on the Path.
|
|
if (!isCandidate)
|
|
continue;
|
|
|
|
// Add nodes on the Path into Candidates.
|
|
Candidates.insert(Path.begin(), Path.end());
|
|
}
|
|
|
|
// Sort the nodes in Candidates in top-down order and save the nodes
|
|
// in Orders.
|
|
unsigned Idx = 0;
|
|
SmallVector<BasicBlock *, 16> Orders;
|
|
Orders.push_back(Entry);
|
|
while (Idx != Orders.size()) {
|
|
BasicBlock *Node = Orders[Idx++];
|
|
for (auto ChildDomNode : DT.getNode(Node)->getChildren()) {
|
|
if (Candidates.count(ChildDomNode->getBlock()))
|
|
Orders.push_back(ChildDomNode->getBlock());
|
|
}
|
|
}
|
|
|
|
// Visit Orders in bottom-up order.
|
|
using InsertPtsCostPair =
|
|
std::pair<SmallPtrSet<BasicBlock *, 16>, BlockFrequency>;
|
|
|
|
// InsertPtsMap is a map from a BB to the best insertion points for the
|
|
// subtree of BB (subtree not including the BB itself).
|
|
DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
|
|
InsertPtsMap.reserve(Orders.size() + 1);
|
|
for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
|
|
BasicBlock *Node = *RIt;
|
|
bool NodeInBBs = BBs.count(Node);
|
|
SmallPtrSet<BasicBlock *, 16> &InsertPts = InsertPtsMap[Node].first;
|
|
BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
|
|
|
|
// Return the optimal insert points in BBs.
|
|
if (Node == Entry) {
|
|
BBs.clear();
|
|
if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
|
|
(InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
|
|
BBs.insert(Entry);
|
|
else
|
|
BBs.insert(InsertPts.begin(), InsertPts.end());
|
|
break;
|
|
}
|
|
|
|
BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
|
|
// Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
|
|
// will update its parent's ParentInsertPts and ParentPtsFreq.
|
|
SmallPtrSet<BasicBlock *, 16> &ParentInsertPts = InsertPtsMap[Parent].first;
|
|
BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
|
|
// Choose to insert in Node or in subtree of Node.
|
|
// Don't hoist to EHPad because we may not find a proper place to insert
|
|
// in EHPad.
|
|
// If the total frequency of InsertPts is the same as the frequency of the
|
|
// target Node, and InsertPts contains more than one nodes, choose hoisting
|
|
// to reduce code size.
|
|
if (NodeInBBs ||
|
|
(!Node->isEHPad() &&
|
|
(InsertPtsFreq > BFI.getBlockFreq(Node) ||
|
|
(InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
|
|
ParentInsertPts.insert(Node);
|
|
ParentPtsFreq += BFI.getBlockFreq(Node);
|
|
} else {
|
|
ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
|
|
ParentPtsFreq += InsertPtsFreq;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Find an insertion point that dominates all uses.
|
|
SmallPtrSet<Instruction *, 8> ConstantHoistingPass::findConstantInsertionPoint(
|
|
const ConstantInfo &ConstInfo) const {
|
|
assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
|
|
// Collect all basic blocks.
|
|
SmallPtrSet<BasicBlock *, 8> BBs;
|
|
SmallPtrSet<Instruction *, 8> InsertPts;
|
|
for (auto const &RCI : ConstInfo.RebasedConstants)
|
|
for (auto const &U : RCI.Uses)
|
|
BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
|
|
|
|
if (BBs.count(Entry)) {
|
|
InsertPts.insert(&Entry->front());
|
|
return InsertPts;
|
|
}
|
|
|
|
if (BFI) {
|
|
findBestInsertionSet(*DT, *BFI, Entry, BBs);
|
|
for (auto BB : BBs) {
|
|
BasicBlock::iterator InsertPt = BB->begin();
|
|
for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
|
|
;
|
|
InsertPts.insert(&*InsertPt);
|
|
}
|
|
return InsertPts;
|
|
}
|
|
|
|
while (BBs.size() >= 2) {
|
|
BasicBlock *BB, *BB1, *BB2;
|
|
BB1 = *BBs.begin();
|
|
BB2 = *std::next(BBs.begin());
|
|
BB = DT->findNearestCommonDominator(BB1, BB2);
|
|
if (BB == Entry) {
|
|
InsertPts.insert(&Entry->front());
|
|
return InsertPts;
|
|
}
|
|
BBs.erase(BB1);
|
|
BBs.erase(BB2);
|
|
BBs.insert(BB);
|
|
}
|
|
assert((BBs.size() == 1) && "Expected only one element.");
|
|
Instruction &FirstInst = (*BBs.begin())->front();
|
|
InsertPts.insert(findMatInsertPt(&FirstInst));
|
|
return InsertPts;
|
|
}
|
|
|
|
/// \brief Record constant integer ConstInt for instruction Inst at operand
|
|
/// index Idx.
|
|
///
|
|
/// The operand at index Idx is not necessarily the constant integer itself. It
|
|
/// could also be a cast instruction or a constant expression that uses the
|
|
// constant integer.
|
|
void ConstantHoistingPass::collectConstantCandidates(
|
|
ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
|
|
ConstantInt *ConstInt) {
|
|
unsigned Cost;
|
|
// Ask the target about the cost of materializing the constant for the given
|
|
// instruction and operand index.
|
|
if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
|
|
Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
|
|
ConstInt->getValue(), ConstInt->getType());
|
|
else
|
|
Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
|
|
ConstInt->getType());
|
|
|
|
// Ignore cheap integer constants.
|
|
if (Cost > TargetTransformInfo::TCC_Basic) {
|
|
ConstCandMapType::iterator Itr;
|
|
bool Inserted;
|
|
std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
|
|
if (Inserted) {
|
|
ConstCandVec.push_back(ConstantCandidate(ConstInt));
|
|
Itr->second = ConstCandVec.size() - 1;
|
|
}
|
|
ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
|
|
DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
|
|
dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
|
|
<< " with cost " << Cost << '\n';
|
|
else
|
|
dbgs() << "Collect constant " << *ConstInt << " indirectly from "
|
|
<< *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
|
|
<< Cost << '\n';
|
|
);
|
|
}
|
|
}
|
|
|
|
/// \brief Check the operand for instruction Inst at index Idx.
|
|
void ConstantHoistingPass::collectConstantCandidates(
|
|
ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
|
|
Value *Opnd = Inst->getOperand(Idx);
|
|
|
|
// Visit constant integers.
|
|
if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
|
|
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
|
|
return;
|
|
}
|
|
|
|
// Visit cast instructions that have constant integers.
|
|
if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
|
|
// Only visit cast instructions, which have been skipped. All other
|
|
// instructions should have already been visited.
|
|
if (!CastInst->isCast())
|
|
return;
|
|
|
|
if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
|
|
// Pretend the constant is directly used by the instruction and ignore
|
|
// the cast instruction.
|
|
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Visit constant expressions that have constant integers.
|
|
if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
|
|
// Only visit constant cast expressions.
|
|
if (!ConstExpr->isCast())
|
|
return;
|
|
|
|
if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
|
|
// Pretend the constant is directly used by the instruction and ignore
|
|
// the constant expression.
|
|
collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Scan the instruction for expensive integer constants and record them
|
|
/// in the constant candidate vector.
|
|
void ConstantHoistingPass::collectConstantCandidates(
|
|
ConstCandMapType &ConstCandMap, Instruction *Inst) {
|
|
// Skip all cast instructions. They are visited indirectly later on.
|
|
if (Inst->isCast())
|
|
return;
|
|
|
|
// Scan all operands.
|
|
for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
|
|
// The cost of materializing the constants (defined in
|
|
// `TargetTransformInfo::getIntImmCost`) for instructions which only take
|
|
// constant variables is lower than `TargetTransformInfo::TCC_Basic`. So
|
|
// it's safe for us to collect constant candidates from all IntrinsicInsts.
|
|
if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) {
|
|
collectConstantCandidates(ConstCandMap, Inst, Idx);
|
|
}
|
|
} // end of for all operands
|
|
}
|
|
|
|
/// \brief Collect all integer constants in the function that cannot be folded
|
|
/// into an instruction itself.
|
|
void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
|
|
ConstCandMapType ConstCandMap;
|
|
for (BasicBlock &BB : Fn)
|
|
for (Instruction &Inst : BB)
|
|
collectConstantCandidates(ConstCandMap, &Inst);
|
|
}
|
|
|
|
// This helper function is necessary to deal with values that have different
|
|
// bit widths (APInt Operator- does not like that). If the value cannot be
|
|
// represented in uint64 we return an "empty" APInt. This is then interpreted
|
|
// as the value is not in range.
|
|
static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
|
|
Optional<APInt> Res = None;
|
|
unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
|
|
V1.getBitWidth() : V2.getBitWidth();
|
|
uint64_t LimVal1 = V1.getLimitedValue();
|
|
uint64_t LimVal2 = V2.getLimitedValue();
|
|
|
|
if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
|
|
return Res;
|
|
|
|
uint64_t Diff = LimVal1 - LimVal2;
|
|
return APInt(BW, Diff, true);
|
|
}
|
|
|
|
// From a list of constants, one needs to picked as the base and the other
|
|
// constants will be transformed into an offset from that base constant. The
|
|
// question is which we can pick best? For example, consider these constants
|
|
// and their number of uses:
|
|
//
|
|
// Constants| 2 | 4 | 12 | 42 |
|
|
// NumUses | 3 | 2 | 8 | 7 |
|
|
//
|
|
// Selecting constant 12 because it has the most uses will generate negative
|
|
// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
|
|
// offsets lead to less optimal code generation, then there might be better
|
|
// solutions. Suppose immediates in the range of 0..35 are most optimally
|
|
// supported by the architecture, then selecting constant 2 is most optimal
|
|
// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
|
|
// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
|
|
// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
|
|
// selecting the base constant the range of the offsets is a very important
|
|
// factor too that we take into account here. This algorithm calculates a total
|
|
// costs for selecting a constant as the base and substract the costs if
|
|
// immediates are out of range. It has quadratic complexity, so we call this
|
|
// function only when we're optimising for size and there are less than 100
|
|
// constants, we fall back to the straightforward algorithm otherwise
|
|
// which does not do all the offset calculations.
|
|
unsigned
|
|
ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
|
|
ConstCandVecType::iterator E,
|
|
ConstCandVecType::iterator &MaxCostItr) {
|
|
unsigned NumUses = 0;
|
|
|
|
if(!Entry->getParent()->optForSize() || std::distance(S,E) > 100) {
|
|
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
|
|
NumUses += ConstCand->Uses.size();
|
|
if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
|
|
MaxCostItr = ConstCand;
|
|
}
|
|
return NumUses;
|
|
}
|
|
|
|
DEBUG(dbgs() << "== Maximize constants in range ==\n");
|
|
int MaxCost = -1;
|
|
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
|
|
auto Value = ConstCand->ConstInt->getValue();
|
|
Type *Ty = ConstCand->ConstInt->getType();
|
|
int Cost = 0;
|
|
NumUses += ConstCand->Uses.size();
|
|
DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() << "\n");
|
|
|
|
for (auto User : ConstCand->Uses) {
|
|
unsigned Opcode = User.Inst->getOpcode();
|
|
unsigned OpndIdx = User.OpndIdx;
|
|
Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty);
|
|
DEBUG(dbgs() << "Cost: " << Cost << "\n");
|
|
|
|
for (auto C2 = S; C2 != E; ++C2) {
|
|
Optional<APInt> Diff = calculateOffsetDiff(
|
|
C2->ConstInt->getValue(),
|
|
ConstCand->ConstInt->getValue());
|
|
if (Diff) {
|
|
const int ImmCosts =
|
|
TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
|
|
Cost -= ImmCosts;
|
|
DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
|
|
<< "has penalty: " << ImmCosts << "\n"
|
|
<< "Adjusted cost: " << Cost << "\n");
|
|
}
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
|
|
if (Cost > MaxCost) {
|
|
MaxCost = Cost;
|
|
MaxCostItr = ConstCand;
|
|
DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
|
|
<< "\n");
|
|
}
|
|
}
|
|
return NumUses;
|
|
}
|
|
|
|
/// \brief Find the base constant within the given range and rebase all other
|
|
/// constants with respect to the base constant.
|
|
void ConstantHoistingPass::findAndMakeBaseConstant(
|
|
ConstCandVecType::iterator S, ConstCandVecType::iterator E) {
|
|
auto MaxCostItr = S;
|
|
unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
|
|
|
|
// Don't hoist constants that have only one use.
|
|
if (NumUses <= 1)
|
|
return;
|
|
|
|
ConstantInfo ConstInfo;
|
|
ConstInfo.BaseConstant = MaxCostItr->ConstInt;
|
|
Type *Ty = ConstInfo.BaseConstant->getType();
|
|
|
|
// Rebase the constants with respect to the base constant.
|
|
for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
|
|
APInt Diff = ConstCand->ConstInt->getValue() -
|
|
ConstInfo.BaseConstant->getValue();
|
|
Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
|
|
ConstInfo.RebasedConstants.push_back(
|
|
RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
|
|
}
|
|
ConstantVec.push_back(std::move(ConstInfo));
|
|
}
|
|
|
|
/// \brief Finds and combines constant candidates that can be easily
|
|
/// rematerialized with an add from a common base constant.
|
|
void ConstantHoistingPass::findBaseConstants() {
|
|
// Sort the constants by value and type. This invalidates the mapping!
|
|
std::sort(ConstCandVec.begin(), ConstCandVec.end(),
|
|
[](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
|
|
if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
|
|
return LHS.ConstInt->getType()->getBitWidth() <
|
|
RHS.ConstInt->getType()->getBitWidth();
|
|
return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
|
|
});
|
|
|
|
// Simple linear scan through the sorted constant candidate vector for viable
|
|
// merge candidates.
|
|
auto MinValItr = ConstCandVec.begin();
|
|
for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
|
|
CC != E; ++CC) {
|
|
if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
|
|
// Check if the constant is in range of an add with immediate.
|
|
APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
|
|
if ((Diff.getBitWidth() <= 64) &&
|
|
TTI->isLegalAddImmediate(Diff.getSExtValue()))
|
|
continue;
|
|
}
|
|
// We either have now a different constant type or the constant is not in
|
|
// range of an add with immediate anymore.
|
|
findAndMakeBaseConstant(MinValItr, CC);
|
|
// Start a new base constant search.
|
|
MinValItr = CC;
|
|
}
|
|
// Finalize the last base constant search.
|
|
findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
|
|
}
|
|
|
|
/// \brief Updates the operand at Idx in instruction Inst with the result of
|
|
/// instruction Mat. If the instruction is a PHI node then special
|
|
/// handling for duplicate values form the same incoming basic block is
|
|
/// required.
|
|
/// \return The update will always succeed, but the return value indicated if
|
|
/// Mat was used for the update or not.
|
|
static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
|
|
if (auto PHI = dyn_cast<PHINode>(Inst)) {
|
|
// Check if any previous operand of the PHI node has the same incoming basic
|
|
// block. This is a very odd case that happens when the incoming basic block
|
|
// has a switch statement. In this case use the same value as the previous
|
|
// operand(s), otherwise we will fail verification due to different values.
|
|
// The values are actually the same, but the variable names are different
|
|
// and the verifier doesn't like that.
|
|
BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
|
|
for (unsigned i = 0; i < Idx; ++i) {
|
|
if (PHI->getIncomingBlock(i) == IncomingBB) {
|
|
Value *IncomingVal = PHI->getIncomingValue(i);
|
|
Inst->setOperand(Idx, IncomingVal);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
Inst->setOperand(Idx, Mat);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Emit materialization code for all rebased constants and update their
|
|
/// users.
|
|
void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
|
|
Constant *Offset,
|
|
const ConstantUser &ConstUser) {
|
|
Instruction *Mat = Base;
|
|
if (Offset) {
|
|
Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
|
|
ConstUser.OpndIdx);
|
|
Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
|
|
"const_mat", InsertionPt);
|
|
|
|
DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
|
|
<< " + " << *Offset << ") in BB "
|
|
<< Mat->getParent()->getName() << '\n' << *Mat << '\n');
|
|
Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
|
|
}
|
|
Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
|
|
|
|
// Visit constant integer.
|
|
if (isa<ConstantInt>(Opnd)) {
|
|
DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
|
|
if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
|
|
Mat->eraseFromParent();
|
|
DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
|
|
return;
|
|
}
|
|
|
|
// Visit cast instruction.
|
|
if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
|
|
assert(CastInst->isCast() && "Expected an cast instruction!");
|
|
// Check if we already have visited this cast instruction before to avoid
|
|
// unnecessary cloning.
|
|
Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
|
|
if (!ClonedCastInst) {
|
|
ClonedCastInst = CastInst->clone();
|
|
ClonedCastInst->setOperand(0, Mat);
|
|
ClonedCastInst->insertAfter(CastInst);
|
|
// Use the same debug location as the original cast instruction.
|
|
ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
|
|
DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
|
|
<< "To : " << *ClonedCastInst << '\n');
|
|
}
|
|
|
|
DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
|
|
updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
|
|
DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
|
|
return;
|
|
}
|
|
|
|
// Visit constant expression.
|
|
if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
|
|
Instruction *ConstExprInst = ConstExpr->getAsInstruction();
|
|
ConstExprInst->setOperand(0, Mat);
|
|
ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
|
|
ConstUser.OpndIdx));
|
|
|
|
// Use the same debug location as the instruction we are about to update.
|
|
ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
|
|
|
|
DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
|
|
<< "From : " << *ConstExpr << '\n');
|
|
DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
|
|
if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
|
|
ConstExprInst->eraseFromParent();
|
|
if (Offset)
|
|
Mat->eraseFromParent();
|
|
}
|
|
DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// \brief Hoist and hide the base constant behind a bitcast and emit
|
|
/// materialization code for derived constants.
|
|
bool ConstantHoistingPass::emitBaseConstants() {
|
|
bool MadeChange = false;
|
|
for (auto const &ConstInfo : ConstantVec) {
|
|
// Hoist and hide the base constant behind a bitcast.
|
|
SmallPtrSet<Instruction *, 8> IPSet = findConstantInsertionPoint(ConstInfo);
|
|
assert(!IPSet.empty() && "IPSet is empty");
|
|
|
|
unsigned UsesNum = 0;
|
|
unsigned ReBasesNum = 0;
|
|
for (Instruction *IP : IPSet) {
|
|
IntegerType *Ty = ConstInfo.BaseConstant->getType();
|
|
Instruction *Base =
|
|
new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
|
|
|
|
Base->setDebugLoc(IP->getDebugLoc());
|
|
|
|
DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant
|
|
<< ") to BB " << IP->getParent()->getName() << '\n'
|
|
<< *Base << '\n');
|
|
|
|
// Emit materialization code for all rebased constants.
|
|
unsigned Uses = 0;
|
|
for (auto const &RCI : ConstInfo.RebasedConstants) {
|
|
for (auto const &U : RCI.Uses) {
|
|
Uses++;
|
|
BasicBlock *OrigMatInsertBB =
|
|
findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
|
|
// If Base constant is to be inserted in multiple places,
|
|
// generate rebase for U using the Base dominating U.
|
|
if (IPSet.size() == 1 ||
|
|
DT->dominates(Base->getParent(), OrigMatInsertBB)) {
|
|
emitBaseConstants(Base, RCI.Offset, U);
|
|
ReBasesNum++;
|
|
}
|
|
|
|
Base->setDebugLoc(DILocation::getMergedLocation(Base->getDebugLoc(), U.Inst->getDebugLoc()));
|
|
}
|
|
}
|
|
UsesNum = Uses;
|
|
|
|
// Use the same debug location as the last user of the constant.
|
|
assert(!Base->use_empty() && "The use list is empty!?");
|
|
assert(isa<Instruction>(Base->user_back()) &&
|
|
"All uses should be instructions.");
|
|
}
|
|
(void)UsesNum;
|
|
(void)ReBasesNum;
|
|
// Expect all uses are rebased after rebase is done.
|
|
assert(UsesNum == ReBasesNum && "Not all uses are rebased");
|
|
|
|
NumConstantsHoisted++;
|
|
|
|
// Base constant is also included in ConstInfo.RebasedConstants, so
|
|
// deduct 1 from ConstInfo.RebasedConstants.size().
|
|
NumConstantsRebased = ConstInfo.RebasedConstants.size() - 1;
|
|
|
|
MadeChange = true;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
/// \brief Check all cast instructions we made a copy of and remove them if they
|
|
/// have no more users.
|
|
void ConstantHoistingPass::deleteDeadCastInst() const {
|
|
for (auto const &I : ClonedCastMap)
|
|
if (I.first->use_empty())
|
|
I.first->eraseFromParent();
|
|
}
|
|
|
|
/// \brief Optimize expensive integer constants in the given function.
|
|
bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
|
|
DominatorTree &DT, BlockFrequencyInfo *BFI,
|
|
BasicBlock &Entry) {
|
|
this->TTI = &TTI;
|
|
this->DT = &DT;
|
|
this->BFI = BFI;
|
|
this->Entry = &Entry;
|
|
// Collect all constant candidates.
|
|
collectConstantCandidates(Fn);
|
|
|
|
// There are no constant candidates to worry about.
|
|
if (ConstCandVec.empty())
|
|
return false;
|
|
|
|
// Combine constants that can be easily materialized with an add from a common
|
|
// base constant.
|
|
findBaseConstants();
|
|
|
|
// There are no constants to emit.
|
|
if (ConstantVec.empty())
|
|
return false;
|
|
|
|
// Finally hoist the base constant and emit materialization code for dependent
|
|
// constants.
|
|
bool MadeChange = emitBaseConstants();
|
|
|
|
// Cleanup dead instructions.
|
|
deleteDeadCastInst();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
PreservedAnalyses ConstantHoistingPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
auto BFI = ConstHoistWithBlockFrequency
|
|
? &AM.getResult<BlockFrequencyAnalysis>(F)
|
|
: nullptr;
|
|
if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock()))
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|