Files
linux-packaging-mono/mcs/class/referencesource/System/InternalApis/NDP_FX/inc/ZLibNative.cs
Xamarin Public Jenkins (auto-signing) e79aa3c0ed Imported Upstream version 4.6.0.125
Former-commit-id: a2155e9bd80020e49e72e86c44da02a8ac0e57a4
2016-08-03 10:59:49 +00:00

814 lines
34 KiB
C#
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//------------------------------------------------------------------------------
// <copyright file="ZLibNative.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// <owner>gpaperin</owner>
//------------------------------------------------------------------------------
using System.Text;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
using Microsoft.Win32.SafeHandles;
using System.Security.Permissions;
using System.Diagnostics.Contracts;
using System.Security;
namespace System.IO.Compression {
/// <summary>
/// This class provides declaration for constants and PInvokes as well as some basic tools for exposing the
/// native CLRCompression.dll (effectively, ZLib) library to managed code.
///
/// This file can be included into any managed project that needs to reference CLRCompression.dll.
/// Thus, it is located together with the CLRCompression build files that produce the unmanaged CLRCompression.dll
///
/// ** How to refer to this file from your build project: **
///
/// - The master copy of this file is located under
/// ndp\fx\src\CLRCompression\System\IO\Compression\ZLibNative.cs .
/// (together with all native CLRCompression sources which are under ndp\fx\src\CLRCompression\zlib-1.2.3\)
///
/// - The CLRCompression assembly build project for will publish this file to
/// <binaries>\<build_flavour>\InterAPIsCandidates\NDP_FX\inc\ .
/// Projects within the NDP_FX partition can consume this file from there.
///
/// - After every change, this file must also be published to
/// InternalApis\NDP_FX\inc\ .
/// Projects outside NDP_FX can consume this files from that location.
///
/// In either case, the msbuild variable $(NDP_FXIncPath) should include the one of the above directories that
/// is appropriate for the project.
///
/// Projects outside the FX partition can declare a dependency on NDP_FX in their
/// partition.settings.targets, which will cause the right path to be automatically added to their include path list.
///
/// Projects inside FX can also use $(InterAPIsCandidatesPath)\inc\ instead of $(NDP_FXIncPath) if the latter is broken.
///
/// If some additional ZLib functionality needs to be exposed in future, there are (at least) 3 files that need
/// to be updated:
/// 1) clrcompression.def : To list the DLL entry points.
/// 2) clrcompression.nativeproj : To list all the required ZLib source files
/// (sources that are not required for the currently exposed functionality are commented out).
/// 3) This file (ZLibNative.cs) : To include PInvoke declarations / delegates for all necessary routines.
///
///
/// See also: How to choose a compression level (in comments to <code>CompressionLevel</code>.
/// </summary>
internal static class ZLibNative {
#region File name constants
public const string ZLibNativeDllName = "clrcompression.dll";
private const string Kernel32DllName = "kernel32.dll";
#endregion // File name constants
#region Constants defined in zlib.h
public const string ZLibVersion = "1.2.3";
// This is the NULL pointer for using with ZLib pointers;
// we prefer it to IntPtr.Zero to mimic the definition of Z_NULL in zlib.h:
internal static readonly IntPtr ZNullPtr = (IntPtr) ((Int32) 0);
public enum FlushCode : int {
NoFlush = 0,
PartialFlush = 1,
SyncFlush = 2,
FullFlush = 3,
Finish = 4,
Block = 5,
//Trees = 6 // Only in ZLib 1.2.4 and later
}
public enum ErrorCode : int {
Ok = 0,
StreamEnd = 1,
NeedDictionary = 2,
ErrorNo = -1,
StreamError = -2,
DataError = -3,
MemError = -4,
BufError = -5,
VersionError = -6
}
/// <summary>
/// <p>ZLib can accept any integer value between 0 and 9 (inclusive) as a valid compression level parameter:
/// 1 gives best speed, 9 gives best compression, 0 gives no compression at all (the input data is simply copied a block at a time).
/// <code>CompressionLevel.DefaultCompression</code> = -1 requests a default compromise between speed and compression
/// (currently equivalent to level 6).</p>
///
/// <p><strong>How to choose a compression level:</strong></p>
///
/// <p>The names <code>NoCompression</code>, <code>BestSpeed</code>, <code>BestCompression</code> are taken over from the corresponding
/// ZLib definitions. However, extensive compression performance tests on real data show that they do not describe the reality well.
/// We have run a large number of tests on different data sets including binary data, English language text, JPEG images and source code.
/// The results show:</p>
/// <ul>
/// <li><code>CompressionStrategy.DefaultStrategy</code> is the best strategy in most scenarios.</li>
/// <li><code>CompressionLevel</code> values over 6 do not significantly improve the compression rate,
/// however such values require additional compression time.</li>
/// <li>Thus it is not recommended to use a compression level higher than 6, including the
/// value <code>CompressionLevel.BestCompression</code>.</li>
/// <li>The optimal compression performance (time/rate ratio) tends to occur at compression level 6
/// (<code>CompressionLevel.DefaultCompression</code>).</li>
/// <li>In scenarios where runtime performance takes precedence over compression rate, smaller compression level values
/// can be considered.</li>
/// </ul>
/// <p>We recommend using one of the three following combinations:<br />
/// (See also the constants <code>Deflate_DefaultWindowBits</code> and <code>Deflate_DefaultMemLevel</code> below.)</p>
///
/// <p><em>Optimal Compression:</em></p>
/// <p><code>ZLibNative.CompressionLevel compressionLevel = (ZLibNative.CompressionLevel) 6;</code> <br />
/// <code>Int32 windowBits = 15; // or -15 if no headers required</code> <br />
/// <code>Int32 memLevel = 8;</code> <br />
/// <code>ZLibNative.CompressionStrategy strategy = ZLibNative.CompressionStrategy.DefaultStrategy;</code> </p>
///
///<p><em>Fastest compression:</em></p>
///<p><code>ZLibNative.CompressionLevel compressionLevel = (ZLibNative.CompressionLevel) 1;</code> <br />
/// <code>Int32 windowBits = 15; // or -15 if no headers required</code> <br />
/// <code>Int32 memLevel = 8; </code> <br />
/// <code>ZLibNative.CompressionStrategy strategy = ZLibNative.CompressionStrategy.DefaultStrategy;</code> </p>
///
/// <p><em>No compression (even faster, useful for data that cannot be compressed such some image formats):</em></p>
/// <p><code>ZLibNative.CompressionLevel compressionLevel = (ZLibNative.CompressionLevel) 0;</code> <br />
/// <code>Int32 windowBits = 15; // or -15 if no headers required</code> <br />
/// <code>Int32 memLevel = 7;</code> <br />
/// <code>ZLibNative.CompressionStrategy strategy = ZLibNative.CompressionStrategy.DefaultStrategy;</code> </p>
/// </summary>
public enum CompressionLevel : int {
NoCompression = 0,
BestSpeed = 1,
BestCompression = 9, // Refer to "How to choose a compression level" above.
DefaultCompression = -1
}
/// <summary>
/// <p><strong>From the ZLib manual:</strong></p>
/// <p><code>CompressionStrategy</code> is used to tune the compression algorithm.<br />
/// Use the value <code>DefaultStrategy</code> for normal data, <code>Filtered</code> for data produced by a filter (or predictor),
/// <code>HuffmanOnly</code> to force Huffman encoding only (no string match), or <code>Rle</code> to limit match distances to one
/// (run-length encoding). Filtered data consists mostly of small values with a somewhat random distribution. In this case, the
/// compression algorithm is tuned to compress them better. The effect of <code>Filtered</code> is to force more Huffman coding and]
/// less string matching; it is somewhat intermediate between <code>DefaultStrategy</code> and <code>HuffmanOnly</code>.
/// <code>Rle</code> is designed to be almost as fast as <code>HuffmanOnly</code>, but give better compression for PNG image data.
/// The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set
/// appropriately. <code>Fixed</code> prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications.</p>
///
/// <p><strong>For NetFx use:</strong></p>
/// <p>We have investigated compression scenarios for a bunch of different requently occuring compression data and found that in all
/// cases we invesigated so far, <code>DefaultStrategy</code> provided best results</p>
/// <p>See also: How to choose a compression level (in comments to <code>CompressionLevel</code>.</p>
/// </summary>
public enum CompressionStrategy : int {
Filtered = 1,
HuffmanOnly = 2,
Rle = 3,
Fixed = 4,
DefaultStrategy = 0
}
/// <summary>
/// In version 1.2.3, ZLib provides on the <code>Deflated</code>-<code>CompressionMethod</code>.
/// </summary>
public enum CompressionMethod : int {
Deflated = 8
}
#endregion // Constants defined in zlib.h
#region Defaults for ZLib parameters
/// <summary>
/// <p><strong>From the ZLib manual:</strong></p>
/// <p>ZLib's <code>windowBits</code> parameter is the base two logarithm of the window size (the size of the history buffer).
/// It should be in the range 8..15 for this version of the library. Larger values of this parameter result in better compression
/// at the expense of memory usage. The default value is 15 if deflateInit is used instead.<br />
/// <strong>Note</strong>:
/// <code>windowBits</code> can also be –8..–15 for raw deflate. In this case, -windowBits determines the window size.
/// <code>Deflate</code> will then generate raw deflate data with no ZLib header or trailer, and will not compute an adler32 check value.<br />
/// <code>windowBits</code> can also be greater than 15 for optional gzip encoding. Add 16 to <code>windowBits</code> to write a simple
/// GZip header and trailer around the compressed data instead of a ZLib wrapper. The GZip header will have no file name, no extra data,
/// no comment, no modification time (set to zero), no header crc, and the operating system will be set to 255 (unknown).
/// If a GZip stream is being written, <code>ZStream.adler</code> is a crc32 instead of an adler32.</p>
/// <p>See also: How to choose a compression level (in comments to <code>CompressionLevel</code>.</p>
/// </summary>
public const int Deflate_DefaultWindowBits = -15; // Leagl values are 8..15 and -8..-15. 15 is the window size,
// negative val causes deflate to produce raw deflate data (no zlib header).
/// <summary>
/// <p><strong>From the ZLib manual:</strong></p>
/// <p>The <code>memLevel</code> parameter specifies how much memory should be allocated for the internal compression state.
/// <code>memLevel</code> = 1 uses minimum memory but is slow and reduces compression ratio; <code>memLevel</code> = 9 uses maximum
/// memory for optimal speed. The default value is 8.</p>
/// <p>See also: How to choose a compression level (in comments to <code>CompressionLevel</code>.</p>
/// </summary>
public const int Deflate_DefaultMemLevel = 8; // Memory usage by deflate. Legal range: [1..9]. 8 is ZLib default.
// More is faster and better compression with more memory usage.
#endregion // Defaults for ZLib parameters
#region ZLib stream descriptor data structure
/// <summary>
/// Do not construct instances of <code>ZStream</code> explicitly.
/// Always use <code>ZLibNative.DeflateInit2_</code> or <code>ZLibNative.InflateInit2_</code> instead.
/// Those methods will wrap this structure into a <code>SafeHandle</code> and thus make sure that it is always disposed correctly.
/// </summary>
[StructLayout(LayoutKind.Sequential, CharSet=CharSet.Ansi)]
internal struct ZStream {
internal IntPtr nextIn; //Bytef *next_in; /* next input byte */
internal UInt32 availIn; //uInt avail_in; /* number of bytes available at next_in */
internal UInt32 totalIn; //uLong total_in; /* total nb of input bytes read so far */
internal IntPtr nextOut; //Bytef *next_out; /* next output byte should be put there */
internal UInt32 availOut; //uInt avail_out; /* remaining free space at next_out */
internal UInt32 totalOut; //uLong total_out; /* total nb of bytes output so far */
internal IntPtr msg; //char *msg; /* last error message, NULL if no error */
internal IntPtr state; //struct internal_state FAR *state; /* not visible by applications */
internal IntPtr zalloc; //alloc_func zalloc; /* used to allocate the internal state */
internal IntPtr zfree; //free_func zfree; /* used to free the internal state */
internal IntPtr opaque; //voidpf opaque; /* private data object passed to zalloc and zfree */
internal Int32 dataType; //int data_type; /* best guess about the data type: binary or text */
internal UInt32 adler; //uLong adler; /* adler32 value of the uncompressed data */
internal UInt32 reserved; //uLong reserved; /* reserved for future use */
}
#endregion // ZLib stream descriptor data structure
#region PInvoke declarations for wrapped native functions
[UnmanagedFunctionPointer(CallingConvention.StdCall)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
private delegate ErrorCode DeflateInit2_Delegate(ref ZStream stream, CompressionLevel level, CompressionMethod method,
int windowBits, int memLevel, CompressionStrategy strategy,
[MarshalAs(UnmanagedType.LPStr)] string version, int streamSize);
[UnmanagedFunctionPointer(CallingConvention.StdCall)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
private delegate ErrorCode DeflateDelegate(ref ZStream stream, FlushCode flush);
[UnmanagedFunctionPointer(CallingConvention.StdCall)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
private delegate ErrorCode DeflateEndDelegate(ref ZStream stream);
[UnmanagedFunctionPointer(CallingConvention.StdCall)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
private delegate ErrorCode InflateInit2_Delegate(ref ZStream stream,
int windowBits,
[MarshalAs(UnmanagedType.LPStr)] string version, int streamSize);
[UnmanagedFunctionPointer(CallingConvention.StdCall)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
private delegate ErrorCode InflateDelegate(ref ZStream stream, FlushCode flush);
[UnmanagedFunctionPointer(CallingConvention.StdCall)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
private delegate ErrorCode InflateEndDelegate(ref ZStream stream);
[UnmanagedFunctionPointer(CallingConvention.StdCall)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
private delegate Int32 ZlibCompileFlagsDelegate();
#endregion // PInvoke declarations for wrapped native functions
#region Declarations of Windows API needed to load the native library
// As described at the top of this file, this file may be used in several managed DLLs that require ZLib
// functionality. Thus we cannot rely on a specific internal XXXNativeMethod class to declare Windows APIs.
// Instead, let us declare them explicitly:
private class NativeMethods {
[DllImport(Kernel32DllName, CharSet=CharSet.Ansi, BestFitMapping=false)]
[ResourceExposure(ResourceScope.Process)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
internal static extern IntPtr GetProcAddress(SafeLibraryHandle moduleHandle, String procName);
[DllImport(Kernel32DllName, CharSet=CharSet.Unicode, SetLastError=true)]
[ResourceExposure(ResourceScope.Machine)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
internal static extern SafeLibraryHandle LoadLibrary(String libPath);
#if !FEATURE_NETCORE
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
#endif
[DllImport(Kernel32DllName, ExactSpelling=true)]
[SuppressUnmanagedCodeSecurity]
[SecurityCritical]
internal static extern bool FreeLibrary(IntPtr moduleHandle);
}
#endregion // Declarations of Windows API needed to load the native library
#region Handle to native DLL in memory
// Handle type:
[SecurityCritical]
private class SafeLibraryHandle : SafeHandleZeroOrMinusOneIsInvalid {
[SecurityCritical]
internal SafeLibraryHandle()
: base(true) {
}
#if !FEATURE_NETCORE
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
#endif
[SecurityCritical]
protected override bool ReleaseHandle() {
bool res = ZLibNative.NativeMethods.FreeLibrary(handle);
handle = IntPtr.Zero;
return res;
}
} // private class SafeLibraryHandle
#endregion // Handle to native DLL in memory
/**
* Do not remove the nested typing of types inside of <code>System.IO.Compression.ZLibNative</code>.
* This was done on purpose to:
*
* - Achieve the right encapsulation in a situation where <code>ZLibNative</code> may be compiled division-wide
* into different assemblies that wish to consume <code>CLRCompression</code>. Since <code>internal</code>
* scope is effectively like <code>public</code> scope when compiling <code>ZLibNative</code> into a higher
* level assembly, we need a combination of inner types and <code>private</code>-scope members to achieve
* the right encapsulation.
*
* - Achieve late dynamic loading of <code>CLRCompression.dll</code> at the right time.
* The native assembly will not be loaded unless it is actually used since the loading is performed by a static
* constructor of an inner type that is not directly referenced by user code.
*
* In Dev12 we would like to create a proper feature for loading native assemblies from user-specified
* directories in order to PInvoke into them. This would preferably happen in the native interop/PInvoke
* layer; if not we can add a Framework level feature.
*/
#region ZLib Stream Handle type
/// <summary>
/// The <code>ZLibStreamHandle</code> could be a <code>CriticalFinalizerObject</code> rather than a
/// <code>SafeHandleMinusOneIsInvalid</code>. This would save an <code>IntPtr</code> field since
/// <code>ZLibStreamHandle</code> does not actually use its <code>handle</code> field.
/// Instead it uses a <code>private ZStream zStream</code> field which is the actual handle data
/// structure requiring critical finalization.
/// However, we would like to take advantage if the better debugability offered by the fact that a
/// <em>releaseHandleFailed MDA</em> is raised if the <code>ReleaseHandle</code> method returns
/// <code>false</code>, which can for instance happen if the underlying ZLib <code>XxxxEnd</code>
/// routines return an failure error code.
/// </summary>
[SecurityCritical]
public sealed class ZLibStreamHandle : SafeHandleMinusOneIsInvalid {
#region Library loading and initialisation
[SecurityCritical]
private static class NativeZLibDLLStub {
#region Function pointers to native functions:
[SecurityCritical]
internal static DeflateInit2_Delegate deflateInit2_Delegate;
[SecurityCritical]
internal static DeflateDelegate deflateDelegate;
[SecurityCritical]
internal static DeflateEndDelegate deflateEndDelegate;
[SecurityCritical]
internal static InflateInit2_Delegate inflateInit2_Delegate;
[SecurityCritical]
internal static InflateDelegate inflateDelegate;
[SecurityCritical]
internal static InflateEndDelegate inflateEndDelegate;
[SecurityCritical]
internal static ZlibCompileFlagsDelegate zlibCompileFlagsDelegate;
#endregion // Function pointers to native functions:
#region Initialisation code
#if !FEATURE_NETCORE // Security rules for CoreSys say the class is security critical, therefore this cannot be security safe critical.
[SecuritySafeCritical]
#endif
private static void LoadZLibDLL() {
#if !FEATURE_NETCORE
new FileIOPermission(PermissionState.Unrestricted).Assert();
#endif
String fxDir = RuntimeEnvironment.GetRuntimeDirectory();
String zlibDllPath = Path.Combine(fxDir, ZLibNativeDllName);
if (!File.Exists(zlibDllPath))
throw new DllNotFoundException(ZLibNativeDllName);
SafeLibraryHandle libHndl = ZLibNative.NativeMethods.LoadLibrary(zlibDllPath);
if (libHndl.IsInvalid) {
Int32 hresult = Marshal.GetHRForLastWin32Error();
Marshal.ThrowExceptionForHR(hresult, new IntPtr(-1));
// If Marshal.ThrowExceptionForHR did not throw, we still need to make sure to throw:
throw new InvalidOperationException();
}
ZLibStreamHandle.zlibLibraryHandle = libHndl;
}
[SecurityCritical]
private static DT CreateDelegate<DT>(String entryPointName) {
IntPtr entryPoint = ZLibNative.NativeMethods.GetProcAddress(ZLibStreamHandle.zlibLibraryHandle, entryPointName);
if (IntPtr.Zero == entryPoint)
throw new EntryPointNotFoundException(ZLibNativeDllName + "!" + entryPointName);
return (DT) (Object) Marshal.GetDelegateForFunctionPointer(entryPoint, typeof(DT));
}
#if !FEATURE_NETCORE // Security rules for CoreSys say the class is security critical, therefore this cannot be security safe critical.
[SecuritySafeCritical]
#endif
private static void InitDelegates() {
Contract.Assert(null != ZLibStreamHandle.zlibLibraryHandle);
Contract.Assert(!ZLibStreamHandle.zlibLibraryHandle.IsInvalid);
deflateInit2_Delegate = CreateDelegate<DeflateInit2_Delegate>("deflateInit2_");
deflateDelegate = CreateDelegate<DeflateDelegate>("deflate");
deflateEndDelegate = CreateDelegate<DeflateEndDelegate>("deflateEnd");
inflateInit2_Delegate = CreateDelegate<InflateInit2_Delegate>("inflateInit2_");
inflateDelegate = CreateDelegate<InflateDelegate>("inflate");
inflateEndDelegate = CreateDelegate<InflateEndDelegate>("inflateEnd");
zlibCompileFlagsDelegate = CreateDelegate<ZlibCompileFlagsDelegate>("zlibCompileFlags");
#if !SILVERLIGHT
RuntimeHelpers.PrepareDelegate(deflateInit2_Delegate);
RuntimeHelpers.PrepareDelegate(deflateDelegate);
RuntimeHelpers.PrepareDelegate(deflateEndDelegate);
RuntimeHelpers.PrepareDelegate(inflateInit2_Delegate);
RuntimeHelpers.PrepareDelegate(inflateDelegate);
RuntimeHelpers.PrepareDelegate(inflateEndDelegate);
RuntimeHelpers.PrepareDelegate(zlibCompileFlagsDelegate);
#endif // !SILVERLIGHT
}
[SecuritySafeCritical]
static NativeZLibDLLStub() {
LoadZLibDLL();
InitDelegates();
}
#endregion // Initialisation code
} // private static class NativeZLibDLLStub
// Handle reference:
[SecurityCritical]
private static SafeLibraryHandle zlibLibraryHandle;
#endregion // Library loading and initialisation
#region ZLibStream-SafeHandle-related routines
public enum State { NotInitialized, InitializedForDeflate, InitializedForInflate, Disposed }
private ZStream zStream;
[SecurityCritical]
private volatile State initializationState;
public ZLibStreamHandle()
: base(true) {
this.zStream = new ZStream();
this.zStream.zalloc = ZNullPtr;
this.zStream.zfree = ZNullPtr;
this.zStream.opaque = ZNullPtr;
this.initializationState = State.NotInitialized;
this.handle = IntPtr.Zero;
}
public State InitializationState {
[Pure]
[SecurityCritical]
get { return initializationState; }
}
#if !FEATURE_NETCORE
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
#endif
[SecurityCritical]
protected override bool ReleaseHandle() {
// We are in a finalizer thread at the end of the App and the finalization of the dynamically loaded ZLib happend
// to be scheduled first. In such case we have no hope of properly freeing zStream. If the process is dying - we
// do not care. In other cases somethign went badly wrong anyway:
if (zlibLibraryHandle == null || zlibLibraryHandle.IsInvalid)
return false;
switch (InitializationState) {
case State.NotInitialized: return true;
case State.InitializedForDeflate: return (DeflateEnd() == ZLibNative.ErrorCode.Ok);
case State.InitializedForInflate: return (InflateEnd() == ZLibNative.ErrorCode.Ok);
case State.Disposed: return true;
default: return false; // This should never happen. Did we forget one of the State enum values in the switch?
}
}
#endregion // ZLibStream-SafeHandle-related routines
#region Expose fields on ZStream for use by user / Fx code (add more as required)
public IntPtr NextIn { [SecurityCritical] get { return zStream.nextIn; }
[SecurityCritical] set { zStream.nextIn = value; } }
public UInt32 AvailIn { [SecurityCritical] get { return zStream.availIn; }
[SecurityCritical] set { zStream.availIn = value; } }
public UInt32 TotalIn { [SecurityCritical] get { return zStream.totalIn; } }
public IntPtr NextOut { [SecurityCritical] get { return zStream.nextOut; }
[SecurityCritical] set { zStream.nextOut = value; } }
public UInt32 AvailOut { [SecurityCritical] get { return zStream.availOut; }
[SecurityCritical] set { zStream.availOut = value; } }
public UInt32 TotalOut { [SecurityCritical] get { return zStream.totalOut; } }
public Int32 DataType { [SecurityCritical] get { return zStream.dataType; } }
public UInt32 Adler { [SecurityCritical] get { return zStream.adler; } }
#endregion // Expose fields on ZStream for use by user / Fx code (add more as required)
#region Expose ZLib functions for use by user / Fx code (add more as required)
[Pure]
[SecurityCritical]
private void EnsureNotDisposed() {
if (InitializationState == State.Disposed)
throw new ObjectDisposedException(this.GetType().Name);
}
[Pure]
[SecurityCritical]
private void EnsureState(State requiredState) {
if (InitializationState != requiredState)
throw new InvalidOperationException("InitializationState != " + requiredState.ToString());
}
[SecurityCritical]
public ErrorCode DeflateInit2_(CompressionLevel level, int windowBits, int memLevel, CompressionStrategy strategy) {
EnsureNotDisposed();
EnsureState(State.NotInitialized);
ErrorCode errC;
bool addRefSuccess = false;
#if !FEATURE_NETCORE
RuntimeHelpers.PrepareConstrainedRegions();
#endif
try { } finally {
errC = NativeZLibDLLStub.deflateInit2_Delegate(ref zStream, level, CompressionMethod.Deflated, windowBits, memLevel,
strategy, ZLibVersion, Marshal.SizeOf(zStream));
initializationState = State.InitializedForDeflate;
zlibLibraryHandle.DangerousAddRef(ref addRefSuccess);
}
Contract.Assert(addRefSuccess, "zlibLibraryHandle.DangerousAddRef in DeflateInit2_ should always succeed, but it did not.");
return errC;
}
[SecurityCritical]
public ErrorCode Deflate(FlushCode flush) {
EnsureNotDisposed();
EnsureState(State.InitializedForDeflate);
return NativeZLibDLLStub.deflateDelegate(ref zStream, flush);
}
[SecurityCritical]
public ErrorCode DeflateEnd() {
EnsureNotDisposed();
EnsureState(State.InitializedForDeflate);
ErrorCode errC;
#if !FEATURE_NETCORE
RuntimeHelpers.PrepareConstrainedRegions();
#endif
try { } finally {
errC = NativeZLibDLLStub.deflateEndDelegate(ref zStream);
initializationState = State.Disposed;
zlibLibraryHandle.DangerousRelease();
}
return errC;
}
[SecurityCritical]
public ErrorCode InflateInit2_(int windowBits) {
EnsureNotDisposed();
EnsureState(State.NotInitialized);
ErrorCode errC;
bool addRefSuccess = false;
#if !FEATURE_NETCORE
RuntimeHelpers.PrepareConstrainedRegions();
#endif
try { } finally {
errC = NativeZLibDLLStub.inflateInit2_Delegate(ref zStream, windowBits, ZLibVersion, Marshal.SizeOf(zStream));
initializationState = State.InitializedForInflate;
zlibLibraryHandle.DangerousAddRef(ref addRefSuccess);
}
Contract.Assert(addRefSuccess, "zlibLibraryHandle.DangerousAddRef in InflateInit2_ should always succeed, but it did not.");
return errC;
}
[SecurityCritical]
public ErrorCode Inflate(FlushCode flush) {
EnsureNotDisposed();
EnsureState(State.InitializedForInflate);
return NativeZLibDLLStub.inflateDelegate(ref zStream, flush);
}
[SecurityCritical]
public ErrorCode InflateEnd() {
EnsureNotDisposed();
EnsureState(State.InitializedForInflate);
ErrorCode errC;
#if !FEATURE_NETCORE
RuntimeHelpers.PrepareConstrainedRegions();
#endif
try { } finally {
errC = NativeZLibDLLStub.inflateEndDelegate(ref zStream);
initializationState = State.Disposed;
zlibLibraryHandle.DangerousRelease();
}
return errC;
}
[SecurityCritical]
public string GetErrorMessage() {
// This can work even after XxflateEnd().
if (ZNullPtr.Equals(zStream.msg))
return String.Empty;
unsafe {
String msgStr = new String((SByte*) zStream.msg);
return msgStr;
}
}
#endregion // Expose ZLib functions for use by user / Fx code (add more as required)
[SecurityCritical]
internal static Int32 ZLibCompileFlags() {
return NativeZLibDLLStub.zlibCompileFlagsDelegate();
}
} // class ZLibStreamHandle
#endregion // ZLib Stream Handle type
#region public factory methods for ZLibStreamHandle
[SecurityCritical]
public static ErrorCode CreateZLibStreamForDeflate(out ZLibStreamHandle zLibStreamHandle) {
return CreateZLibStreamForDeflate(out zLibStreamHandle,
CompressionLevel.DefaultCompression, Deflate_DefaultWindowBits,
Deflate_DefaultMemLevel, CompressionStrategy.DefaultStrategy);
}
[SecurityCritical]
public static ErrorCode CreateZLibStreamForDeflate(out ZLibStreamHandle zLibStreamHandle,
CompressionLevel level, int windowBits, int memLevel, CompressionStrategy strategy) {
zLibStreamHandle = new ZLibStreamHandle();
return zLibStreamHandle.DeflateInit2_(level, windowBits, memLevel, strategy);
}
[SecurityCritical]
public static ErrorCode CreateZLibStreamForInflate(out ZLibStreamHandle zLibStreamHandle) {
return CreateZLibStreamForInflate(out zLibStreamHandle, Deflate_DefaultWindowBits);
}
[SecurityCritical]
public static ErrorCode CreateZLibStreamForInflate(out ZLibStreamHandle zLibStreamHandle, int windowBits) {
zLibStreamHandle = new ZLibStreamHandle();
return zLibStreamHandle.InflateInit2_(windowBits);
}
#endregion // public factory methods for ZLibStreamHandle
#region public utility APIs
[SecurityCritical]
public static Int32 ZLibCompileFlags() {
return ZLibStreamHandle.ZLibCompileFlags();
}
#endregion // public utility APIs
} // internal class ZLibNative
} // namespace System.IO.Compression
// file ZLibNative.cs