Xamarin Public Jenkins (auto-signing) 468663ddbb Imported Upstream version 6.10.0.49
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
2020-01-16 16:38:04 +00:00

731 lines
20 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2012 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege,
* Ecole Normale Superieure, 45 rue dUlm, 75230 Paris, France
*/
#include <isl/aff.h>
#include <isl/ast.h>
#include "cuda_common.h"
#include "cuda.h"
#include "gpu.h"
#include "gpu_print.h"
#include "print.h"
#include "util.h"
static __isl_give isl_printer *print_cuda_macros(__isl_take isl_printer *p)
{
const char *macros =
"#define cudaCheckReturn(ret) \\\n"
" do { \\\n"
" cudaError_t cudaCheckReturn_e = (ret); \\\n"
" if (cudaCheckReturn_e != cudaSuccess) { \\\n"
" fprintf(stderr, \"CUDA error: %s\\n\", "
"cudaGetErrorString(cudaCheckReturn_e)); \\\n"
" fflush(stderr); \\\n"
" } \\\n"
" assert(cudaCheckReturn_e == cudaSuccess); \\\n"
" } while(0)\n"
"#define cudaCheckKernel() \\\n"
" do { \\\n"
" cudaCheckReturn(cudaGetLastError()); \\\n"
" } while(0)\n\n";
p = isl_printer_print_str(p, macros);
return p;
}
/* Print a declaration for the device array corresponding to "array" on "p".
*/
static __isl_give isl_printer *declare_device_array(__isl_take isl_printer *p,
struct gpu_array_info *array)
{
int i;
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, array->type);
p = isl_printer_print_str(p, " ");
if (!array->linearize && array->n_index > 1)
p = isl_printer_print_str(p, "(");
p = isl_printer_print_str(p, "*dev_");
p = isl_printer_print_str(p, array->name);
if (!array->linearize && array->n_index > 1) {
p = isl_printer_print_str(p, ")");
for (i = 1; i < array->n_index; i++) {
isl_ast_expr *bound;
bound = isl_ast_expr_get_op_arg(array->bound_expr,
1 + i);
p = isl_printer_print_str(p, "[");
p = isl_printer_print_ast_expr(p, bound);
p = isl_printer_print_str(p, "]");
isl_ast_expr_free(bound);
}
}
p = isl_printer_print_str(p, ";");
p = isl_printer_end_line(p);
return p;
}
static __isl_give isl_printer *declare_device_arrays(__isl_take isl_printer *p,
struct gpu_prog *prog)
{
int i;
for (i = 0; i < prog->n_array; ++i) {
if (!gpu_array_requires_device_allocation(&prog->array[i]))
continue;
p = declare_device_array(p, &prog->array[i]);
}
p = isl_printer_start_line(p);
p = isl_printer_end_line(p);
return p;
}
static __isl_give isl_printer *allocate_device_arrays(
__isl_take isl_printer *p, struct gpu_prog *prog)
{
int i;
for (i = 0; i < prog->n_array; ++i) {
struct gpu_array_info *array = &prog->array[i];
if (!gpu_array_requires_device_allocation(&prog->array[i]))
continue;
p = ppcg_ast_expr_print_macros(array->bound_expr, p);
p = isl_printer_start_line(p);
p = isl_printer_print_str(p,
"cudaCheckReturn(cudaMalloc((void **) &dev_");
p = isl_printer_print_str(p, prog->array[i].name);
p = isl_printer_print_str(p, ", ");
p = gpu_array_info_print_size(p, &prog->array[i]);
p = isl_printer_print_str(p, "));");
p = isl_printer_end_line(p);
}
p = isl_printer_start_line(p);
p = isl_printer_end_line(p);
return p;
}
static __isl_give isl_printer *free_device_arrays(__isl_take isl_printer *p,
struct gpu_prog *prog)
{
int i;
for (i = 0; i < prog->n_array; ++i) {
if (!gpu_array_requires_device_allocation(&prog->array[i]))
continue;
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "cudaCheckReturn(cudaFree(dev_");
p = isl_printer_print_str(p, prog->array[i].name);
p = isl_printer_print_str(p, "));");
p = isl_printer_end_line(p);
}
return p;
}
/* Print code to "p" for copying "array" from the host to the device
* in its entirety. The bounds on the extent of "array" have
* been precomputed in extract_array_info and are used in
* gpu_array_info_print_size.
*/
static __isl_give isl_printer *copy_array_to_device(__isl_take isl_printer *p,
struct gpu_array_info *array)
{
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "cudaCheckReturn(cudaMemcpy(dev_");
p = isl_printer_print_str(p, array->name);
p = isl_printer_print_str(p, ", ");
if (gpu_array_is_scalar(array))
p = isl_printer_print_str(p, "&");
p = isl_printer_print_str(p, array->name);
p = isl_printer_print_str(p, ", ");
p = gpu_array_info_print_size(p, array);
p = isl_printer_print_str(p, ", cudaMemcpyHostToDevice));");
p = isl_printer_end_line(p);
return p;
}
/* Print code to "p" for copying "array" back from the device to the host
* in its entirety. The bounds on the extent of "array" have
* been precomputed in extract_array_info and are used in
* gpu_array_info_print_size.
*/
static __isl_give isl_printer *copy_array_from_device(
__isl_take isl_printer *p, struct gpu_array_info *array)
{
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "cudaCheckReturn(cudaMemcpy(");
if (gpu_array_is_scalar(array))
p = isl_printer_print_str(p, "&");
p = isl_printer_print_str(p, array->name);
p = isl_printer_print_str(p, ", dev_");
p = isl_printer_print_str(p, array->name);
p = isl_printer_print_str(p, ", ");
p = gpu_array_info_print_size(p, array);
p = isl_printer_print_str(p, ", cudaMemcpyDeviceToHost));");
p = isl_printer_end_line(p);
return p;
}
static __isl_give isl_printer* print_reverse_list(__isl_take isl_printer *p, int len, int *list)
{
int i;
if (len == 0)
return p;
p = isl_printer_print_str(p, "(");
for (i = 0; i < len; ++i) {
if (i)
p = isl_printer_print_str(p, ", ");
p = isl_printer_print_int(p, list[len - 1 - i]);
}
return isl_printer_print_str(p, ")");
}
/* Print the effective grid size as a list of the sizes in each
* dimension, from innermost to outermost.
*/
static __isl_give isl_printer *print_grid_size(__isl_take isl_printer *p,
struct ppcg_kernel *kernel)
{
int i;
int dim;
dim = isl_multi_pw_aff_dim(kernel->grid_size, isl_dim_set);
if (dim == 0)
return p;
p = isl_printer_print_str(p, "(");
for (i = dim - 1; i >= 0; --i) {
isl_ast_expr *bound;
bound = isl_ast_expr_get_op_arg(kernel->grid_size_expr, 1 + i);
p = isl_printer_print_ast_expr(p, bound);
isl_ast_expr_free(bound);
if (i > 0)
p = isl_printer_print_str(p, ", ");
}
p = isl_printer_print_str(p, ")");
return p;
}
/* Print the grid definition.
*/
static __isl_give isl_printer *print_grid(__isl_take isl_printer *p,
struct ppcg_kernel *kernel)
{
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "dim3 k");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p, "_dimGrid");
p = print_grid_size(p, kernel);
p = isl_printer_print_str(p, ";");
p = isl_printer_end_line(p);
return p;
}
/* Print the arguments to a kernel declaration or call. If "types" is set,
* then print a declaration (including the types of the arguments).
*
* The arguments are printed in the following order
* - the arrays accessed by the kernel
* - the parameters
* - the host loop iterators
*/
static __isl_give isl_printer *print_kernel_arguments(__isl_take isl_printer *p,
struct gpu_prog *prog, struct ppcg_kernel *kernel, int types)
{
int i, n;
int first = 1;
unsigned nparam;
isl_space *space;
const char *type;
for (i = 0; i < prog->n_array; ++i) {
int required;
required = ppcg_kernel_requires_array_argument(kernel, i);
if (required < 0)
return isl_printer_free(p);
if (!required)
continue;
if (!first)
p = isl_printer_print_str(p, ", ");
if (types)
p = gpu_array_info_print_declaration_argument(p,
&prog->array[i], NULL);
else
p = gpu_array_info_print_call_argument(p,
&prog->array[i]);
first = 0;
}
space = isl_union_set_get_space(kernel->arrays);
nparam = isl_space_dim(space, isl_dim_param);
for (i = 0; i < nparam; ++i) {
const char *name;
name = isl_space_get_dim_name(space, isl_dim_param, i);
if (!first)
p = isl_printer_print_str(p, ", ");
if (types)
p = isl_printer_print_str(p, "int ");
p = isl_printer_print_str(p, name);
first = 0;
}
isl_space_free(space);
n = isl_space_dim(kernel->space, isl_dim_set);
type = isl_options_get_ast_iterator_type(prog->ctx);
for (i = 0; i < n; ++i) {
const char *name;
if (!first)
p = isl_printer_print_str(p, ", ");
name = isl_space_get_dim_name(kernel->space, isl_dim_set, i);
if (types) {
p = isl_printer_print_str(p, type);
p = isl_printer_print_str(p, " ");
}
p = isl_printer_print_str(p, name);
first = 0;
}
return p;
}
/* Print the header of the given kernel.
*/
static __isl_give isl_printer *print_kernel_header(__isl_take isl_printer *p,
struct gpu_prog *prog, struct ppcg_kernel *kernel)
{
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "__global__ void kernel");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p, "(");
p = print_kernel_arguments(p, prog, kernel, 1);
p = isl_printer_print_str(p, ")");
return p;
}
/* Print the header of the given kernel to both gen->cuda.kernel_h
* and gen->cuda.kernel_c.
*/
static void print_kernel_headers(struct gpu_prog *prog,
struct ppcg_kernel *kernel, struct cuda_info *cuda)
{
isl_printer *p;
p = isl_printer_to_file(prog->ctx, cuda->kernel_h);
p = isl_printer_set_output_format(p, ISL_FORMAT_C);
p = print_kernel_header(p, prog, kernel);
p = isl_printer_print_str(p, ";");
p = isl_printer_end_line(p);
isl_printer_free(p);
p = isl_printer_to_file(prog->ctx, cuda->kernel_c);
p = isl_printer_set_output_format(p, ISL_FORMAT_C);
p = print_kernel_header(p, prog, kernel);
p = isl_printer_end_line(p);
isl_printer_free(p);
}
static void print_indent(FILE *dst, int indent)
{
fprintf(dst, "%*s", indent, "");
}
/* Print a list of iterators of type "type" with names "ids" to "out".
* Each iterator is assigned one of the cuda identifiers in cuda_dims.
* In particular, the last iterator is assigned the x identifier
* (the first in the list of cuda identifiers).
*/
static void print_iterators(FILE *out, const char *type,
__isl_keep isl_id_list *ids, const char *cuda_dims[])
{
int i, n;
n = isl_id_list_n_id(ids);
if (n <= 0)
return;
print_indent(out, 4);
fprintf(out, "%s ", type);
for (i = 0; i < n; ++i) {
isl_id *id;
if (i)
fprintf(out, ", ");
id = isl_id_list_get_id(ids, i);
fprintf(out, "%s = %s", isl_id_get_name(id),
cuda_dims[n - 1 - i]);
isl_id_free(id);
}
fprintf(out, ";\n");
}
static void print_kernel_iterators(FILE *out, struct ppcg_kernel *kernel)
{
isl_ctx *ctx = isl_ast_node_get_ctx(kernel->tree);
const char *type;
const char *block_dims[] = { "blockIdx.x", "blockIdx.y" };
const char *thread_dims[] = { "threadIdx.x", "threadIdx.y",
"threadIdx.z" };
type = isl_options_get_ast_iterator_type(ctx);
print_iterators(out, type, kernel->block_ids, block_dims);
print_iterators(out, type, kernel->thread_ids, thread_dims);
}
static __isl_give isl_printer *print_kernel_var(__isl_take isl_printer *p,
struct ppcg_kernel_var *var)
{
int j;
p = isl_printer_start_line(p);
if (var->type == ppcg_access_shared)
p = isl_printer_print_str(p, "__shared__ ");
p = isl_printer_print_str(p, var->array->type);
p = isl_printer_print_str(p, " ");
p = isl_printer_print_str(p, var->name);
for (j = 0; j < var->array->n_index; ++j) {
isl_val *v;
p = isl_printer_print_str(p, "[");
v = isl_vec_get_element_val(var->size, j);
p = isl_printer_print_val(p, v);
isl_val_free(v);
p = isl_printer_print_str(p, "]");
}
p = isl_printer_print_str(p, ";");
p = isl_printer_end_line(p);
return p;
}
static __isl_give isl_printer *print_kernel_vars(__isl_take isl_printer *p,
struct ppcg_kernel *kernel)
{
int i;
for (i = 0; i < kernel->n_var; ++i)
p = print_kernel_var(p, &kernel->var[i]);
return p;
}
/* Print a sync statement.
*/
static __isl_give isl_printer *print_sync(__isl_take isl_printer *p,
struct ppcg_kernel_stmt *stmt)
{
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "__syncthreads();");
p = isl_printer_end_line(p);
return p;
}
/* This function is called for each user statement in the AST,
* i.e., for each kernel body statement, copy statement or sync statement.
*/
static __isl_give isl_printer *print_kernel_stmt(__isl_take isl_printer *p,
__isl_take isl_ast_print_options *print_options,
__isl_keep isl_ast_node *node, void *user)
{
isl_id *id;
struct ppcg_kernel_stmt *stmt;
id = isl_ast_node_get_annotation(node);
stmt = isl_id_get_user(id);
isl_id_free(id);
isl_ast_print_options_free(print_options);
switch (stmt->type) {
case ppcg_kernel_copy:
return ppcg_kernel_print_copy(p, stmt);
case ppcg_kernel_sync:
return print_sync(p, stmt);
case ppcg_kernel_domain:
return ppcg_kernel_print_domain(p, stmt);
}
return p;
}
static void print_kernel(struct gpu_prog *prog, struct ppcg_kernel *kernel,
struct cuda_info *cuda)
{
isl_ctx *ctx = isl_ast_node_get_ctx(kernel->tree);
isl_ast_print_options *print_options;
isl_printer *p;
print_kernel_headers(prog, kernel, cuda);
fprintf(cuda->kernel_c, "{\n");
print_kernel_iterators(cuda->kernel_c, kernel);
p = isl_printer_to_file(ctx, cuda->kernel_c);
p = isl_printer_set_output_format(p, ISL_FORMAT_C);
p = isl_printer_indent(p, 4);
p = print_kernel_vars(p, kernel);
p = isl_printer_end_line(p);
p = ppcg_set_macro_names(p);
p = gpu_print_macros(p, kernel->tree);
print_options = isl_ast_print_options_alloc(ctx);
print_options = isl_ast_print_options_set_print_user(print_options,
&print_kernel_stmt, NULL);
p = isl_ast_node_print(kernel->tree, p, print_options);
isl_printer_free(p);
fprintf(cuda->kernel_c, "}\n");
}
/* Print code for initializing the device for execution of the transformed
* code. This includes declaring locally defined variables as well as
* declaring and allocating the required copies of arrays on the device.
*/
static __isl_give isl_printer *init_device(__isl_take isl_printer *p,
struct gpu_prog *prog)
{
p = print_cuda_macros(p);
p = gpu_print_local_declarations(p, prog);
p = declare_device_arrays(p, prog);
p = allocate_device_arrays(p, prog);
return p;
}
/* Print code for clearing the device after execution of the transformed code.
* In particular, free the memory that was allocated on the device.
*/
static __isl_give isl_printer *clear_device(__isl_take isl_printer *p,
struct gpu_prog *prog)
{
p = free_device_arrays(p, prog);
return p;
}
/* Print a statement for copying an array to or from the device,
* or for initializing or clearing the device.
* The statement identifier of a copying node is called
* "to_device_<array name>" or "from_device_<array name>" and
* its user pointer points to the gpu_array_info of the array
* that needs to be copied.
* The node for initializing the device is called "init_device".
* The node for clearing the device is called "clear_device".
*
* Extract the array (if any) from the identifier and call
* init_device, clear_device, copy_array_to_device or copy_array_from_device.
*/
static __isl_give isl_printer *print_device_node(__isl_take isl_printer *p,
__isl_keep isl_ast_node *node, struct gpu_prog *prog)
{
isl_ast_expr *expr, *arg;
isl_id *id;
const char *name;
struct gpu_array_info *array;
expr = isl_ast_node_user_get_expr(node);
arg = isl_ast_expr_get_op_arg(expr, 0);
id = isl_ast_expr_get_id(arg);
name = isl_id_get_name(id);
array = isl_id_get_user(id);
isl_id_free(id);
isl_ast_expr_free(arg);
isl_ast_expr_free(expr);
if (!name)
return isl_printer_free(p);
if (!strcmp(name, "init_device"))
return init_device(p, prog);
if (!strcmp(name, "clear_device"))
return clear_device(p, prog);
if (!array)
return isl_printer_free(p);
if (!prefixcmp(name, "to_device"))
return copy_array_to_device(p, array);
else
return copy_array_from_device(p, array);
}
struct print_host_user_data {
struct cuda_info *cuda;
struct gpu_prog *prog;
};
/* Print the user statement of the host code to "p".
*
* The host code may contain original user statements, kernel launches,
* statements that copy data to/from the device and statements
* the initialize or clear the device.
* The original user statements and the kernel launches have
* an associated annotation, while the other statements do not.
* The latter are handled by print_device_node.
* The annotation on the user statements is called "user".
*
* In case of a kernel launch, print a block of statements that
* defines the grid and the block and then launches the kernel.
*/
__isl_give isl_printer *print_host_user(__isl_take isl_printer *p,
__isl_take isl_ast_print_options *print_options,
__isl_keep isl_ast_node *node, void *user)
{
isl_id *id;
int is_user;
struct ppcg_kernel *kernel;
struct ppcg_kernel_stmt *stmt;
struct print_host_user_data *data;
isl_ast_print_options_free(print_options);
data = (struct print_host_user_data *) user;
id = isl_ast_node_get_annotation(node);
if (!id)
return print_device_node(p, node, data->prog);
is_user = !strcmp(isl_id_get_name(id), "user");
kernel = is_user ? NULL : isl_id_get_user(id);
stmt = is_user ? isl_id_get_user(id) : NULL;
isl_id_free(id);
if (is_user)
return ppcg_kernel_print_domain(p, stmt);
p = ppcg_start_block(p);
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "dim3 k");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p, "_dimBlock");
p = print_reverse_list(p, kernel->n_block, kernel->block_dim);
p = isl_printer_print_str(p, ";");
p = isl_printer_end_line(p);
p = print_grid(p, kernel);
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "kernel");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p, " <<<k");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p, "_dimGrid, k");
p = isl_printer_print_int(p, kernel->id);
p = isl_printer_print_str(p, "_dimBlock>>> (");
p = print_kernel_arguments(p, data->prog, kernel, 0);
p = isl_printer_print_str(p, ");");
p = isl_printer_end_line(p);
p = isl_printer_start_line(p);
p = isl_printer_print_str(p, "cudaCheckKernel();");
p = isl_printer_end_line(p);
p = ppcg_end_block(p);
p = isl_printer_start_line(p);
p = isl_printer_end_line(p);
#if 0
print_kernel(data->prog, kernel, data->cuda);
#endif
return p;
}
static __isl_give isl_printer *print_host_code(__isl_take isl_printer *p,
struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
struct cuda_info *cuda)
{
isl_ast_print_options *print_options;
isl_ctx *ctx = isl_ast_node_get_ctx(tree);
struct print_host_user_data data = { cuda, prog };
print_options = isl_ast_print_options_alloc(ctx);
print_options = isl_ast_print_options_set_print_user(print_options,
&print_host_user, &data);
p = gpu_print_macros(p, tree);
p = isl_ast_node_print(tree, p, print_options);
return p;
}
/* Given a gpu_prog "prog" and the corresponding transformed AST
* "tree", print the entire CUDA code to "p".
* "types" collects the types for which a definition has already
* been printed.
*/
static __isl_give isl_printer *print_cuda(__isl_take isl_printer *p,
struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
struct gpu_types *types, void *user)
{
struct cuda_info *cuda = user;
isl_printer *kernel;
kernel = isl_printer_to_file(isl_printer_get_ctx(p), cuda->kernel_c);
kernel = isl_printer_set_output_format(kernel, ISL_FORMAT_C);
kernel = gpu_print_types(kernel, types, prog);
isl_printer_free(kernel);
if (!kernel)
return isl_printer_free(p);
p = print_host_code(p, prog, tree, cuda);
return p;
}
/* Transform the code in the file called "input" by replacing
* all scops by corresponding CUDA code.
* The names of the output files are derived from "input".
*
* We let generate_gpu do all the hard work and then let it call
* us back for printing the AST in print_cuda.
*
* To prepare for this printing, we first open the output files
* and we close them after generate_gpu has finished.
*/
int generate_cuda(isl_ctx *ctx, struct ppcg_options *options,
const char *input)
{
struct cuda_info cuda;
int r;
cuda_open_files(&cuda, input);
r = generate_gpu(ctx, input, cuda.host_c, options, &print_cuda, &cuda);
cuda_close_files(&cuda);
return r;
}