You've already forked linux-packaging-mono
							
							
		
			
				
	
	
		
			358 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			358 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2006-2007 Universiteit Leiden
 | |
|  * Copyright 2008-2009 Katholieke Universiteit Leuven
 | |
|  *
 | |
|  * Use of this software is governed by the MIT license
 | |
|  *
 | |
|  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
 | |
|  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
 | |
|  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
 | |
|  * B-3001 Leuven, Belgium
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <isl_ctx_private.h>
 | |
| #include <isl_map_private.h>
 | |
| #include <isl_vec_private.h>
 | |
| #include <isl_options_private.h>
 | |
| #include "isl_basis_reduction.h"
 | |
| 
 | |
| static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < n; ++i)
 | |
| 		GBR_lp_get_alpha(lp, first + i, &alpha[i]);
 | |
| }
 | |
| 
 | |
| /* Compute a reduced basis for the set represented by the tableau "tab".
 | |
|  * tab->basis, which must be initialized by the calling function to an affine
 | |
|  * unimodular basis, is updated to reflect the reduced basis.
 | |
|  * The first tab->n_zero rows of the basis (ignoring the constant row)
 | |
|  * are assumed to correspond to equalities and are left untouched.
 | |
|  * tab->n_zero is updated to reflect any additional equalities that
 | |
|  * have been detected in the first rows of the new basis.
 | |
|  * The final tab->n_unbounded rows of the basis are assumed to correspond
 | |
|  * to unbounded directions and are also left untouched.
 | |
|  * In particular this means that the remaining rows are assumed to
 | |
|  * correspond to bounded directions.
 | |
|  *
 | |
|  * This function implements the algorithm described in
 | |
|  * "An Implementation of the Generalized Basis Reduction Algorithm
 | |
|  *  for Integer Programming" of Cook el al. to compute a reduced basis.
 | |
|  * We use \epsilon = 1/4.
 | |
|  *
 | |
|  * If ctx->opt->gbr_only_first is set, the user is only interested
 | |
|  * in the first direction.  In this case we stop the basis reduction when
 | |
|  * the width in the first direction becomes smaller than 2.
 | |
|  */
 | |
| struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
 | |
| {
 | |
| 	unsigned dim;
 | |
| 	struct isl_ctx *ctx;
 | |
| 	struct isl_mat *B;
 | |
| 	int i;
 | |
| 	GBR_LP *lp = NULL;
 | |
| 	GBR_type F_old, alpha, F_new;
 | |
| 	int row;
 | |
| 	isl_int tmp;
 | |
| 	struct isl_vec *b_tmp;
 | |
| 	GBR_type *F = NULL;
 | |
| 	GBR_type *alpha_buffer[2] = { NULL, NULL };
 | |
| 	GBR_type *alpha_saved;
 | |
| 	GBR_type F_saved;
 | |
| 	int use_saved = 0;
 | |
| 	isl_int mu[2];
 | |
| 	GBR_type mu_F[2];
 | |
| 	GBR_type two;
 | |
| 	GBR_type one;
 | |
| 	int empty = 0;
 | |
| 	int fixed = 0;
 | |
| 	int fixed_saved = 0;
 | |
| 	int mu_fixed[2];
 | |
| 	int n_bounded;
 | |
| 	int gbr_only_first;
 | |
| 
 | |
| 	if (!tab)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (tab->empty)
 | |
| 		return tab;
 | |
| 
 | |
| 	ctx = tab->mat->ctx;
 | |
| 	gbr_only_first = ctx->opt->gbr_only_first;
 | |
| 	dim = tab->n_var;
 | |
| 	B = tab->basis;
 | |
| 	if (!B)
 | |
| 		return tab;
 | |
| 
 | |
| 	n_bounded = dim - tab->n_unbounded;
 | |
| 	if (n_bounded <= tab->n_zero + 1)
 | |
| 		return tab;
 | |
| 
 | |
| 	isl_int_init(tmp);
 | |
| 	isl_int_init(mu[0]);
 | |
| 	isl_int_init(mu[1]);
 | |
| 
 | |
| 	GBR_init(alpha);
 | |
| 	GBR_init(F_old);
 | |
| 	GBR_init(F_new);
 | |
| 	GBR_init(F_saved);
 | |
| 	GBR_init(mu_F[0]);
 | |
| 	GBR_init(mu_F[1]);
 | |
| 	GBR_init(two);
 | |
| 	GBR_init(one);
 | |
| 
 | |
| 	b_tmp = isl_vec_alloc(ctx, dim);
 | |
| 	if (!b_tmp)
 | |
| 		goto error;
 | |
| 
 | |
| 	F = isl_alloc_array(ctx, GBR_type, n_bounded);
 | |
| 	alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
 | |
| 	alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
 | |
| 	alpha_saved = alpha_buffer[0];
 | |
| 
 | |
| 	if (!F || !alpha_buffer[0] || !alpha_buffer[1])
 | |
| 		goto error;
 | |
| 
 | |
| 	for (i = 0; i < n_bounded; ++i) {
 | |
| 		GBR_init(F[i]);
 | |
| 		GBR_init(alpha_buffer[0][i]);
 | |
| 		GBR_init(alpha_buffer[1][i]);
 | |
| 	}
 | |
| 
 | |
| 	GBR_set_ui(two, 2);
 | |
| 	GBR_set_ui(one, 1);
 | |
| 
 | |
| 	lp = GBR_lp_init(tab);
 | |
| 	if (!lp)
 | |
| 		goto error;
 | |
| 
 | |
| 	i = tab->n_zero;
 | |
| 
 | |
| 	GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
 | |
| 	ctx->stats->gbr_solved_lps++;
 | |
| 	if (GBR_lp_solve(lp) < 0)
 | |
| 		goto error;
 | |
| 	GBR_lp_get_obj_val(lp, &F[i]);
 | |
| 
 | |
| 	if (GBR_lt(F[i], one)) {
 | |
| 		if (!GBR_is_zero(F[i])) {
 | |
| 			empty = GBR_lp_cut(lp, B->row[1+i]+1);
 | |
| 			if (empty)
 | |
| 				goto done;
 | |
| 			GBR_set_ui(F[i], 0);
 | |
| 		}
 | |
| 		tab->n_zero++;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		if (i+1 == tab->n_zero) {
 | |
| 			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
 | |
| 			ctx->stats->gbr_solved_lps++;
 | |
| 			if (GBR_lp_solve(lp) < 0)
 | |
| 				goto error;
 | |
| 			GBR_lp_get_obj_val(lp, &F_new);
 | |
| 			fixed = GBR_lp_is_fixed(lp);
 | |
| 			GBR_set_ui(alpha, 0);
 | |
| 		} else
 | |
| 		if (use_saved) {
 | |
| 			row = GBR_lp_next_row(lp);
 | |
| 			GBR_set(F_new, F_saved);
 | |
| 			fixed = fixed_saved;
 | |
| 			GBR_set(alpha, alpha_saved[i]);
 | |
| 		} else {
 | |
| 			row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
 | |
| 			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
 | |
| 			ctx->stats->gbr_solved_lps++;
 | |
| 			if (GBR_lp_solve(lp) < 0)
 | |
| 				goto error;
 | |
| 			GBR_lp_get_obj_val(lp, &F_new);
 | |
| 			fixed = GBR_lp_is_fixed(lp);
 | |
| 
 | |
| 			GBR_lp_get_alpha(lp, row, &alpha);
 | |
| 
 | |
| 			if (i > 0)
 | |
| 				save_alpha(lp, row-i, i, alpha_saved);
 | |
| 
 | |
| 			if (GBR_lp_del_row(lp) < 0)
 | |
| 				goto error;
 | |
| 		}
 | |
| 		GBR_set(F[i+1], F_new);
 | |
| 
 | |
| 		GBR_floor(mu[0], alpha);
 | |
| 		GBR_ceil(mu[1], alpha);
 | |
| 
 | |
| 		if (isl_int_eq(mu[0], mu[1]))
 | |
| 			isl_int_set(tmp, mu[0]);
 | |
| 		else {
 | |
| 			int j;
 | |
| 
 | |
| 			for (j = 0; j <= 1; ++j) {
 | |
| 				isl_int_set(tmp, mu[j]);
 | |
| 				isl_seq_combine(b_tmp->el,
 | |
| 						ctx->one, B->row[1+i+1]+1,
 | |
| 						tmp, B->row[1+i]+1, dim);
 | |
| 				GBR_lp_set_obj(lp, b_tmp->el, dim);
 | |
| 				ctx->stats->gbr_solved_lps++;
 | |
| 				if (GBR_lp_solve(lp) < 0)
 | |
| 					goto error;
 | |
| 				GBR_lp_get_obj_val(lp, &mu_F[j]);
 | |
| 				mu_fixed[j] = GBR_lp_is_fixed(lp);
 | |
| 				if (i > 0)
 | |
| 					save_alpha(lp, row-i, i, alpha_buffer[j]);
 | |
| 			}
 | |
| 
 | |
| 			if (GBR_lt(mu_F[0], mu_F[1]))
 | |
| 				j = 0;
 | |
| 			else
 | |
| 				j = 1;
 | |
| 
 | |
| 			isl_int_set(tmp, mu[j]);
 | |
| 			GBR_set(F_new, mu_F[j]);
 | |
| 			fixed = mu_fixed[j];
 | |
| 			alpha_saved = alpha_buffer[j];
 | |
| 		}
 | |
| 		isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
 | |
| 				tmp, B->row[1+i]+1, dim);
 | |
| 
 | |
| 		if (i+1 == tab->n_zero && fixed) {
 | |
| 			if (!GBR_is_zero(F[i+1])) {
 | |
| 				empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
 | |
| 				if (empty)
 | |
| 					goto done;
 | |
| 				GBR_set_ui(F[i+1], 0);
 | |
| 			}
 | |
| 			tab->n_zero++;
 | |
| 		}
 | |
| 
 | |
| 		GBR_set(F_old, F[i]);
 | |
| 
 | |
| 		use_saved = 0;
 | |
| 		/* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
 | |
| 		GBR_set_ui(mu_F[0], 4);
 | |
| 		GBR_mul(mu_F[0], mu_F[0], F_new);
 | |
| 		GBR_set_ui(mu_F[1], 3);
 | |
| 		GBR_mul(mu_F[1], mu_F[1], F_old);
 | |
| 		if (GBR_lt(mu_F[0], mu_F[1])) {
 | |
| 			B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
 | |
| 			if (i > tab->n_zero) {
 | |
| 				use_saved = 1;
 | |
| 				GBR_set(F_saved, F_new);
 | |
| 				fixed_saved = fixed;
 | |
| 				if (GBR_lp_del_row(lp) < 0)
 | |
| 					goto error;
 | |
| 				--i;
 | |
| 			} else {
 | |
| 				GBR_set(F[tab->n_zero], F_new);
 | |
| 				if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
 | |
| 					break;
 | |
| 
 | |
| 				if (fixed) {
 | |
| 					if (!GBR_is_zero(F[tab->n_zero])) {
 | |
| 						empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
 | |
| 						if (empty)
 | |
| 							goto done;
 | |
| 						GBR_set_ui(F[tab->n_zero], 0);
 | |
| 					}
 | |
| 					tab->n_zero++;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			GBR_lp_add_row(lp, B->row[1+i]+1, dim);
 | |
| 			++i;
 | |
| 		}
 | |
| 	} while (i < n_bounded - 1);
 | |
| 
 | |
| 	if (0) {
 | |
| done:
 | |
| 		if (empty < 0) {
 | |
| error:
 | |
| 			isl_mat_free(B);
 | |
| 			B = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	GBR_lp_delete(lp);
 | |
| 
 | |
| 	if (alpha_buffer[1])
 | |
| 		for (i = 0; i < n_bounded; ++i) {
 | |
| 			GBR_clear(F[i]);
 | |
| 			GBR_clear(alpha_buffer[0][i]);
 | |
| 			GBR_clear(alpha_buffer[1][i]);
 | |
| 		}
 | |
| 	free(F);
 | |
| 	free(alpha_buffer[0]);
 | |
| 	free(alpha_buffer[1]);
 | |
| 
 | |
| 	isl_vec_free(b_tmp);
 | |
| 
 | |
| 	GBR_clear(alpha);
 | |
| 	GBR_clear(F_old);
 | |
| 	GBR_clear(F_new);
 | |
| 	GBR_clear(F_saved);
 | |
| 	GBR_clear(mu_F[0]);
 | |
| 	GBR_clear(mu_F[1]);
 | |
| 	GBR_clear(two);
 | |
| 	GBR_clear(one);
 | |
| 
 | |
| 	isl_int_clear(tmp);
 | |
| 	isl_int_clear(mu[0]);
 | |
| 	isl_int_clear(mu[1]);
 | |
| 
 | |
| 	tab->basis = B;
 | |
| 
 | |
| 	return tab;
 | |
| }
 | |
| 
 | |
| /* Compute an affine form of a reduced basis of the given basic
 | |
|  * non-parametric set, which is assumed to be bounded and not
 | |
|  * include any integer divisions.
 | |
|  * The first column and the first row correspond to the constant term.
 | |
|  *
 | |
|  * If the input contains any equalities, we first create an initial
 | |
|  * basis with the equalities first.  Otherwise, we start off with
 | |
|  * the identity matrix.
 | |
|  */
 | |
| __isl_give isl_mat *isl_basic_set_reduced_basis(__isl_keep isl_basic_set *bset)
 | |
| {
 | |
| 	struct isl_mat *basis;
 | |
| 	struct isl_tab *tab;
 | |
| 
 | |
| 	if (!bset)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (isl_basic_set_dim(bset, isl_dim_div) != 0)
 | |
| 		isl_die(bset->ctx, isl_error_invalid,
 | |
| 			"no integer division allowed", return NULL);
 | |
| 	if (isl_basic_set_dim(bset, isl_dim_param) != 0)
 | |
| 		isl_die(bset->ctx, isl_error_invalid,
 | |
| 			"no parameters allowed", return NULL);
 | |
| 
 | |
| 	tab = isl_tab_from_basic_set(bset, 0);
 | |
| 	if (!tab)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (bset->n_eq == 0)
 | |
| 		tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
 | |
| 	else {
 | |
| 		isl_mat *eq;
 | |
| 		unsigned nvar = isl_basic_set_total_dim(bset);
 | |
| 		eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
 | |
| 					1, nvar);
 | |
| 		eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
 | |
| 		tab->basis = isl_mat_lin_to_aff(tab->basis);
 | |
| 		tab->n_zero = bset->n_eq;
 | |
| 		isl_mat_free(eq);
 | |
| 	}
 | |
| 	tab = isl_tab_compute_reduced_basis(tab);
 | |
| 	if (!tab)
 | |
| 		return NULL;
 | |
| 
 | |
| 	basis = isl_mat_copy(tab->basis);
 | |
| 
 | |
| 	isl_tab_free(tab);
 | |
| 
 | |
| 	return basis;
 | |
| }
 |