468663ddbb
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
704 lines
23 KiB
C
704 lines
23 KiB
C
/*
|
|
* Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
|
|
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
|
* Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
|
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
*
|
|
* Permission is hereby granted to use or copy this program
|
|
* for any purpose, provided the above notices are retained on all copies.
|
|
* Permission to modify the code and to distribute modified code is granted,
|
|
* provided the above notices are retained, and a notice that the code was
|
|
* modified is included with the above copyright notice.
|
|
*/
|
|
|
|
#include "private/gc_priv.h"
|
|
#include "gc_inline.h" /* for GC_malloc_kind */
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
/* Allocate reclaim list for kind: */
|
|
/* Return TRUE on success */
|
|
STATIC GC_bool GC_alloc_reclaim_list(struct obj_kind *kind)
|
|
{
|
|
struct hblk ** result = (struct hblk **)
|
|
GC_scratch_alloc((MAXOBJGRANULES+1) * sizeof(struct hblk *));
|
|
if (result == 0) return(FALSE);
|
|
BZERO(result, (MAXOBJGRANULES+1)*sizeof(struct hblk *));
|
|
kind -> ok_reclaim_list = result;
|
|
return(TRUE);
|
|
}
|
|
|
|
/* Allocate a large block of size lb bytes. */
|
|
/* The block is not cleared. */
|
|
/* Flags is 0 or IGNORE_OFF_PAGE. */
|
|
/* EXTRA_BYTES were already added to lb. */
|
|
GC_INNER ptr_t GC_alloc_large(size_t lb, int k, unsigned flags)
|
|
{
|
|
struct hblk * h;
|
|
word n_blocks;
|
|
ptr_t result;
|
|
GC_bool retry = FALSE;
|
|
|
|
GC_ASSERT(I_HOLD_LOCK());
|
|
lb = ROUNDUP_GRANULE_SIZE(lb);
|
|
n_blocks = OBJ_SZ_TO_BLOCKS_CHECKED(lb);
|
|
if (!EXPECT(GC_is_initialized, TRUE)) {
|
|
DCL_LOCK_STATE;
|
|
UNLOCK(); /* just to unset GC_lock_holder */
|
|
GC_init();
|
|
LOCK();
|
|
}
|
|
/* Do our share of marking work */
|
|
if (GC_incremental && !GC_dont_gc)
|
|
GC_collect_a_little_inner((int)n_blocks);
|
|
h = GC_allochblk(lb, k, flags);
|
|
# ifdef USE_MUNMAP
|
|
if (0 == h) {
|
|
GC_merge_unmapped();
|
|
h = GC_allochblk(lb, k, flags);
|
|
}
|
|
# endif
|
|
while (0 == h && GC_collect_or_expand(n_blocks, flags != 0, retry)) {
|
|
h = GC_allochblk(lb, k, flags);
|
|
retry = TRUE;
|
|
}
|
|
if (h == 0) {
|
|
result = 0;
|
|
} else {
|
|
size_t total_bytes = n_blocks * HBLKSIZE;
|
|
if (n_blocks > 1) {
|
|
GC_large_allocd_bytes += total_bytes;
|
|
if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
|
|
GC_max_large_allocd_bytes = GC_large_allocd_bytes;
|
|
}
|
|
/* FIXME: Do we need some way to reset GC_max_large_allocd_bytes? */
|
|
result = h -> hb_body;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Allocate a large block of size lb bytes. Clear if appropriate. */
|
|
/* EXTRA_BYTES were already added to lb. */
|
|
STATIC ptr_t GC_alloc_large_and_clear(size_t lb, int k, unsigned flags)
|
|
{
|
|
ptr_t result;
|
|
|
|
GC_ASSERT(I_HOLD_LOCK());
|
|
result = GC_alloc_large(lb, k, flags);
|
|
if (result != NULL
|
|
&& (GC_debugging_started || GC_obj_kinds[k].ok_init)) {
|
|
word n_blocks = OBJ_SZ_TO_BLOCKS(lb);
|
|
|
|
/* Clear the whole block, in case of GC_realloc call. */
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Fill in additional entries in GC_size_map, including the i-th one. */
|
|
/* Note that a filled in section of the array ending at n always */
|
|
/* has the length of at least n/4. */
|
|
STATIC void GC_extend_size_map(size_t i)
|
|
{
|
|
size_t orig_granule_sz = ROUNDED_UP_GRANULES(i);
|
|
size_t granule_sz;
|
|
size_t byte_sz = GRANULES_TO_BYTES(orig_granule_sz);
|
|
/* The size we try to preserve. */
|
|
/* Close to i, unless this would */
|
|
/* introduce too many distinct sizes. */
|
|
size_t smaller_than_i = byte_sz - (byte_sz >> 3);
|
|
size_t low_limit; /* The lowest indexed entry we initialize. */
|
|
size_t number_of_objs;
|
|
|
|
GC_ASSERT(I_HOLD_LOCK());
|
|
GC_ASSERT(0 == GC_size_map[i]);
|
|
if (0 == GC_size_map[smaller_than_i]) {
|
|
low_limit = byte_sz - (byte_sz >> 2); /* much smaller than i */
|
|
granule_sz = orig_granule_sz;
|
|
while (GC_size_map[low_limit] != 0)
|
|
low_limit++;
|
|
} else {
|
|
low_limit = smaller_than_i + 1;
|
|
while (GC_size_map[low_limit] != 0)
|
|
low_limit++;
|
|
|
|
granule_sz = ROUNDED_UP_GRANULES(low_limit);
|
|
granule_sz += granule_sz >> 3;
|
|
if (granule_sz < orig_granule_sz)
|
|
granule_sz = orig_granule_sz;
|
|
}
|
|
|
|
/* For these larger sizes, we use an even number of granules. */
|
|
/* This makes it easier to, e.g., construct a 16-byte-aligned */
|
|
/* allocator even if GRANULE_BYTES is 8. */
|
|
granule_sz = (granule_sz + 1) & ~1;
|
|
if (granule_sz > MAXOBJGRANULES)
|
|
granule_sz = MAXOBJGRANULES;
|
|
|
|
/* If we can fit the same number of larger objects in a block, do so. */
|
|
number_of_objs = HBLK_GRANULES / granule_sz;
|
|
GC_ASSERT(number_of_objs != 0);
|
|
granule_sz = (HBLK_GRANULES / number_of_objs) & ~1;
|
|
|
|
byte_sz = GRANULES_TO_BYTES(granule_sz) - EXTRA_BYTES;
|
|
/* We may need one extra byte; do not always */
|
|
/* fill in GC_size_map[byte_sz]. */
|
|
|
|
for (; low_limit <= byte_sz; low_limit++)
|
|
GC_size_map[low_limit] = granule_sz;
|
|
}
|
|
|
|
/* Allocate lb bytes for an object of kind k. */
|
|
/* Should not be used to directly to allocate objects */
|
|
/* that require special handling on allocation. */
|
|
GC_INNER void * GC_generic_malloc_inner(size_t lb, int k)
|
|
{
|
|
void *op;
|
|
|
|
GC_ASSERT(I_HOLD_LOCK());
|
|
GC_ASSERT(k < MAXOBJKINDS);
|
|
if (SMALL_OBJ(lb)) {
|
|
struct obj_kind * kind = GC_obj_kinds + k;
|
|
size_t lg = GC_size_map[lb];
|
|
void ** opp = &(kind -> ok_freelist[lg]);
|
|
|
|
op = *opp;
|
|
if (EXPECT(0 == op, FALSE)) {
|
|
if (lg == 0) {
|
|
if (!EXPECT(GC_is_initialized, TRUE)) {
|
|
DCL_LOCK_STATE;
|
|
UNLOCK(); /* just to unset GC_lock_holder */
|
|
GC_init();
|
|
LOCK();
|
|
lg = GC_size_map[lb];
|
|
}
|
|
if (0 == lg) {
|
|
GC_extend_size_map(lb);
|
|
lg = GC_size_map[lb];
|
|
GC_ASSERT(lg != 0);
|
|
}
|
|
/* Retry */
|
|
opp = &(kind -> ok_freelist[lg]);
|
|
op = *opp;
|
|
}
|
|
if (0 == op) {
|
|
if (0 == kind -> ok_reclaim_list &&
|
|
!GC_alloc_reclaim_list(kind))
|
|
return NULL;
|
|
op = GC_allocobj(lg, k);
|
|
if (0 == op)
|
|
return NULL;
|
|
}
|
|
}
|
|
*opp = obj_link(op);
|
|
obj_link(op) = 0;
|
|
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
|
|
} else {
|
|
op = (ptr_t)GC_alloc_large_and_clear(ADD_SLOP(lb), k, 0);
|
|
if (op != NULL)
|
|
GC_bytes_allocd += lb;
|
|
}
|
|
|
|
return op;
|
|
}
|
|
|
|
#if defined(DBG_HDRS_ALL) || defined(GC_GCJ_SUPPORT) \
|
|
|| !defined(GC_NO_FINALIZATION)
|
|
/* Allocate a composite object of size n bytes. The caller */
|
|
/* guarantees that pointers past the first page are not relevant. */
|
|
GC_INNER void * GC_generic_malloc_inner_ignore_off_page(size_t lb, int k)
|
|
{
|
|
word lb_adjusted;
|
|
void * op;
|
|
|
|
GC_ASSERT(I_HOLD_LOCK());
|
|
if (lb <= HBLKSIZE)
|
|
return GC_generic_malloc_inner(lb, k);
|
|
GC_ASSERT(k < MAXOBJKINDS);
|
|
lb_adjusted = ADD_SLOP(lb);
|
|
op = GC_alloc_large_and_clear(lb_adjusted, k, IGNORE_OFF_PAGE);
|
|
if (op != NULL)
|
|
GC_bytes_allocd += lb_adjusted;
|
|
return op;
|
|
}
|
|
#endif
|
|
|
|
#ifdef GC_COLLECT_AT_MALLOC
|
|
/* Parameter to force GC at every malloc of size greater or equal to */
|
|
/* the given value. This might be handy during debugging. */
|
|
# if defined(CPPCHECK)
|
|
size_t GC_dbg_collect_at_malloc_min_lb = 16*1024; /* e.g. */
|
|
# else
|
|
size_t GC_dbg_collect_at_malloc_min_lb = (GC_COLLECT_AT_MALLOC);
|
|
# endif
|
|
#endif
|
|
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_malloc(size_t lb, int k)
|
|
{
|
|
void * result;
|
|
DCL_LOCK_STATE;
|
|
|
|
GC_ASSERT(k < MAXOBJKINDS);
|
|
if (EXPECT(GC_have_errors, FALSE))
|
|
GC_print_all_errors();
|
|
GC_INVOKE_FINALIZERS();
|
|
GC_DBG_COLLECT_AT_MALLOC(lb);
|
|
if (SMALL_OBJ(lb)) {
|
|
LOCK();
|
|
result = GC_generic_malloc_inner(lb, k);
|
|
UNLOCK();
|
|
} else {
|
|
size_t lg;
|
|
size_t lb_rounded;
|
|
word n_blocks;
|
|
GC_bool init;
|
|
|
|
lg = ROUNDED_UP_GRANULES(lb);
|
|
lb_rounded = GRANULES_TO_BYTES(lg);
|
|
n_blocks = OBJ_SZ_TO_BLOCKS(lb_rounded);
|
|
init = GC_obj_kinds[k].ok_init;
|
|
LOCK();
|
|
result = (ptr_t)GC_alloc_large(lb_rounded, k, 0);
|
|
if (0 != result) {
|
|
if (GC_debugging_started) {
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
} else {
|
|
# ifdef THREADS
|
|
/* Clear any memory that might be used for GC descriptors */
|
|
/* before we release the lock. */
|
|
((word *)result)[0] = 0;
|
|
((word *)result)[1] = 0;
|
|
((word *)result)[GRANULES_TO_WORDS(lg)-1] = 0;
|
|
((word *)result)[GRANULES_TO_WORDS(lg)-2] = 0;
|
|
# endif
|
|
}
|
|
GC_bytes_allocd += lb_rounded;
|
|
}
|
|
UNLOCK();
|
|
if (init && !GC_debugging_started && 0 != result) {
|
|
BZERO(result, n_blocks * HBLKSIZE);
|
|
}
|
|
}
|
|
if (0 == result) {
|
|
return((*GC_get_oom_fn())(lb));
|
|
} else {
|
|
return(result);
|
|
}
|
|
}
|
|
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_kind_global(size_t lb, int k)
|
|
{
|
|
GC_ASSERT(k < MAXOBJKINDS);
|
|
if (SMALL_OBJ(lb)) {
|
|
void *op;
|
|
void **opp;
|
|
size_t lg;
|
|
DCL_LOCK_STATE;
|
|
|
|
GC_DBG_COLLECT_AT_MALLOC(lb);
|
|
LOCK();
|
|
lg = GC_size_map[lb];
|
|
opp = &GC_obj_kinds[k].ok_freelist[lg];
|
|
op = *opp;
|
|
if (EXPECT(op != NULL, TRUE)) {
|
|
if (k == PTRFREE) {
|
|
*opp = obj_link(op);
|
|
} else {
|
|
GC_ASSERT(0 == obj_link(op)
|
|
|| ((word)obj_link(op)
|
|
<= (word)GC_greatest_plausible_heap_addr
|
|
&& (word)obj_link(op)
|
|
>= (word)GC_least_plausible_heap_addr));
|
|
*opp = obj_link(op);
|
|
obj_link(op) = 0;
|
|
}
|
|
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
|
|
UNLOCK();
|
|
return op;
|
|
}
|
|
UNLOCK();
|
|
}
|
|
|
|
/* We make the GC_clear_stack() call a tail one, hoping to get more */
|
|
/* of the stack. */
|
|
return GC_clear_stack(GC_generic_malloc(lb, k));
|
|
}
|
|
|
|
#if defined(THREADS) && !defined(THREAD_LOCAL_ALLOC)
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_kind(size_t lb, int k)
|
|
{
|
|
return GC_malloc_kind_global(lb, k);
|
|
}
|
|
#endif
|
|
|
|
#if !IL2CPP_ENABLE_WRITE_BARRIER_VALIDATION
|
|
/* Allocate lb bytes of atomic (pointer-free) data. */
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_atomic(size_t lb)
|
|
{
|
|
return GC_malloc_kind(lb, PTRFREE);
|
|
}
|
|
|
|
/* Allocate lb bytes of composite (pointerful) data. */
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc(size_t lb)
|
|
{
|
|
return GC_malloc_kind(lb, NORMAL);
|
|
}
|
|
#endif
|
|
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_malloc_uncollectable(
|
|
size_t lb, int k)
|
|
{
|
|
void *op;
|
|
DCL_LOCK_STATE;
|
|
|
|
GC_ASSERT(k < MAXOBJKINDS);
|
|
if (SMALL_OBJ(lb)) {
|
|
void **opp;
|
|
size_t lg;
|
|
|
|
GC_DBG_COLLECT_AT_MALLOC(lb);
|
|
if (EXTRA_BYTES != 0 && lb != 0) lb--;
|
|
/* We don't need the extra byte, since this won't be */
|
|
/* collected anyway. */
|
|
LOCK();
|
|
lg = GC_size_map[lb];
|
|
opp = &GC_obj_kinds[k].ok_freelist[lg];
|
|
op = *opp;
|
|
if (EXPECT(op != NULL, TRUE)) {
|
|
*opp = obj_link(op);
|
|
obj_link(op) = 0;
|
|
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
|
|
/* Mark bit was already set on free list. It will be */
|
|
/* cleared only temporarily during a collection, as a */
|
|
/* result of the normal free list mark bit clearing. */
|
|
GC_non_gc_bytes += GRANULES_TO_BYTES((word)lg);
|
|
UNLOCK();
|
|
} else {
|
|
UNLOCK();
|
|
op = GC_generic_malloc(lb, k);
|
|
/* For small objects, the free lists are completely marked. */
|
|
}
|
|
GC_ASSERT(0 == op || GC_is_marked(op));
|
|
} else {
|
|
hdr * hhdr;
|
|
|
|
op = GC_generic_malloc(lb, k);
|
|
if (NULL == op)
|
|
return NULL;
|
|
|
|
GC_ASSERT(((word)op & (HBLKSIZE - 1)) == 0); /* large block */
|
|
hhdr = HDR(op);
|
|
/* We don't need the lock here, since we have an undisguised */
|
|
/* pointer. We do need to hold the lock while we adjust */
|
|
/* mark bits. */
|
|
LOCK();
|
|
set_mark_bit_from_hdr(hhdr, 0); /* Only object. */
|
|
# ifndef THREADS
|
|
GC_ASSERT(hhdr -> hb_n_marks == 0);
|
|
/* This is not guaranteed in the multi-threaded case */
|
|
/* because the counter could be updated before locking. */
|
|
# endif
|
|
hhdr -> hb_n_marks = 1;
|
|
UNLOCK();
|
|
}
|
|
return op;
|
|
}
|
|
|
|
#if !IL2CPP_ENABLE_WRITE_BARRIER_VALIDATION
|
|
/* Allocate lb bytes of pointerful, traced, but not collectible data. */
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_uncollectable(size_t lb)
|
|
{
|
|
return GC_generic_malloc_uncollectable(lb, UNCOLLECTABLE);
|
|
}
|
|
#endif
|
|
|
|
#ifdef GC_ATOMIC_UNCOLLECTABLE
|
|
/* Allocate lb bytes of pointer-free, untraced, uncollectible data */
|
|
/* This is normally roughly equivalent to the system malloc. */
|
|
/* But it may be useful if malloc is redefined. */
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL
|
|
GC_malloc_atomic_uncollectable(size_t lb)
|
|
{
|
|
return GC_generic_malloc_uncollectable(lb, AUNCOLLECTABLE);
|
|
}
|
|
#endif /* GC_ATOMIC_UNCOLLECTABLE */
|
|
|
|
#if defined(REDIRECT_MALLOC) && !defined(REDIRECT_MALLOC_IN_HEADER)
|
|
|
|
# ifndef MSWINCE
|
|
# include <errno.h>
|
|
# endif
|
|
|
|
/* Avoid unnecessary nested procedure calls here, by #defining some */
|
|
/* malloc replacements. Otherwise we end up saving a meaningless */
|
|
/* return address in the object. It also speeds things up, but it is */
|
|
/* admittedly quite ugly. */
|
|
# define GC_debug_malloc_replacement(lb) GC_debug_malloc(lb, GC_DBG_EXTRAS)
|
|
|
|
# if defined(CPPCHECK)
|
|
# define REDIRECT_MALLOC_F GC_malloc /* e.g. */
|
|
# else
|
|
# define REDIRECT_MALLOC_F REDIRECT_MALLOC
|
|
# endif
|
|
|
|
void * malloc(size_t lb)
|
|
{
|
|
/* It might help to manually inline the GC_malloc call here. */
|
|
/* But any decent compiler should reduce the extra procedure call */
|
|
/* to at most a jump instruction in this case. */
|
|
# if defined(I386) && defined(GC_SOLARIS_THREADS)
|
|
/* Thread initialization can call malloc before we are ready for. */
|
|
/* It is not clear that this is enough to help matters. */
|
|
/* The thread implementation may well call malloc at other */
|
|
/* inopportune times. */
|
|
if (!EXPECT(GC_is_initialized, TRUE)) return sbrk(lb);
|
|
# endif
|
|
return (void *)REDIRECT_MALLOC_F(lb);
|
|
}
|
|
|
|
# if defined(GC_LINUX_THREADS)
|
|
STATIC ptr_t GC_libpthread_start = 0;
|
|
STATIC ptr_t GC_libpthread_end = 0;
|
|
STATIC ptr_t GC_libld_start = 0;
|
|
STATIC ptr_t GC_libld_end = 0;
|
|
|
|
STATIC void GC_init_lib_bounds(void)
|
|
{
|
|
IF_CANCEL(int cancel_state;)
|
|
|
|
if (GC_libpthread_start != 0) return;
|
|
DISABLE_CANCEL(cancel_state);
|
|
GC_init(); /* if not called yet */
|
|
if (!GC_text_mapping("libpthread-",
|
|
&GC_libpthread_start, &GC_libpthread_end)) {
|
|
WARN("Failed to find libpthread.so text mapping: Expect crash\n", 0);
|
|
/* This might still work with some versions of libpthread, */
|
|
/* so we don't abort. Perhaps we should. */
|
|
/* Generate message only once: */
|
|
GC_libpthread_start = (ptr_t)1;
|
|
}
|
|
if (!GC_text_mapping("ld-", &GC_libld_start, &GC_libld_end)) {
|
|
WARN("Failed to find ld.so text mapping: Expect crash\n", 0);
|
|
}
|
|
RESTORE_CANCEL(cancel_state);
|
|
}
|
|
# endif /* GC_LINUX_THREADS */
|
|
|
|
void * calloc(size_t n, size_t lb)
|
|
{
|
|
if ((lb | n) > GC_SQRT_SIZE_MAX /* fast initial test */
|
|
&& lb && n > GC_SIZE_MAX / lb)
|
|
return (*GC_get_oom_fn())(GC_SIZE_MAX); /* n*lb overflow */
|
|
# if defined(GC_LINUX_THREADS)
|
|
/* libpthread allocated some memory that is only pointed to by */
|
|
/* mmapped thread stacks. Make sure it is not collectible. */
|
|
{
|
|
static GC_bool lib_bounds_set = FALSE;
|
|
ptr_t caller = (ptr_t)__builtin_return_address(0);
|
|
/* This test does not need to ensure memory visibility, since */
|
|
/* the bounds will be set when/if we create another thread. */
|
|
if (!EXPECT(lib_bounds_set, TRUE)) {
|
|
GC_init_lib_bounds();
|
|
lib_bounds_set = TRUE;
|
|
}
|
|
if (((word)caller >= (word)GC_libpthread_start
|
|
&& (word)caller < (word)GC_libpthread_end)
|
|
|| ((word)caller >= (word)GC_libld_start
|
|
&& (word)caller < (word)GC_libld_end))
|
|
return GC_generic_malloc_uncollectable(n * lb, UNCOLLECTABLE);
|
|
/* The two ranges are actually usually adjacent, so there may */
|
|
/* be a way to speed this up. */
|
|
}
|
|
# endif
|
|
return (void *)REDIRECT_MALLOC_F(n * lb);
|
|
}
|
|
|
|
# ifndef strdup
|
|
char *strdup(const char *s)
|
|
{
|
|
size_t lb = strlen(s) + 1;
|
|
char *result = (char *)REDIRECT_MALLOC_F(lb);
|
|
if (result == 0) {
|
|
errno = ENOMEM;
|
|
return 0;
|
|
}
|
|
BCOPY(s, result, lb);
|
|
return result;
|
|
}
|
|
# endif /* !defined(strdup) */
|
|
/* If strdup is macro defined, we assume that it actually calls malloc, */
|
|
/* and thus the right thing will happen even without overriding it. */
|
|
/* This seems to be true on most Linux systems. */
|
|
|
|
# ifndef strndup
|
|
/* This is similar to strdup(). */
|
|
char *strndup(const char *str, size_t size)
|
|
{
|
|
char *copy;
|
|
size_t len = strlen(str);
|
|
if (len > size)
|
|
len = size;
|
|
copy = (char *)REDIRECT_MALLOC_F(len + 1);
|
|
if (copy == NULL) {
|
|
errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
if (EXPECT(len > 0, TRUE))
|
|
BCOPY(str, copy, len);
|
|
copy[len] = '\0';
|
|
return copy;
|
|
}
|
|
# endif /* !strndup */
|
|
|
|
# undef GC_debug_malloc_replacement
|
|
|
|
#endif /* REDIRECT_MALLOC */
|
|
|
|
#if !IL2CPP_ENABLE_WRITE_BARRIER_VALIDATION
|
|
/* Explicitly deallocate an object p. */
|
|
GC_API void GC_CALL GC_free(void * p)
|
|
{
|
|
struct hblk *h;
|
|
hdr *hhdr;
|
|
size_t sz; /* In bytes */
|
|
size_t ngranules; /* sz in granules */
|
|
int knd;
|
|
struct obj_kind * ok;
|
|
DCL_LOCK_STATE;
|
|
|
|
if (p == 0) return;
|
|
/* Required by ANSI. It's not my fault ... */
|
|
# ifdef LOG_ALLOCS
|
|
GC_log_printf("GC_free(%p) after GC #%lu\n",
|
|
p, (unsigned long)GC_gc_no);
|
|
# endif
|
|
h = HBLKPTR(p);
|
|
hhdr = HDR(h);
|
|
# if defined(REDIRECT_MALLOC) && \
|
|
((defined(NEED_CALLINFO) && defined(GC_HAVE_BUILTIN_BACKTRACE)) \
|
|
|| defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \
|
|
|| defined(MSWIN32))
|
|
/* This might be called indirectly by GC_print_callers to free */
|
|
/* the result of backtrace_symbols. */
|
|
/* For Solaris, we have to redirect malloc calls during */
|
|
/* initialization. For the others, this seems to happen */
|
|
/* implicitly. */
|
|
/* Don't try to deallocate that memory. */
|
|
if (0 == hhdr) return;
|
|
# endif
|
|
GC_ASSERT(GC_base(p) == p);
|
|
sz = (size_t)hhdr->hb_sz;
|
|
ngranules = BYTES_TO_GRANULES(sz);
|
|
knd = hhdr -> hb_obj_kind;
|
|
ok = &GC_obj_kinds[knd];
|
|
if (EXPECT(ngranules <= MAXOBJGRANULES, TRUE)) {
|
|
void **flh;
|
|
|
|
LOCK();
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
/* Its unnecessary to clear the mark bit. If the */
|
|
/* object is reallocated, it doesn't matter. O.w. the */
|
|
/* collector will do it, since it's on a free list. */
|
|
if (ok -> ok_init && EXPECT(sz > sizeof(word), TRUE)) {
|
|
BZERO((word *)p + 1, sz-sizeof(word));
|
|
}
|
|
flh = &(ok -> ok_freelist[ngranules]);
|
|
obj_link(p) = *flh;
|
|
*flh = (ptr_t)p;
|
|
UNLOCK();
|
|
} else {
|
|
size_t nblocks = OBJ_SZ_TO_BLOCKS(sz);
|
|
|
|
LOCK();
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
if (nblocks > 1) {
|
|
GC_large_allocd_bytes -= nblocks * HBLKSIZE;
|
|
}
|
|
GC_freehblk(h);
|
|
UNLOCK();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Explicitly deallocate an object p when we already hold lock. */
|
|
/* Only used for internally allocated objects, so we can take some */
|
|
/* shortcuts. */
|
|
#ifdef THREADS
|
|
GC_INNER void GC_free_inner(void * p)
|
|
{
|
|
struct hblk *h;
|
|
hdr *hhdr;
|
|
size_t sz; /* bytes */
|
|
size_t ngranules; /* sz in granules */
|
|
int knd;
|
|
struct obj_kind * ok;
|
|
|
|
h = HBLKPTR(p);
|
|
hhdr = HDR(h);
|
|
knd = hhdr -> hb_obj_kind;
|
|
sz = (size_t)hhdr->hb_sz;
|
|
ngranules = BYTES_TO_GRANULES(sz);
|
|
ok = &GC_obj_kinds[knd];
|
|
if (ngranules <= MAXOBJGRANULES) {
|
|
void ** flh;
|
|
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
if (ok -> ok_init && EXPECT(sz > sizeof(word), TRUE)) {
|
|
BZERO((word *)p + 1, sz-sizeof(word));
|
|
}
|
|
flh = &(ok -> ok_freelist[ngranules]);
|
|
obj_link(p) = *flh;
|
|
*flh = (ptr_t)p;
|
|
} else {
|
|
size_t nblocks = OBJ_SZ_TO_BLOCKS(sz);
|
|
GC_bytes_freed += sz;
|
|
if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz;
|
|
if (nblocks > 1) {
|
|
GC_large_allocd_bytes -= nblocks * HBLKSIZE;
|
|
}
|
|
GC_freehblk(h);
|
|
}
|
|
}
|
|
#endif /* THREADS */
|
|
|
|
#if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)
|
|
# define REDIRECT_FREE GC_free
|
|
#endif
|
|
|
|
#if defined(REDIRECT_FREE) && !defined(REDIRECT_MALLOC_IN_HEADER)
|
|
|
|
# if defined(CPPCHECK)
|
|
# define REDIRECT_FREE_F GC_free /* e.g. */
|
|
# else
|
|
# define REDIRECT_FREE_F REDIRECT_FREE
|
|
# endif
|
|
|
|
void free(void * p)
|
|
{
|
|
# ifndef IGNORE_FREE
|
|
# if defined(GC_LINUX_THREADS) && !defined(USE_PROC_FOR_LIBRARIES)
|
|
/* Don't bother with initialization checks. If nothing */
|
|
/* has been initialized, the check fails, and that's safe, */
|
|
/* since we have not allocated uncollectible objects neither. */
|
|
ptr_t caller = (ptr_t)__builtin_return_address(0);
|
|
/* This test does not need to ensure memory visibility, since */
|
|
/* the bounds will be set when/if we create another thread. */
|
|
if (((word)caller >= (word)GC_libpthread_start
|
|
&& (word)caller < (word)GC_libpthread_end)
|
|
|| ((word)caller >= (word)GC_libld_start
|
|
&& (word)caller < (word)GC_libld_end)) {
|
|
GC_free(p);
|
|
return;
|
|
}
|
|
# endif
|
|
REDIRECT_FREE_F(p);
|
|
# endif
|
|
}
|
|
#endif /* REDIRECT_FREE */
|