linux-packaging-mono/mono/sgen/sgen-workers.c
Xamarin Public Jenkins (auto-signing) 19234507ba Imported Upstream version 5.14.0.78
Former-commit-id: 3494343bcc9ddb42b36b82dd9ae7b69e85e0229f
2018-05-10 08:37:03 +00:00

693 lines
22 KiB
C

/**
* \file
* Worker threads for parallel and concurrent GC.
*
* Copyright 2001-2003 Ximian, Inc
* Copyright 2003-2010 Novell, Inc.
* Copyright (C) 2012 Xamarin Inc
*
* Licensed under the MIT license. See LICENSE file in the project root for full license information.
*/
#include "config.h"
#ifdef HAVE_SGEN_GC
#include <string.h>
#include "mono/sgen/sgen-gc.h"
#include "mono/sgen/sgen-workers.h"
#include "mono/sgen/sgen-thread-pool.h"
#include "mono/utils/mono-membar.h"
#include "mono/sgen/sgen-client.h"
#ifndef DISABLE_SGEN_MAJOR_MARKSWEEP_CONC
static WorkerContext worker_contexts [GENERATION_MAX];
/*
* Allowed transitions:
*
* | from \ to | NOT WORKING | WORKING | WORK ENQUEUED |
* |--------------------+-------------+---------+---------------+
* | NOT WORKING | - | - | main / worker |
* | WORKING | worker | - | main / worker |
* | WORK ENQUEUED | - | worker | - |
*
* The WORK ENQUEUED state guarantees that the worker thread will inspect the queue again at
* least once. Only after looking at the queue will it go back to WORKING, and then,
* eventually, to NOT WORKING. After enqueuing work the main thread transitions the state
* to WORK ENQUEUED. Signalling the worker thread to wake up is only necessary if the old
* state was NOT WORKING.
*/
enum {
STATE_NOT_WORKING,
STATE_WORKING,
STATE_WORK_ENQUEUED
};
#define SGEN_WORKER_MIN_SECTIONS_SIGNAL 4
static guint64 stat_workers_num_finished;
static gboolean
set_state (WorkerData *data, State old_state, State new_state)
{
SGEN_ASSERT (0, old_state != new_state, "Why are we transitioning to the same state?");
if (new_state == STATE_NOT_WORKING)
SGEN_ASSERT (0, old_state == STATE_WORKING, "We can only transition to NOT WORKING from WORKING");
else if (new_state == STATE_WORKING)
SGEN_ASSERT (0, old_state == STATE_WORK_ENQUEUED, "We can only transition to WORKING from WORK ENQUEUED");
return mono_atomic_cas_i32 (&data->state, new_state, old_state) == old_state;
}
static gboolean
state_is_working_or_enqueued (State state)
{
return state == STATE_WORKING || state == STATE_WORK_ENQUEUED;
}
static void
sgen_workers_ensure_awake (WorkerContext *context)
{
int i;
gboolean need_signal = FALSE;
/*
* All workers are awaken, make sure we reset the parallel context.
* We call this function only when starting the workers so nobody is running,
* or when the last worker is enqueuing preclean work. In both cases we can't
* have a worker working using a nopar context, which means it is safe.
*/
context->idle_func_object_ops = (context->active_workers_num > 1) ? context->idle_func_object_ops_par : context->idle_func_object_ops_nopar;
context->workers_finished = FALSE;
for (i = 0; i < context->active_workers_num; i++) {
State old_state;
gboolean did_set_state;
do {
old_state = context->workers_data [i].state;
if (old_state == STATE_WORK_ENQUEUED)
break;
did_set_state = set_state (&context->workers_data [i], old_state, STATE_WORK_ENQUEUED);
if (did_set_state && old_state == STATE_NOT_WORKING)
context->workers_data [i].last_start = sgen_timestamp ();
} while (!did_set_state);
if (!state_is_working_or_enqueued (old_state))
need_signal = TRUE;
}
if (need_signal)
sgen_thread_pool_idle_signal (context->thread_pool_context);
}
static void
worker_try_finish (WorkerData *data)
{
State old_state;
int i, working = 0;
WorkerContext *context = data->context;
gint64 last_start = data->last_start;
++stat_workers_num_finished;
mono_os_mutex_lock (&context->finished_lock);
for (i = 0; i < context->active_workers_num; i++) {
if (state_is_working_or_enqueued (context->workers_data [i].state))
working++;
}
if (working == 1) {
SgenWorkersFinishCallback callback = context->finish_callback;
SGEN_ASSERT (0, context->idle_func_object_ops == context->idle_func_object_ops_nopar, "Why are we finishing with parallel context");
/* We are the last one left. Enqueue preclean job if we have one and awake everybody */
SGEN_ASSERT (0, data->state != STATE_NOT_WORKING, "How did we get from doing idle work to NOT WORKING without setting it ourselves?");
if (callback) {
context->finish_callback = NULL;
callback ();
context->worker_awakenings = 0;
/* Make sure each worker has a chance of seeing the enqueued jobs */
sgen_workers_ensure_awake (context);
SGEN_ASSERT (0, data->state == STATE_WORK_ENQUEUED, "Why did we fail to set our own state to ENQUEUED");
/*
* Log to be able to get the duration of normal concurrent M&S phase.
* Worker indexes are 1 based, since 0 is logically considered gc thread.
*/
sgen_binary_protocol_worker_finish_stats (data - &context->workers_data [0] + 1, context->generation, context->forced_stop, data->major_scan_time, data->los_scan_time, data->total_time + sgen_timestamp () - last_start);
goto work_available;
}
}
do {
old_state = data->state;
SGEN_ASSERT (0, old_state != STATE_NOT_WORKING, "How did we get from doing idle work to NOT WORKING without setting it ourselves?");
if (old_state == STATE_WORK_ENQUEUED)
goto work_available;
SGEN_ASSERT (0, old_state == STATE_WORKING, "What other possibility is there?");
} while (!set_state (data, old_state, STATE_NOT_WORKING));
/*
* If we are second to last to finish, we set the scan context to the non-parallel
* version so we can speed up the last worker. This helps us maintain same level
* of performance as non-parallel mode even if we fail to distribute work properly.
*/
if (working == 2)
context->idle_func_object_ops = context->idle_func_object_ops_nopar;
context->workers_finished = TRUE;
mono_os_mutex_unlock (&context->finished_lock);
data->total_time += (sgen_timestamp () - last_start);
sgen_binary_protocol_worker_finish_stats (data - &context->workers_data [0] + 1, context->generation, context->forced_stop, data->major_scan_time, data->los_scan_time, data->total_time);
sgen_gray_object_queue_trim_free_list (&data->private_gray_queue);
return;
work_available:
mono_os_mutex_unlock (&context->finished_lock);
}
void
sgen_workers_enqueue_job (int generation, SgenThreadPoolJob *job, gboolean enqueue)
{
if (!enqueue) {
job->func (NULL, job);
sgen_thread_pool_job_free (job);
return;
}
sgen_thread_pool_job_enqueue (worker_contexts [generation].thread_pool_context, job);
}
static gboolean
workers_get_work (WorkerData *data)
{
SgenMajorCollector *major = sgen_get_major_collector ();
SgenMinorCollector *minor = sgen_get_minor_collector ();
GrayQueueSection *section;
g_assert (sgen_gray_object_queue_is_empty (&data->private_gray_queue));
g_assert (major->is_concurrent || minor->is_parallel);
section = sgen_section_gray_queue_dequeue (&data->context->workers_distribute_gray_queue);
if (section) {
sgen_gray_object_enqueue_section (&data->private_gray_queue, section, major->is_parallel);
return TRUE;
}
/* Nobody to steal from */
g_assert (sgen_gray_object_queue_is_empty (&data->private_gray_queue));
return FALSE;
}
static gboolean
workers_steal_work (WorkerData *data)
{
SgenMajorCollector *major = sgen_get_major_collector ();
SgenMinorCollector *minor = sgen_get_minor_collector ();
int generation = sgen_get_current_collection_generation ();
GrayQueueSection *section = NULL;
WorkerContext *context = data->context;
int i, current_worker;
if ((generation == GENERATION_OLD && !major->is_parallel) ||
(generation == GENERATION_NURSERY && !minor->is_parallel))
return FALSE;
/* If we're parallel, steal from other workers' private gray queues */
g_assert (sgen_gray_object_queue_is_empty (&data->private_gray_queue));
current_worker = (int) (data - context->workers_data);
for (i = 1; i < context->active_workers_num && !section; i++) {
int steal_worker = (current_worker + i) % context->active_workers_num;
if (state_is_working_or_enqueued (context->workers_data [steal_worker].state))
section = sgen_gray_object_steal_section (&context->workers_data [steal_worker].private_gray_queue);
}
if (section) {
sgen_gray_object_enqueue_section (&data->private_gray_queue, section, TRUE);
return TRUE;
}
/* Nobody to steal from */
g_assert (sgen_gray_object_queue_is_empty (&data->private_gray_queue));
return FALSE;
}
static void
concurrent_enqueue_check (GCObject *obj)
{
g_assert (sgen_get_concurrent_collection_in_progress ());
g_assert (!sgen_ptr_in_nursery (obj));
g_assert (SGEN_LOAD_VTABLE (obj));
}
static void
init_private_gray_queue (WorkerData *data)
{
sgen_gray_object_queue_init (&data->private_gray_queue,
sgen_get_major_collector ()->is_concurrent ? concurrent_enqueue_check : NULL,
FALSE);
}
static void
thread_pool_init_func (void *data_untyped)
{
WorkerData *data = (WorkerData *)data_untyped;
SgenMajorCollector *major = sgen_get_major_collector ();
SgenMinorCollector *minor = sgen_get_minor_collector ();
if (!major->is_concurrent && !minor->is_parallel)
return;
init_private_gray_queue (data);
/* Separate WorkerData for same thread share free_block_lists */
if (major->is_parallel || minor->is_parallel)
major->init_block_free_lists (&data->free_block_lists);
}
static gboolean
sgen_workers_are_working (WorkerContext *context)
{
int i;
for (i = 0; i < context->active_workers_num; i++) {
if (state_is_working_or_enqueued (context->workers_data [i].state))
return TRUE;
}
return FALSE;
}
static gboolean
continue_idle_func (void *data_untyped, int thread_pool_context)
{
if (data_untyped)
return state_is_working_or_enqueued (((WorkerData*)data_untyped)->state);
/* Return if any of the threads is working in the context */
if (worker_contexts [GENERATION_NURSERY].workers_num && worker_contexts [GENERATION_NURSERY].thread_pool_context == thread_pool_context)
return sgen_workers_are_working (&worker_contexts [GENERATION_NURSERY]);
if (worker_contexts [GENERATION_OLD].workers_num && worker_contexts [GENERATION_OLD].thread_pool_context == thread_pool_context)
return sgen_workers_are_working (&worker_contexts [GENERATION_OLD]);
g_assert_not_reached ();
return FALSE;
}
static gboolean
should_work_func (void *data_untyped)
{
WorkerData *data = (WorkerData*)data_untyped;
WorkerContext *context = data->context;
int current_worker = (int) (data - context->workers_data);
return context->started && current_worker < context->active_workers_num && state_is_working_or_enqueued (data->state);
}
static void
marker_idle_func (void *data_untyped)
{
WorkerData *data = (WorkerData *)data_untyped;
WorkerContext *context = data->context;
SGEN_ASSERT (0, continue_idle_func (data_untyped, context->thread_pool_context), "Why are we called when we're not supposed to work?");
if (data->state == STATE_WORK_ENQUEUED) {
set_state (data, STATE_WORK_ENQUEUED, STATE_WORKING);
SGEN_ASSERT (0, data->state != STATE_NOT_WORKING, "How did we get from WORK ENQUEUED to NOT WORKING?");
}
if (!context->forced_stop && (!sgen_gray_object_queue_is_empty (&data->private_gray_queue) || workers_get_work (data) || workers_steal_work (data))) {
ScanCopyContext ctx = CONTEXT_FROM_OBJECT_OPERATIONS (context->idle_func_object_ops, &data->private_gray_queue);
SGEN_ASSERT (0, !sgen_gray_object_queue_is_empty (&data->private_gray_queue), "How is our gray queue empty if we just got work?");
sgen_drain_gray_stack (ctx);
if (data->private_gray_queue.num_sections >= SGEN_WORKER_MIN_SECTIONS_SIGNAL
&& context->workers_finished && context->worker_awakenings < context->active_workers_num) {
/* We bound the number of worker awakenings just to be sure */
context->worker_awakenings++;
mono_os_mutex_lock (&context->finished_lock);
sgen_workers_ensure_awake (context);
mono_os_mutex_unlock (&context->finished_lock);
}
} else {
worker_try_finish (data);
}
}
static void
init_distribute_gray_queue (WorkerContext *context)
{
sgen_section_gray_queue_init (&context->workers_distribute_gray_queue, TRUE,
sgen_get_major_collector ()->is_concurrent ? concurrent_enqueue_check : NULL);
}
void
sgen_workers_create_context (int generation, int num_workers)
{
static gboolean stat_inited = FALSE;
int i;
WorkerData **workers_data_ptrs;
WorkerContext *context = &worker_contexts [generation];
SGEN_ASSERT (0, !context->workers_num, "We can't init the worker context for a generation twice");
mono_os_mutex_init (&context->finished_lock);
context->generation = generation;
context->workers_num = (num_workers > SGEN_THREADPOOL_MAX_NUM_THREADS) ? SGEN_THREADPOOL_MAX_NUM_THREADS : num_workers;
context->active_workers_num = context->workers_num;
context->workers_data = (WorkerData *)sgen_alloc_internal_dynamic (sizeof (WorkerData) * context->workers_num, INTERNAL_MEM_WORKER_DATA, TRUE);
memset (context->workers_data, 0, sizeof (WorkerData) * context->workers_num);
init_distribute_gray_queue (context);
workers_data_ptrs = (WorkerData**)sgen_alloc_internal_dynamic (context->workers_num * sizeof (WorkerData*), INTERNAL_MEM_WORKER_DATA, TRUE);
for (i = 0; i < context->workers_num; ++i) {
workers_data_ptrs [i] = &context->workers_data [i];
context->workers_data [i].context = context;
}
context->thread_pool_context = sgen_thread_pool_create_context (context->workers_num, thread_pool_init_func, marker_idle_func, continue_idle_func, should_work_func, (void**)workers_data_ptrs);
if (!stat_inited) {
mono_counters_register ("# workers finished", MONO_COUNTER_GC | MONO_COUNTER_ULONG, &stat_workers_num_finished);
stat_inited = TRUE;
}
}
/* This is called with thread pool lock so no context switch can happen */
static gboolean
continue_idle_wait (int calling_context, int *threads_context)
{
WorkerContext *context;
int i;
if (worker_contexts [GENERATION_OLD].workers_num && calling_context == worker_contexts [GENERATION_OLD].thread_pool_context)
context = &worker_contexts [GENERATION_OLD];
else if (worker_contexts [GENERATION_NURSERY].workers_num && calling_context == worker_contexts [GENERATION_NURSERY].thread_pool_context)
context = &worker_contexts [GENERATION_NURSERY];
else
g_assert_not_reached ();
/*
* We assume there are no pending jobs, since this is called only after
* we waited for all the jobs.
*/
for (i = 0; i < context->active_workers_num; i++) {
if (threads_context [i] == calling_context)
return TRUE;
}
if (sgen_workers_have_idle_work (context->generation) && !context->forced_stop)
return TRUE;
/*
* At this point there are no jobs to be done, and no objects to be scanned
* in the gray queues. We can simply asynchronously finish all the workers
* from the context that were not finished already (due to being stuck working
* in another context)
*/
for (i = 0; i < context->active_workers_num; i++) {
if (context->workers_data [i].state == STATE_WORK_ENQUEUED)
set_state (&context->workers_data [i], STATE_WORK_ENQUEUED, STATE_WORKING);
if (context->workers_data [i].state == STATE_WORKING)
worker_try_finish (&context->workers_data [i]);
}
return FALSE;
}
void
sgen_workers_stop_all_workers (int generation)
{
WorkerContext *context = &worker_contexts [generation];
mono_os_mutex_lock (&context->finished_lock);
context->finish_callback = NULL;
mono_os_mutex_unlock (&context->finished_lock);
context->forced_stop = TRUE;
sgen_thread_pool_wait_for_all_jobs (context->thread_pool_context);
sgen_thread_pool_idle_wait (context->thread_pool_context, continue_idle_wait);
SGEN_ASSERT (0, !sgen_workers_are_working (context), "Can only signal enqueue work when in no work state");
context->started = FALSE;
}
void
sgen_workers_set_num_active_workers (int generation, int num_workers)
{
WorkerContext *context = &worker_contexts [generation];
if (num_workers) {
SGEN_ASSERT (0, num_workers <= context->workers_num, "We can't start more workers than we initialized");
context->active_workers_num = num_workers;
} else {
context->active_workers_num = context->workers_num;
}
}
void
sgen_workers_start_all_workers (int generation, SgenObjectOperations *object_ops_nopar, SgenObjectOperations *object_ops_par, SgenWorkersFinishCallback callback)
{
WorkerContext *context = &worker_contexts [generation];
int i;
SGEN_ASSERT (0, !context->started, "Why are we starting to work without finishing previous cycle");
context->idle_func_object_ops_par = object_ops_par;
context->idle_func_object_ops_nopar = object_ops_nopar;
context->forced_stop = FALSE;
context->finish_callback = callback;
context->worker_awakenings = 0;
context->started = TRUE;
for (i = 0; i < context->active_workers_num; i++) {
context->workers_data [i].major_scan_time = 0;
context->workers_data [i].los_scan_time = 0;
context->workers_data [i].total_time = 0;
context->workers_data [i].last_start = 0;
}
mono_memory_write_barrier ();
/*
* We expect workers to start finishing only after all of them were awaken.
* Otherwise we might think that we have fewer workers and use wrong context.
*/
mono_os_mutex_lock (&context->finished_lock);
sgen_workers_ensure_awake (context);
mono_os_mutex_unlock (&context->finished_lock);
}
void
sgen_workers_join (int generation)
{
WorkerContext *context = &worker_contexts [generation];
int i;
SGEN_ASSERT (0, !context->finish_callback, "Why are we joining concurrent mark early");
sgen_thread_pool_wait_for_all_jobs (context->thread_pool_context);
sgen_thread_pool_idle_wait (context->thread_pool_context, continue_idle_wait);
SGEN_ASSERT (0, !sgen_workers_are_working (context), "Can only signal enqueue work when in no work state");
/* At this point all the workers have stopped. */
SGEN_ASSERT (0, sgen_section_gray_queue_is_empty (&context->workers_distribute_gray_queue), "Why is there still work left to do?");
for (i = 0; i < context->active_workers_num; ++i)
SGEN_ASSERT (0, sgen_gray_object_queue_is_empty (&context->workers_data [i].private_gray_queue), "Why is there still work left to do?");
context->started = FALSE;
}
/*
* Can only be called if the workers are not working in the
* context and there are no pending jobs.
*/
gboolean
sgen_workers_have_idle_work (int generation)
{
WorkerContext *context = &worker_contexts [generation];
int i;
if (!sgen_section_gray_queue_is_empty (&context->workers_distribute_gray_queue))
return TRUE;
for (i = 0; i < context->active_workers_num; ++i) {
if (!sgen_gray_object_queue_is_empty (&context->workers_data [i].private_gray_queue))
return TRUE;
}
return FALSE;
}
gboolean
sgen_workers_all_done (void)
{
if (worker_contexts [GENERATION_NURSERY].workers_num && sgen_workers_are_working (&worker_contexts [GENERATION_NURSERY]))
return FALSE;
if (worker_contexts [GENERATION_OLD].workers_num && sgen_workers_are_working (&worker_contexts [GENERATION_OLD]))
return FALSE;
return TRUE;
}
void
sgen_workers_assert_gray_queue_is_empty (int generation)
{
SGEN_ASSERT (0, sgen_section_gray_queue_is_empty (&worker_contexts [generation].workers_distribute_gray_queue), "Why is the workers gray queue not empty?");
}
void
sgen_workers_take_from_queue (int generation, SgenGrayQueue *queue)
{
WorkerContext *context = &worker_contexts [generation];
sgen_gray_object_spread (queue, sgen_workers_get_job_split_count (generation));
for (;;) {
GrayQueueSection *section = sgen_gray_object_dequeue_section (queue);
if (!section)
break;
sgen_section_gray_queue_enqueue (&context->workers_distribute_gray_queue, section);
}
SGEN_ASSERT (0, !sgen_workers_are_working (context), "We should fully populate the distribute gray queue before we start the workers");
}
SgenObjectOperations*
sgen_workers_get_idle_func_object_ops (WorkerData *worker)
{
g_assert (worker->context->idle_func_object_ops);
return worker->context->idle_func_object_ops;
}
/*
* If we have a single worker, splitting into multiple jobs makes no sense. With
* more than one worker, we split into a larger number of jobs so that, in case
* the work load is uneven, a worker that finished quickly can take up more jobs
* than another one.
*
* We also return 1 if there is no worker context for that generation.
*/
int
sgen_workers_get_job_split_count (int generation)
{
return (worker_contexts [generation].active_workers_num > 1) ? worker_contexts [generation].active_workers_num * 4 : 1;
}
void
sgen_workers_foreach (int generation, SgenWorkerCallback callback)
{
WorkerContext *context = &worker_contexts [generation];
int i;
for (i = 0; i < context->workers_num; i++)
callback (&context->workers_data [i]);
}
gboolean
sgen_workers_is_worker_thread (MonoNativeThreadId id)
{
return sgen_thread_pool_is_thread_pool_thread (id);
}
#else
// Single theaded sgen-workers impl
void
sgen_workers_enqueue_job (int generation, SgenThreadPoolJob *job, gboolean enqueue)
{
if (!enqueue) {
job->func (NULL, job);
sgen_thread_pool_job_free (job);
return;
}
}
gboolean
sgen_workers_all_done (void)
{
return TRUE;
}
void
sgen_workers_assert_gray_queue_is_empty (int generation)
{
}
void
sgen_workers_foreach (int generation, SgenWorkerCallback callback)
{
}
SgenObjectOperations*
sgen_workers_get_idle_func_object_ops (WorkerData *worker)
{
g_assert (worker->context->idle_func_object_ops);
return worker->context->idle_func_object_ops;
}
int
sgen_workers_get_job_split_count (int generation)
{
return 1;
}
gboolean
sgen_workers_have_idle_work (int generation)
{
return FALSE;
}
gboolean
sgen_workers_is_worker_thread (MonoNativeThreadId id)
{
return FALSE;
}
void
sgen_workers_join (int generation)
{
}
void
sgen_workers_set_num_active_workers (int generation, int num_workers)
{
}
void
sgen_workers_start_all_workers (int generation, SgenObjectOperations *object_ops_nopar, SgenObjectOperations *object_ops_par, SgenWorkersFinishCallback callback)
{
}
void
sgen_workers_stop_all_workers (int generation)
{
}
void
sgen_workers_take_from_queue (int generation, SgenGrayQueue *queue)
{
}
#endif //#ifdef DISABLE_SGEN_MAJOR_MARKSWEEP_CONC
#endif // #ifdef HAVE_SGEN_GC