468663ddbb
Former-commit-id: 1d6753294b2993e1fbf92de9366bb9544db4189b
715 lines
27 KiB
C
715 lines
27 KiB
C
/*
|
|
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
|
|
* Copyright (c) 1999-2000 by Hewlett-Packard Company. All rights reserved.
|
|
*
|
|
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
|
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
|
*
|
|
* Permission is hereby granted to use or copy this program
|
|
* for any purpose, provided the above notices are retained on all copies.
|
|
* Permission to modify the code and to distribute modified code is granted,
|
|
* provided the above notices are retained, and a notice that the code was
|
|
* modified is included with the above copyright notice.
|
|
*
|
|
*/
|
|
|
|
#include "private/gc_pmark.h"
|
|
#include "gc_inline.h" /* for GC_malloc_kind */
|
|
|
|
/*
|
|
* Some simple primitives for allocation with explicit type information.
|
|
* Simple objects are allocated such that they contain a GC_descr at the
|
|
* end (in the last allocated word). This descriptor may be a procedure
|
|
* which then examines an extended descriptor passed as its environment.
|
|
*
|
|
* Arrays are treated as simple objects if they have sufficiently simple
|
|
* structure. Otherwise they are allocated from an array kind that supplies
|
|
* a special mark procedure. These arrays contain a pointer to a
|
|
* complex_descriptor as their last word.
|
|
* This is done because the environment field is too small, and the collector
|
|
* must trace the complex_descriptor.
|
|
*
|
|
* Note that descriptors inside objects may appear cleared, if we encounter a
|
|
* false reference to an object on a free list. In the GC_descr case, this
|
|
* is OK, since a 0 descriptor corresponds to examining no fields.
|
|
* In the complex_descriptor case, we explicitly check for that case.
|
|
*
|
|
* MAJOR PARTS OF THIS CODE HAVE NOT BEEN TESTED AT ALL and are not testable,
|
|
* since they are not accessible through the current interface.
|
|
*/
|
|
|
|
#include "gc_typed.h"
|
|
|
|
#define TYPD_EXTRA_BYTES (sizeof(word) - EXTRA_BYTES)
|
|
|
|
STATIC int GC_explicit_kind = 0;
|
|
/* Object kind for objects with indirect */
|
|
/* (possibly extended) descriptors. */
|
|
|
|
STATIC int GC_array_kind = 0;
|
|
/* Object kind for objects with complex */
|
|
/* descriptors and GC_array_mark_proc. */
|
|
|
|
/* Extended descriptors. GC_typed_mark_proc understands these. */
|
|
/* These are used for simple objects that are larger than what */
|
|
/* can be described by a BITMAP_BITS sized bitmap. */
|
|
typedef struct {
|
|
word ed_bitmap; /* lsb corresponds to first word. */
|
|
GC_bool ed_continued; /* next entry is continuation. */
|
|
} ext_descr;
|
|
|
|
/* Array descriptors. GC_array_mark_proc understands these. */
|
|
/* We may eventually need to add provisions for headers and */
|
|
/* trailers. Hence we provide for tree structured descriptors, */
|
|
/* though we don't really use them currently. */
|
|
|
|
struct LeafDescriptor { /* Describes simple array */
|
|
word ld_tag;
|
|
# define LEAF_TAG 1
|
|
size_t ld_size; /* bytes per element */
|
|
/* multiple of ALIGNMENT. */
|
|
size_t ld_nelements; /* Number of elements. */
|
|
GC_descr ld_descriptor; /* A simple length, bitmap, */
|
|
/* or procedure descriptor. */
|
|
} ld;
|
|
|
|
struct ComplexArrayDescriptor {
|
|
word ad_tag;
|
|
# define ARRAY_TAG 2
|
|
size_t ad_nelements;
|
|
union ComplexDescriptor * ad_element_descr;
|
|
} ad;
|
|
|
|
struct SequenceDescriptor {
|
|
word sd_tag;
|
|
# define SEQUENCE_TAG 3
|
|
union ComplexDescriptor * sd_first;
|
|
union ComplexDescriptor * sd_second;
|
|
} sd;
|
|
|
|
typedef union ComplexDescriptor {
|
|
struct LeafDescriptor ld;
|
|
struct ComplexArrayDescriptor ad;
|
|
struct SequenceDescriptor sd;
|
|
} complex_descriptor;
|
|
#define TAG ad.ad_tag
|
|
|
|
STATIC ext_descr * GC_ext_descriptors = NULL;
|
|
/* Points to array of extended */
|
|
/* descriptors. */
|
|
|
|
STATIC size_t GC_ed_size = 0; /* Current size of above arrays. */
|
|
#define ED_INITIAL_SIZE 100
|
|
|
|
STATIC size_t GC_avail_descr = 0; /* Next available slot. */
|
|
|
|
STATIC int GC_typed_mark_proc_index = 0; /* Indices of my mark */
|
|
STATIC int GC_array_mark_proc_index = 0; /* procedures. */
|
|
|
|
#ifdef AO_HAVE_load_acquire
|
|
STATIC volatile AO_t GC_explicit_typing_initialized = FALSE;
|
|
#else
|
|
STATIC GC_bool GC_explicit_typing_initialized = FALSE;
|
|
#endif
|
|
|
|
STATIC void GC_push_typed_structures_proc(void)
|
|
{
|
|
GC_PUSH_ALL_SYM(GC_ext_descriptors);
|
|
}
|
|
|
|
/* Add a multiword bitmap to GC_ext_descriptors arrays. Return */
|
|
/* starting index. */
|
|
/* Returns -1 on failure. */
|
|
/* Caller does not hold allocation lock. */
|
|
STATIC signed_word GC_add_ext_descriptor(const word * bm, word nbits)
|
|
{
|
|
size_t nwords = divWORDSZ(nbits + WORDSZ-1);
|
|
signed_word result;
|
|
size_t i;
|
|
word last_part;
|
|
size_t extra_bits;
|
|
DCL_LOCK_STATE;
|
|
|
|
LOCK();
|
|
while (GC_avail_descr + nwords >= GC_ed_size) {
|
|
ext_descr * newExtD;
|
|
size_t new_size;
|
|
word ed_size = GC_ed_size;
|
|
|
|
if (ed_size == 0) {
|
|
GC_ASSERT((word)(&GC_ext_descriptors) % sizeof(word) == 0);
|
|
GC_push_typed_structures = GC_push_typed_structures_proc;
|
|
UNLOCK();
|
|
new_size = ED_INITIAL_SIZE;
|
|
} else {
|
|
UNLOCK();
|
|
new_size = 2 * ed_size;
|
|
if (new_size > MAX_ENV) return(-1);
|
|
}
|
|
newExtD = (ext_descr *)GC_malloc_atomic(new_size * sizeof(ext_descr));
|
|
if (NULL == newExtD)
|
|
return -1;
|
|
LOCK();
|
|
if (ed_size == GC_ed_size) {
|
|
if (GC_avail_descr != 0) {
|
|
BCOPY(GC_ext_descriptors, newExtD,
|
|
GC_avail_descr * sizeof(ext_descr));
|
|
}
|
|
GC_ed_size = new_size;
|
|
GC_ext_descriptors = newExtD;
|
|
} /* else another thread already resized it in the meantime */
|
|
}
|
|
result = GC_avail_descr;
|
|
for (i = 0; i < nwords-1; i++) {
|
|
GC_ext_descriptors[result + i].ed_bitmap = bm[i];
|
|
GC_ext_descriptors[result + i].ed_continued = TRUE;
|
|
}
|
|
last_part = bm[i];
|
|
/* Clear irrelevant bits. */
|
|
extra_bits = nwords * WORDSZ - nbits;
|
|
last_part <<= extra_bits;
|
|
last_part >>= extra_bits;
|
|
GC_ext_descriptors[result + i].ed_bitmap = last_part;
|
|
GC_ext_descriptors[result + i].ed_continued = FALSE;
|
|
GC_avail_descr += nwords;
|
|
UNLOCK();
|
|
return(result);
|
|
}
|
|
|
|
/* Table of bitmap descriptors for n word long all pointer objects. */
|
|
STATIC GC_descr GC_bm_table[WORDSZ/2];
|
|
|
|
/* Return a descriptor for the concatenation of 2 nwords long objects, */
|
|
/* each of which is described by descriptor. */
|
|
/* The result is known to be short enough to fit into a bitmap */
|
|
/* descriptor. */
|
|
/* Descriptor is a GC_DS_LENGTH or GC_DS_BITMAP descriptor. */
|
|
STATIC GC_descr GC_double_descr(GC_descr descriptor, word nwords)
|
|
{
|
|
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
|
|
descriptor = GC_bm_table[BYTES_TO_WORDS((word)descriptor)];
|
|
};
|
|
descriptor |= (descriptor & ~GC_DS_TAGS) >> nwords;
|
|
return(descriptor);
|
|
}
|
|
|
|
STATIC complex_descriptor *
|
|
GC_make_sequence_descriptor(complex_descriptor *first,
|
|
complex_descriptor *second);
|
|
|
|
/* Build a descriptor for an array with nelements elements, */
|
|
/* each of which can be described by a simple descriptor. */
|
|
/* We try to optimize some common cases. */
|
|
/* If the result is COMPLEX, then a complex_descr* is returned */
|
|
/* in *complex_d. */
|
|
/* If the result is LEAF, then we built a LeafDescriptor in */
|
|
/* the structure pointed to by leaf. */
|
|
/* The tag in the leaf structure is not set. */
|
|
/* If the result is SIMPLE, then a GC_descr */
|
|
/* is returned in *simple_d. */
|
|
/* If the result is NO_MEM, then */
|
|
/* we failed to allocate the descriptor. */
|
|
/* The implementation knows that GC_DS_LENGTH is 0. */
|
|
/* *leaf, *complex_d, and *simple_d may be used as temporaries */
|
|
/* during the construction. */
|
|
#define COMPLEX 2
|
|
#define LEAF 1
|
|
#define SIMPLE 0
|
|
#define NO_MEM (-1)
|
|
STATIC int GC_make_array_descriptor(size_t nelements, size_t size,
|
|
GC_descr descriptor, GC_descr *simple_d,
|
|
complex_descriptor **complex_d,
|
|
struct LeafDescriptor * leaf)
|
|
{
|
|
# define OPT_THRESHOLD 50
|
|
/* For larger arrays, we try to combine descriptors of adjacent */
|
|
/* descriptors to speed up marking, and to reduce the amount */
|
|
/* of space needed on the mark stack. */
|
|
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
|
|
if (descriptor == (GC_descr)size) {
|
|
*simple_d = nelements * descriptor;
|
|
return(SIMPLE);
|
|
} else if ((word)descriptor == 0) {
|
|
*simple_d = (GC_descr)0;
|
|
return(SIMPLE);
|
|
}
|
|
}
|
|
if (nelements <= OPT_THRESHOLD) {
|
|
if (nelements <= 1) {
|
|
if (nelements == 1) {
|
|
*simple_d = descriptor;
|
|
return(SIMPLE);
|
|
} else {
|
|
*simple_d = (GC_descr)0;
|
|
return(SIMPLE);
|
|
}
|
|
}
|
|
} else if (size <= BITMAP_BITS/2
|
|
&& (descriptor & GC_DS_TAGS) != GC_DS_PROC
|
|
&& (size & (sizeof(word)-1)) == 0) {
|
|
int result =
|
|
GC_make_array_descriptor(nelements/2, 2*size,
|
|
GC_double_descr(descriptor,
|
|
BYTES_TO_WORDS(size)),
|
|
simple_d, complex_d, leaf);
|
|
if ((nelements & 1) == 0) {
|
|
return(result);
|
|
} else {
|
|
struct LeafDescriptor * one_element =
|
|
(struct LeafDescriptor *)
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
|
|
|
if (result == NO_MEM || one_element == 0) return(NO_MEM);
|
|
one_element -> ld_tag = LEAF_TAG;
|
|
one_element -> ld_size = size;
|
|
one_element -> ld_nelements = 1;
|
|
one_element -> ld_descriptor = descriptor;
|
|
switch(result) {
|
|
case SIMPLE:
|
|
{
|
|
struct LeafDescriptor * beginning =
|
|
(struct LeafDescriptor *)
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
|
if (beginning == 0) return(NO_MEM);
|
|
beginning -> ld_tag = LEAF_TAG;
|
|
beginning -> ld_size = size;
|
|
beginning -> ld_nelements = 1;
|
|
beginning -> ld_descriptor = *simple_d;
|
|
*complex_d = GC_make_sequence_descriptor(
|
|
(complex_descriptor *)beginning,
|
|
(complex_descriptor *)one_element);
|
|
break;
|
|
}
|
|
case LEAF:
|
|
{
|
|
struct LeafDescriptor * beginning =
|
|
(struct LeafDescriptor *)
|
|
GC_malloc_atomic(sizeof(struct LeafDescriptor));
|
|
if (beginning == 0) return(NO_MEM);
|
|
beginning -> ld_tag = LEAF_TAG;
|
|
beginning -> ld_size = leaf -> ld_size;
|
|
beginning -> ld_nelements = leaf -> ld_nelements;
|
|
beginning -> ld_descriptor = leaf -> ld_descriptor;
|
|
*complex_d = GC_make_sequence_descriptor(
|
|
(complex_descriptor *)beginning,
|
|
(complex_descriptor *)one_element);
|
|
break;
|
|
}
|
|
case COMPLEX:
|
|
*complex_d = GC_make_sequence_descriptor(
|
|
*complex_d,
|
|
(complex_descriptor *)one_element);
|
|
break;
|
|
}
|
|
return(COMPLEX);
|
|
}
|
|
}
|
|
|
|
leaf -> ld_size = size;
|
|
leaf -> ld_nelements = nelements;
|
|
leaf -> ld_descriptor = descriptor;
|
|
return(LEAF);
|
|
}
|
|
|
|
STATIC complex_descriptor *
|
|
GC_make_sequence_descriptor(complex_descriptor *first,
|
|
complex_descriptor *second)
|
|
{
|
|
struct SequenceDescriptor * result =
|
|
(struct SequenceDescriptor *)
|
|
GC_malloc(sizeof(struct SequenceDescriptor));
|
|
/* Can't result in overly conservative marking, since tags are */
|
|
/* very small integers. Probably faster than maintaining type */
|
|
/* info. */
|
|
if (result != 0) {
|
|
result -> sd_tag = SEQUENCE_TAG;
|
|
result -> sd_first = first;
|
|
result -> sd_second = second;
|
|
GC_dirty(result);
|
|
}
|
|
return((complex_descriptor *)result);
|
|
}
|
|
|
|
STATIC ptr_t * GC_eobjfreelist = NULL;
|
|
|
|
STATIC mse * GC_typed_mark_proc(word * addr, mse * mark_stack_ptr,
|
|
mse * mark_stack_limit, word env);
|
|
|
|
STATIC mse * GC_array_mark_proc(word * addr, mse * mark_stack_ptr,
|
|
mse * mark_stack_limit, word env);
|
|
|
|
STATIC void GC_init_explicit_typing(void)
|
|
{
|
|
unsigned i;
|
|
|
|
GC_STATIC_ASSERT(sizeof(struct LeafDescriptor) % sizeof(word) == 0);
|
|
/* Set up object kind with simple indirect descriptor. */
|
|
GC_eobjfreelist = (ptr_t *)GC_new_free_list_inner();
|
|
GC_explicit_kind = GC_new_kind_inner(
|
|
(void **)GC_eobjfreelist,
|
|
(WORDS_TO_BYTES((word)-1) | GC_DS_PER_OBJECT),
|
|
TRUE, TRUE);
|
|
/* Descriptors are in the last word of the object. */
|
|
GC_typed_mark_proc_index = GC_new_proc_inner(GC_typed_mark_proc);
|
|
/* Set up object kind with array descriptor. */
|
|
GC_array_mark_proc_index = GC_new_proc_inner(GC_array_mark_proc);
|
|
GC_array_kind = GC_new_kind_inner(GC_new_free_list_inner(),
|
|
GC_MAKE_PROC(GC_array_mark_proc_index, 0),
|
|
FALSE, TRUE);
|
|
GC_bm_table[0] = GC_DS_BITMAP;
|
|
for (i = 1; i < WORDSZ/2; i++) {
|
|
GC_bm_table[i] = (((word)-1) << (WORDSZ - i)) | GC_DS_BITMAP;
|
|
}
|
|
}
|
|
|
|
STATIC mse * GC_typed_mark_proc(word * addr, mse * mark_stack_ptr,
|
|
mse * mark_stack_limit, word env)
|
|
{
|
|
word bm = GC_ext_descriptors[env].ed_bitmap;
|
|
word * current_p = addr;
|
|
word current;
|
|
ptr_t greatest_ha = (ptr_t)GC_greatest_plausible_heap_addr;
|
|
ptr_t least_ha = (ptr_t)GC_least_plausible_heap_addr;
|
|
DECLARE_HDR_CACHE;
|
|
|
|
INIT_HDR_CACHE;
|
|
for (; bm != 0; bm >>= 1, current_p++) {
|
|
if (bm & 1) {
|
|
current = *current_p;
|
|
FIXUP_POINTER(current);
|
|
if (current >= (word)least_ha && current <= (word)greatest_ha) {
|
|
PUSH_CONTENTS((ptr_t)current, mark_stack_ptr,
|
|
mark_stack_limit, (ptr_t)current_p);
|
|
}
|
|
}
|
|
}
|
|
if (GC_ext_descriptors[env].ed_continued) {
|
|
/* Push an entry with the rest of the descriptor back onto the */
|
|
/* stack. Thus we never do too much work at once. Note that */
|
|
/* we also can't overflow the mark stack unless we actually */
|
|
/* mark something. */
|
|
mark_stack_ptr++;
|
|
if ((word)mark_stack_ptr >= (word)mark_stack_limit) {
|
|
mark_stack_ptr = GC_signal_mark_stack_overflow(mark_stack_ptr);
|
|
}
|
|
mark_stack_ptr -> mse_start = (ptr_t)(addr + WORDSZ);
|
|
mark_stack_ptr -> mse_descr.w =
|
|
GC_MAKE_PROC(GC_typed_mark_proc_index, env + 1);
|
|
}
|
|
return(mark_stack_ptr);
|
|
}
|
|
|
|
/* Return the size of the object described by d. It would be faster to */
|
|
/* store this directly, or to compute it as part of */
|
|
/* GC_push_complex_descriptor, but hopefully it doesn't matter. */
|
|
STATIC word GC_descr_obj_size(complex_descriptor *d)
|
|
{
|
|
switch(d -> TAG) {
|
|
case LEAF_TAG:
|
|
return(d -> ld.ld_nelements * d -> ld.ld_size);
|
|
case ARRAY_TAG:
|
|
return(d -> ad.ad_nelements
|
|
* GC_descr_obj_size(d -> ad.ad_element_descr));
|
|
case SEQUENCE_TAG:
|
|
return(GC_descr_obj_size(d -> sd.sd_first)
|
|
+ GC_descr_obj_size(d -> sd.sd_second));
|
|
default:
|
|
ABORT_RET("Bad complex descriptor");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Push descriptors for the object at addr with complex descriptor d */
|
|
/* onto the mark stack. Return 0 if the mark stack overflowed. */
|
|
STATIC mse * GC_push_complex_descriptor(word *addr, complex_descriptor *d,
|
|
mse *msp, mse *msl)
|
|
{
|
|
ptr_t current = (ptr_t)addr;
|
|
word nelements;
|
|
word sz;
|
|
word i;
|
|
|
|
switch(d -> TAG) {
|
|
case LEAF_TAG:
|
|
{
|
|
GC_descr descr = d -> ld.ld_descriptor;
|
|
|
|
nelements = d -> ld.ld_nelements;
|
|
if (msl - msp <= (ptrdiff_t)nelements) return(0);
|
|
sz = d -> ld.ld_size;
|
|
for (i = 0; i < nelements; i++) {
|
|
msp++;
|
|
msp -> mse_start = current;
|
|
msp -> mse_descr.w = descr;
|
|
current += sz;
|
|
}
|
|
return(msp);
|
|
}
|
|
case ARRAY_TAG:
|
|
{
|
|
complex_descriptor *descr = d -> ad.ad_element_descr;
|
|
|
|
nelements = d -> ad.ad_nelements;
|
|
sz = GC_descr_obj_size(descr);
|
|
for (i = 0; i < nelements; i++) {
|
|
msp = GC_push_complex_descriptor((word *)current, descr,
|
|
msp, msl);
|
|
if (msp == 0) return(0);
|
|
current += sz;
|
|
}
|
|
return(msp);
|
|
}
|
|
case SEQUENCE_TAG:
|
|
{
|
|
sz = GC_descr_obj_size(d -> sd.sd_first);
|
|
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_first,
|
|
msp, msl);
|
|
if (msp == 0) return(0);
|
|
current += sz;
|
|
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_second,
|
|
msp, msl);
|
|
return(msp);
|
|
}
|
|
default:
|
|
ABORT_RET("Bad complex descriptor");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
STATIC mse * GC_array_mark_proc(word * addr, mse * mark_stack_ptr,
|
|
mse * mark_stack_limit,
|
|
word env GC_ATTR_UNUSED)
|
|
{
|
|
hdr * hhdr = HDR(addr);
|
|
word sz = hhdr -> hb_sz;
|
|
word nwords = BYTES_TO_WORDS(sz);
|
|
complex_descriptor * descr = (complex_descriptor *)(addr[nwords-1]);
|
|
mse * orig_mark_stack_ptr = mark_stack_ptr;
|
|
mse * new_mark_stack_ptr;
|
|
|
|
if (descr == 0) {
|
|
/* Found a reference to a free list entry. Ignore it. */
|
|
return(orig_mark_stack_ptr);
|
|
}
|
|
/* In use counts were already updated when array descriptor was */
|
|
/* pushed. Here we only replace it by subobject descriptors, so */
|
|
/* no update is necessary. */
|
|
new_mark_stack_ptr = GC_push_complex_descriptor(addr, descr,
|
|
mark_stack_ptr,
|
|
mark_stack_limit-1);
|
|
if (new_mark_stack_ptr == 0) {
|
|
/* Explicitly instruct Clang Static Analyzer that ptr is non-null. */
|
|
if (NULL == mark_stack_ptr) ABORT("Bad mark_stack_ptr");
|
|
|
|
/* Doesn't fit. Conservatively push the whole array as a unit */
|
|
/* and request a mark stack expansion. */
|
|
/* This cannot cause a mark stack overflow, since it replaces */
|
|
/* the original array entry. */
|
|
# ifdef PARALLEL_MARK
|
|
/* We might be using a local_mark_stack in parallel mode. */
|
|
if (GC_mark_stack + GC_mark_stack_size == mark_stack_limit)
|
|
# endif
|
|
{
|
|
GC_mark_stack_too_small = TRUE;
|
|
}
|
|
new_mark_stack_ptr = orig_mark_stack_ptr + 1;
|
|
new_mark_stack_ptr -> mse_start = (ptr_t)addr;
|
|
new_mark_stack_ptr -> mse_descr.w = sz | GC_DS_LENGTH;
|
|
} else {
|
|
/* Push descriptor itself */
|
|
new_mark_stack_ptr++;
|
|
new_mark_stack_ptr -> mse_start = (ptr_t)(addr + nwords - 1);
|
|
new_mark_stack_ptr -> mse_descr.w = sizeof(word) | GC_DS_LENGTH;
|
|
}
|
|
return new_mark_stack_ptr;
|
|
}
|
|
|
|
GC_API GC_descr GC_CALL GC_make_descriptor(const GC_word * bm, size_t len)
|
|
{
|
|
signed_word last_set_bit = len - 1;
|
|
GC_descr result;
|
|
DCL_LOCK_STATE;
|
|
|
|
# if defined(AO_HAVE_load_acquire) && defined(AO_HAVE_store_release)
|
|
if (!EXPECT(AO_load_acquire(&GC_explicit_typing_initialized), TRUE)) {
|
|
LOCK();
|
|
if (!GC_explicit_typing_initialized) {
|
|
GC_init_explicit_typing();
|
|
AO_store_release(&GC_explicit_typing_initialized, TRUE);
|
|
}
|
|
UNLOCK();
|
|
}
|
|
# else
|
|
LOCK();
|
|
if (!EXPECT(GC_explicit_typing_initialized, TRUE)) {
|
|
GC_init_explicit_typing();
|
|
GC_explicit_typing_initialized = TRUE;
|
|
}
|
|
UNLOCK();
|
|
# endif
|
|
|
|
while (last_set_bit >= 0 && !GC_get_bit(bm, last_set_bit))
|
|
last_set_bit--;
|
|
if (last_set_bit < 0) return(0 /* no pointers */);
|
|
|
|
# if ALIGNMENT == CPP_WORDSZ/8
|
|
{
|
|
signed_word i;
|
|
|
|
for (i = 0; i < last_set_bit; i++) {
|
|
if (!GC_get_bit(bm, i)) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == last_set_bit) {
|
|
/* An initial section contains all pointers. Use length descriptor. */
|
|
return (WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
|
|
}
|
|
}
|
|
# endif
|
|
if ((word)last_set_bit < BITMAP_BITS) {
|
|
signed_word i;
|
|
|
|
/* Hopefully the common case. */
|
|
/* Build bitmap descriptor (with bits reversed) */
|
|
result = SIGNB;
|
|
for (i = last_set_bit - 1; i >= 0; i--) {
|
|
result >>= 1;
|
|
if (GC_get_bit(bm, i)) result |= SIGNB;
|
|
}
|
|
result |= GC_DS_BITMAP;
|
|
} else {
|
|
signed_word index = GC_add_ext_descriptor(bm, (word)last_set_bit + 1);
|
|
if (index == -1) return(WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
|
|
/* Out of memory: use conservative */
|
|
/* approximation. */
|
|
result = GC_MAKE_PROC(GC_typed_mark_proc_index, (word)index);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_explicitly_typed(size_t lb,
|
|
GC_descr d)
|
|
{
|
|
word *op;
|
|
size_t lg;
|
|
|
|
GC_ASSERT(GC_explicit_typing_initialized);
|
|
lb = SIZET_SAT_ADD(lb, TYPD_EXTRA_BYTES);
|
|
op = (word *)GC_malloc_kind(lb, GC_explicit_kind);
|
|
if (EXPECT(NULL == op, FALSE))
|
|
return NULL;
|
|
/* It is not safe to use GC_size_map[lb] to compute lg here as the */
|
|
/* the former might be updated asynchronously. */
|
|
lg = BYTES_TO_GRANULES(GC_size(op));
|
|
op[GRANULES_TO_WORDS(lg) - 1] = d;
|
|
GC_dirty(op + GRANULES_TO_WORDS(lg) - 1);
|
|
return op;
|
|
}
|
|
|
|
/* We make the GC_clear_stack() call a tail one, hoping to get more of */
|
|
/* the stack. */
|
|
#define GENERAL_MALLOC_IOP(lb, k) \
|
|
GC_clear_stack(GC_generic_malloc_ignore_off_page(lb, k))
|
|
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL
|
|
GC_malloc_explicitly_typed_ignore_off_page(size_t lb, GC_descr d)
|
|
{
|
|
ptr_t op;
|
|
size_t lg;
|
|
DCL_LOCK_STATE;
|
|
|
|
GC_ASSERT(GC_explicit_typing_initialized);
|
|
lb = SIZET_SAT_ADD(lb, TYPD_EXTRA_BYTES);
|
|
if (SMALL_OBJ(lb)) {
|
|
GC_DBG_COLLECT_AT_MALLOC(lb);
|
|
LOCK();
|
|
lg = GC_size_map[lb];
|
|
op = GC_eobjfreelist[lg];
|
|
if (EXPECT(0 == op, FALSE)) {
|
|
UNLOCK();
|
|
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
|
|
if (0 == op) return 0;
|
|
/* See the comment in GC_malloc_explicitly_typed. */
|
|
lg = BYTES_TO_GRANULES(GC_size(op));
|
|
} else {
|
|
GC_eobjfreelist[lg] = (ptr_t)obj_link(op);
|
|
obj_link(op) = 0;
|
|
GC_bytes_allocd += GRANULES_TO_BYTES((word)lg);
|
|
UNLOCK();
|
|
}
|
|
} else {
|
|
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
|
|
if (NULL == op) return NULL;
|
|
lg = BYTES_TO_GRANULES(GC_size(op));
|
|
}
|
|
((word *)op)[GRANULES_TO_WORDS(lg) - 1] = d;
|
|
GC_dirty(op + GRANULES_TO_WORDS(lg) - 1);
|
|
return op;
|
|
}
|
|
|
|
GC_API GC_ATTR_MALLOC void * GC_CALL GC_calloc_explicitly_typed(size_t n,
|
|
size_t lb, GC_descr d)
|
|
{
|
|
word *op;
|
|
size_t lg;
|
|
GC_descr simple_descr;
|
|
complex_descriptor *complex_descr;
|
|
int descr_type;
|
|
struct LeafDescriptor leaf;
|
|
|
|
GC_ASSERT(GC_explicit_typing_initialized);
|
|
descr_type = GC_make_array_descriptor((word)n, (word)lb, d, &simple_descr,
|
|
&complex_descr, &leaf);
|
|
if ((lb | n) > GC_SQRT_SIZE_MAX /* fast initial check */
|
|
&& lb > 0 && n > GC_SIZE_MAX / lb)
|
|
return (*GC_get_oom_fn())(GC_SIZE_MAX); /* n*lb overflow */
|
|
lb *= n;
|
|
switch(descr_type) {
|
|
case NO_MEM: return(0);
|
|
case SIMPLE:
|
|
return GC_malloc_explicitly_typed(lb, simple_descr);
|
|
case LEAF:
|
|
lb = SIZET_SAT_ADD(lb,
|
|
sizeof(struct LeafDescriptor) + TYPD_EXTRA_BYTES);
|
|
break;
|
|
case COMPLEX:
|
|
lb = SIZET_SAT_ADD(lb, TYPD_EXTRA_BYTES);
|
|
break;
|
|
}
|
|
op = (word *)GC_malloc_kind(lb, GC_array_kind);
|
|
if (EXPECT(NULL == op, FALSE))
|
|
return NULL;
|
|
lg = BYTES_TO_GRANULES(GC_size(op));
|
|
if (descr_type == LEAF) {
|
|
/* Set up the descriptor inside the object itself. */
|
|
volatile struct LeafDescriptor * lp =
|
|
(struct LeafDescriptor *)
|
|
(op + GRANULES_TO_WORDS(lg)
|
|
- (BYTES_TO_WORDS(sizeof(struct LeafDescriptor)) + 1));
|
|
|
|
lp -> ld_tag = LEAF_TAG;
|
|
lp -> ld_size = leaf.ld_size;
|
|
lp -> ld_nelements = leaf.ld_nelements;
|
|
lp -> ld_descriptor = leaf.ld_descriptor;
|
|
((volatile word *)op)[GRANULES_TO_WORDS(lg) - 1] = (word)lp;
|
|
} else {
|
|
# ifndef GC_NO_FINALIZATION
|
|
size_t lw = GRANULES_TO_WORDS(lg);
|
|
|
|
op[lw - 1] = (word)complex_descr;
|
|
GC_dirty(op + lw - 1);
|
|
/* Make sure the descriptor is cleared once there is any danger */
|
|
/* it may have been collected. */
|
|
if (EXPECT(GC_general_register_disappearing_link(
|
|
(void **)(op + lw - 1), op)
|
|
== GC_NO_MEMORY, FALSE))
|
|
# endif
|
|
{
|
|
/* Couldn't register it due to lack of memory. Punt. */
|
|
return (*GC_get_oom_fn())(lb);
|
|
}
|
|
}
|
|
return op;
|
|
}
|