//-------------------------------------------------------------
//
// Copyright © Microsoft Corporation. All Rights Reserved.
//
//-------------------------------------------------------------
// @owner=alexgor, deliant
//=================================================================
// File: DataFormula.cs
//
// Namespace: DataVisualization.Charting
//
// Classes: DataFormula
//
// Purpose: DataFormula class provides properties and methods,
// which prepare series data for technical analyses
// and time series and forecasting formulas and prepare
// output data to be displayed as a chart.
//
// Reviewed: GS - August 6, 2002
// AG - August 7, 2002
// AG - Microsoft 15, 2007
//
//===================================================================
#region Used Namespace
using System;
using System.Drawing;
using System.ComponentModel;
using System.Diagnostics.CodeAnalysis;
using System.Collections.Generic;
#endregion
#if Microsoft_CONTROL
using System.Windows.Forms.DataVisualization.Charting.Formulas;
namespace System.Windows.Forms.DataVisualization.Charting
#else
using System.Web.UI.DataVisualization.Charting.Formulas;
namespace System.Web.UI.DataVisualization.Charting
#endif
{
#region Financial Formula Name enumeration
///
/// An enumeration of financial formula names.
///
public enum FinancialFormula
{
///
/// Accumulation Distribution formula. This indicator uses a relationship
/// between volume and prices to estimate the strength of price movements,
/// and if volume is increased, there is a high probability that prices will go up.
///
AccumulationDistribution,
///
/// Average True Range indicator. It measures commitment and compares
/// the range between the High, Low and Close prices.
///
AverageTrueRange,
///
/// Bollinger Bands indicators. They are plotted at standard deviation levels
/// above and below a simple moving average.
///
BollingerBands,
///
/// Chaikin Oscillator indicator. It is the difference between a 3-day
/// exponential moving average and a 10-day exponential moving average
/// applied to the Accumulation Distribution.
///
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Chaikin")]
ChaikinOscillator,
///
/// Commodity Channel Index. It compares prices with their moving averages.
///
CommodityChannelIndex,
///
/// Detrended Price Oscillator. It attempts to remove trend from prices.
///
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Detrended")]
DetrendedPriceOscillator,
///
/// Ease of Movement deals with the relationship between volume and price change,
/// and uses volume to indicate how strong a trend is for prices.
///
EaseOfMovement,
///
/// Envelopes are plotted above and below a moving average using a specified percentage
/// as the shift.
///
Envelopes,
///
/// An Exponential Moving Average is an average of data calculated over a period of time
/// where the most recent days have more weight.
///
ExponentialMovingAverage,
///
/// Forecasting. It predicts future values using historical observations.
///
Forecasting,
///
/// Moving Average Convergence/Divergence indicator. It compares two
/// moving averages of prices and is used with a 9-day Exponential
/// Moving average as a signal, which indicates buying and selling moments.
///
MovingAverageConvergenceDivergence,
///
/// The Mass Index is used to predict trend reversal by comparing the
/// difference and range between High and Low prices.
///
MassIndex,
///
/// Median prices are mid-point values of daily prices and can be used
/// as a filter for trend indicators.
///
MedianPrice,
///
/// The Money Flow indicator compares upward changes and downward changes
/// of volume-weighted typical prices.
///
MoneyFlow,
///
/// The Negative Volume Index should be used together with the Positive Volume index,
/// and the Negative Volume Index only changes if the volume decreases from the previous day.
///
NegativeVolumeIndex,
///
/// The On Balance Volume indicator measures positive and negative volume flow.
///
OnBalanceVolume,
///
/// The Performance indicator compares a current closing price (or any other price) with
/// the first closing value (from the first time period).
///
Performance,
///
/// The Positive Volume Index should be used together with the Negative Volume index.
/// The Positive volume index only changes if the volume decreases from the previous day.
///
PositiveVolumeIndex,
///
/// The Price Volume Trend is a cumulative volume total that is calculated using
/// relative changes of the closing price, and should be used with other indicators.
///
PriceVolumeTrend,
///
/// The Rate of Change indicator compares a specified closing price with the current price.
///
RateOfChange,
///
/// The Relative Strength Index is a momentum oscillator that compares upward movements
/// of the closing price with downward movements, and results in values that range from 0 to 100.
///
RelativeStrengthIndex,
///
/// A Simple Moving Average is an average of data calculated over a period of time.
/// The moving average is the most popular price indicator used in technical analysis,
/// and can be used with any price (e.g. Hi, Low, Open and Close)
/// or it can be applied to other indicators.
///
MovingAverage,
///
/// Standard deviation is used to indicate volatility, and measures
/// the difference between values (e.g. closing price) and their moving average.
///
StandardDeviation,
///
/// The Stochastic Indicator helps to find trend reversal by searching in a period for
/// when the closing prices are close to low prices in an upward trending market
/// and for when the closing prices are close to high prices in a downward trending market.
///
StochasticIndicator,
///
/// A Triangular Moving Average is an average of data calculated over a period of time
/// where the middle portion of data has more weight.
///
TriangularMovingAverage,
///
/// The Triple Exponential Moving Average is based on a triple moving average of the closing Price.
/// Its purpose is to eliminate short cycles. This indicator keeps the closing price
/// in trends that are shorter than the specified period.
///
TripleExponentialMovingAverage,
///
/// Typical price is the average value of daily prices, and can be used as a filter for trend indicators.
///
TypicalPrice,
///
/// The Volatility Chaikins indicator measures the difference between High and Low prices,
/// and is used to indicate tops or bottoms of the market.
///
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Chaikins")]
VolatilityChaikins,
///
/// The Volume oscillator attempts to identify trends in volume by comparing two moving averages:
/// one with a short period and another with a longer period.
///
VolumeOscillator,
///
/// The Weighted Close formula calculates the average value of daily prices.
/// The only difference between Typical Price and the Weighted Close is that the closing price
/// has extra weight, and is considered the most important price.
///
WeightedClose,
///
/// A Weighted Moving Average is an average of data calculated over a period of time,
/// where greater weight is attached to the most recent data.
///
WeightedMovingAverage,
///
/// William's %R is a momentum indicator, and is used to measure overbought and oversold levels.
///
WilliamsR
}
#endregion // Financial Formula Name enumeration
///
/// The DataFormula class provides properties and methods, which prepare series
/// data for technical analysis, apply formulas on the series data
/// and prepare output data to be displayed as a chart.
///
#if ASPPERM_35
[AspNetHostingPermission(System.Security.Permissions.SecurityAction.InheritanceDemand, Level = AspNetHostingPermissionLevel.Minimal)]
[AspNetHostingPermission(System.Security.Permissions.SecurityAction.LinkDemand, Level = AspNetHostingPermissionLevel.Minimal)]
#endif
public class DataFormula
{
#region Data Formulas fields
internal const string IndexedSeriesLabelsSourceAttr = "__IndexedSeriesLabelsSource__";
//***********************************************************
//** Private data members, which store properties values
//***********************************************************
private bool _isEmptyPointIgnored = true;
private string[] _extraParameters;
///
/// All X values are zero.
///
private bool _zeroXValues = false;
///
/// Utility class for Statistical formulas
///
private StatisticFormula _statistics;
///
/// Reference to the Common elements
///
internal CommonElements Common;
#endregion
#region Data Formulas methods
///
/// Default constructor
///
public DataFormula()
{
_statistics = new StatisticFormula(this);
_extraParameters = new string[1];
_extraParameters[0] = false.ToString(System.Globalization.CultureInfo.InvariantCulture);
}
///
/// This method calls a method from a formula module with
/// specified name.
///
/// Formula Name
/// Formula parameters
/// Comma separated input data series names and optional X and Y values names.
/// Comma separated output data series names and optional X and Y values names.
internal void Formula(string formulaName, string parameters, string inputSeries, string outputSeries)
{
// Array of series
Series[] inSeries;
Series[] outSeries;
// Commented out as InsertEmptyDataPoints is currently commented out.
// This field is not used anywhere else, but we might need it if we uncomment all ---- code parts in this method. (krisztb 4/29/08)
// True if formulas are statistical
//bool statisticalFormulas = false;
// Array of Y value indexes
int[] inValueIndexes;
int[] outValueIndexes;
// Matrix with double values ( used in formula modules )
double[][] inValues;
double[][] inNoEmptyValues;
double[][] outValues = null;
string[][] outLabels = null;
// Array with parameters
string[] parameterList;
// Split comma separated parameter list in the array of strings.
SplitParameters(parameters, out parameterList);
// Split comma separated series and Y values list in the array of
// Series and indexes to Y values.
ConvertToArrays(inputSeries, out inSeries, out inValueIndexes, true);
ConvertToArrays(outputSeries, out outSeries, out outValueIndexes, false);
// Create indexes if all x values are 0
//ConvertZeroXToIndex( ref inSeries );
// Set X value AxisName for output series.
foreach (Series outSeriesItem in outSeries)
{
if (inSeries[0] != null)
{
outSeriesItem.XValueType = inSeries[0].XValueType;
}
}
// This method will convert array of Series and array of Y value
// indexes to matrix of double values.
GetDoubleArray(inSeries, inValueIndexes, out inValues);
// Remove columns with empty values from matrix
if (!DifferentNumberOfSeries(inValues))
{
RemoveEmptyValues(inValues, out inNoEmptyValues);
}
else
{
inNoEmptyValues = inValues;
}
// Call a formula from formula modules
string moduleName = null;
for (int module = 0; module < Common.FormulaRegistry.Count; module++)
{
moduleName = Common.FormulaRegistry.GetModuleName(module);
Common.FormulaRegistry.GetFormulaModule(moduleName).Formula(formulaName, inNoEmptyValues, out outValues, parameterList, _extraParameters, out outLabels);
// Commented out as InsertEmptyDataPoints is currently commented out (see next block).
// It set the statisticalFormulas field that was used to test whether to insert empty data points. (krisztb 4/29/08)
//if( outValues != null )
//{
// if (moduleName == SR.FormulaNameStatisticalAnalysis)
// {
// statisticalFormulas = true;
// }
// break;
//}
// Check if formula was found by detecting output
if (outValues != null)
{
// Exit the loop
break;
}
}
if (outValues == null)
throw new ArgumentException(SR.ExceptionFormulaNotFound(formulaName));
// Insert empty data points
//
// This has been commented out as InsertEmptyDataPoints is currently commented out.
// In its current implementation it didn't do anything other than assign the second
// parameter to the third, so ultimately it was a no op. --Microsoft 4/21/08
//
//if( !statisticalFormulas )
//{
// InsertEmptyDataPoints( inValues, outValues, out outValues );
//}
// Fill Series with results from matrix with double values using Y value indexes.
SetDoubleArray(outSeries, outValueIndexes, outValues, outLabels);
if (_zeroXValues)
{
// we have indexed series : proceed to align output series.
foreach (Series series in outSeries)
{
if (series.Points.Count > 0)
{
// get the last xValue: the formula processing is
double topXValue = series.Points[series.Points.Count - 1].XValue;
this.Common.Chart.DataManipulator.InsertEmptyPoints(1, IntervalType.Number, 0, IntervalType.Number, 1, topXValue, series);
foreach (DataPoint point in series.Points)
{
point.XValue = 0;
}
}
}
}
// Copy axis labels from the original series into the calculated series
CopyAxisLabels(inSeries, outSeries);
}
///
/// Copy axis labels from the original series into the calculated series
///
/// array of input series
/// array of output series
private void CopyAxisLabels(Series[] inSeries, Series[] outSeries)
{
//Loop through the pairs of input and output series
int seriesIndex = 0;
while (seriesIndex < inSeries.Length && seriesIndex < outSeries.Length)
{
Series inputSeries = inSeries[seriesIndex];
Series outputSeries = outSeries[seriesIndex];
//Depending on whether or not the source series has X Values we need to use two different search algorithms
if (_zeroXValues)
{ //If we have the empty XValues then the source series should have all the AxisLabels
// -- set the indexed series labels source
outputSeries[DataFormula.IndexedSeriesLabelsSourceAttr] = inputSeries.Name;
}
else
{ //If the source series has XValues - loop through the input series points looking for the points with AxisLabels set
int outIndex = 0;
foreach (DataPoint inputPoint in inputSeries.Points)
{
if (!String.IsNullOrEmpty(inputPoint.AxisLabel))
{
//If the Axis label is set we need to find the corresponding point by the X value
//Most probably the points are in the same order so lets first try the corresponding point in the output series
if (outIndex < outputSeries.Points.Count && inputPoint.XValue == outputSeries.Points[outIndex].XValue)
{ // Yes, the corresponding point in the outputSeries has the same XValue as inputPoint -> copy axis label
outputSeries.Points[outIndex].AxisLabel = inputPoint.AxisLabel;
}
else
{
//The correspong point has a different x value -> lets go through output series and find the value with the same X
outIndex = 0;
foreach (DataPoint outputPoint in outputSeries.Points)
{
if (inputPoint.XValue == outputPoint.XValue)
{ //Found the point with the same XValue - copy axis label and break
outputPoint.AxisLabel = inputPoint.AxisLabel;
break;
}
outIndex++;
}
}
}
outIndex++;
}
}
//Sync next pair of input and output series...
seriesIndex++;
}
}
///
/// This method will set series X and Y values from matrix of
/// double values.
///
/// Array of output series
/// Array of Y value indexes
/// Array of doubles which will be used to fill series
/// Array of labels
internal void SetDoubleArray(Series[] outputSeries, int[] valueIndex, double[][] outputValues, string[][] outputLabels)
{
// Validation
if (outputSeries.Length != valueIndex.Length)
{
throw new ArgumentException(SR.ExceptionFormulaDataItemsNumberMismatch);
}
// Number of output series is not correct
if (outputSeries.Length < outputValues.Length - 1)
{
throw new ArgumentException(SR.ExceptionFormulaDataOutputSeriesNumberYValuesIncorrect);
}
int seriesIndex = 0;
foreach (Series series in outputSeries)
{
if (seriesIndex + 1 > outputValues.Length - 1)
{
break;
}
// If there is different number of data points.
if (series.Points.Count != outputValues[seriesIndex].Length)
{
// Delete all points
series.Points.Clear();
}
// Set the number of y values
if (series.YValuesPerPoint < valueIndex[seriesIndex])
{
series.YValuesPerPoint = valueIndex[seriesIndex];
}
for (int pointIndex = 0; pointIndex < outputValues[0].Length; pointIndex++)
{
// Create a new series and fill data
if (series.Points.Count != outputValues[seriesIndex].Length)
{
// Add data points to series.
series.Points.AddXY(outputValues[0][pointIndex], 0);
// Set Labels
if (outputLabels != null)
{
series.Points[pointIndex].Label = outputLabels[seriesIndex][pointIndex];
}
// Set empty data points or Y values
if (Double.IsNaN(outputValues[seriesIndex + 1][pointIndex]))
series.Points[pointIndex].IsEmpty = true;
else
series.Points[pointIndex].YValues[valueIndex[seriesIndex] - 1] = outputValues[seriesIndex + 1][pointIndex];
}
// Use existing series and set Y values.
else
{
if (series.Points[pointIndex].XValue != outputValues[0][pointIndex] && !_zeroXValues)
{
throw new InvalidOperationException(SR.ExceptionFormulaXValuesNotAligned);
}
// Set empty data points or Y values
if (Double.IsNaN(outputValues[seriesIndex + 1][pointIndex]))
series.Points[pointIndex].IsEmpty = true;
else
{
series.Points[pointIndex].YValues[valueIndex[seriesIndex] - 1] = outputValues[seriesIndex + 1][pointIndex];
// Set Labels
if (outputLabels != null)
{
series.Points[pointIndex].Label = outputLabels[seriesIndex][pointIndex];
}
}
}
}
seriesIndex++;
}
}
///
/// This method will convert a string with information about
/// series and y values to two arrays. The first array will
/// contain series and the second array will contain
/// corresponding indexes to y values for every series.
/// The arrays have to have the same number of items.
///
/// A string with information about series and Y values
/// Array of Data Series
/// Array of Y value indexes
/// Do not create new series if input series are used
private void ConvertToArrays(string inputString, out Series[] seiesArray, out int[] valueArray, bool inputSeries)
{
// Split string by comma
string[] subStrings = inputString.Split(',');
// Create array of series
seiesArray = new Series[subStrings.Length];
// Create array of integers - values
valueArray = new int[subStrings.Length];
int index = 0;
foreach (string str in subStrings)
{
string[] parts = str.Split(':');
// There must be at least one and no more than two result strings
if (parts.Length < 1 && parts.Length > 2)
{
throw (new ArgumentException(SR.ExceptionFormulaDataFormatInvalid(str)));
}
// Initialize value index as first Y value (default)
int valueIndex = 1;
// Check specified value type
if (parts.Length == 2)
{
if (parts[1].StartsWith("Y", StringComparison.Ordinal))
{
parts[1] = parts[1].TrimStart('Y');
if (parts[1].Length == 0)
{
valueIndex = 1;
}
else
{
// Try to convert the rest of the string to integer
try
{
valueIndex = Int32.Parse(parts[1], System.Globalization.CultureInfo.InvariantCulture);
}
catch (System.Exception)
{
throw (new ArgumentException(SR.ExceptionFormulaDataFormatInvalid(str)));
}
}
}
else
{
throw (new ArgumentException(SR.ExceptionFormulaDataSeriesNameNotFound(str)));
}
}
// Set Y value indexes
valueArray[index] = valueIndex;
// Set series
try
{
seiesArray[index] = Common.DataManager.Series[parts[0].Trim()];
}
catch (System.Exception)
{
// Series doesn't exist.
if (!inputSeries)
{
// Create a new series if output series
Common.DataManager.Series.Add(new Series(parts[0]));
seiesArray[index] = Common.DataManager.Series[parts[0]];
}
else
throw (new ArgumentException(SR.ExceptionFormulaDataSeriesNameNotFoundInCollection(str)));
}
index++;
}
}
///
/// Returns Jagged Arrays of doubles from array of series.
/// A jagged array is merely an array of arrays and
/// it doesn't have to be square. The first item is array of
/// X values from the first series
///
/// Array of Data Series
/// Array with indexes which represent value from data point: 0 = X, 1 = Y, 2 = Y2, 3 = Y3
/// Jagged Arrays of doubles
private void GetDoubleArray(Series[] inputSeries, int[] valueIndex, out double[][] output)
{
GetDoubleArray(inputSeries, valueIndex, out output, false);
}
///
/// Returns Jagged Arrays of doubles from array of series.
/// A jagged array is merely an array of arrays and
/// it doesn't have to be square. The first item is array of
/// X values from the first series
///
/// Array of Data Series
/// Array with indexes which represent value from data point: 0 = X, 1 = Y, 2 = Y2, 3 = Y3
/// Jagged Arrays of doubles
/// Ignore Zero X values
private void GetDoubleArray(Series[] inputSeries, int[] valueIndex, out double[][] output, bool ignoreZeroX)
{
// Allocate a memory.
output = new double[inputSeries.Length + 1][];
// Check the length of the array of series and array of value indexes.
if (inputSeries.Length != valueIndex.Length)
{
throw new ArgumentException(SR.ExceptionFormulaDataItemsNumberMismatch2);
}
// Find Maximum number of data points
int maxNumOfPoints = int.MinValue;
Series seriesWidthMaxPoints = null;
foreach (Series series in inputSeries)
{
if (maxNumOfPoints < series.Points.Count)
{
maxNumOfPoints = series.Points.Count;
seriesWidthMaxPoints = series;
}
}
// *********************************************************
// Set X values
// *********************************************************
// Check if all X values are zero
foreach (DataPoint point in inputSeries[0].Points)
{
_zeroXValues = true;
if (point.XValue != 0.0)
{
_zeroXValues = false;
break;
}
}
if (_zeroXValues && !ignoreZeroX)
{
// Check X values input alignment
CheckXValuesAlignment(inputSeries);
}
// Data point index
int indexPoint = 0;
// Allocate memory for X values.
output[0] = new double[maxNumOfPoints];
// Data Points loop
foreach (DataPoint point in seriesWidthMaxPoints.Points)
{
// Set X value
if (_zeroXValues)
output[0][indexPoint] = (double)indexPoint + 1.0;
else
output[0][indexPoint] = point.XValue;
// Increase data point index.
indexPoint++;
}
// *********************************************************
// Set Y values
// *********************************************************
// Data Series Loop
int indexSeries = 1;
foreach (Series series in inputSeries)
{
output[indexSeries] = new double[series.Points.Count];
indexPoint = 0;
// Data Points loop
foreach (DataPoint point in series.Points)
{
// Set Y values
if (point.IsEmpty)
// IsEmpty data point
output[indexSeries][indexPoint] = double.NaN;
else
{
try
{
output[indexSeries][indexPoint] = point.YValues[valueIndex[indexSeries - 1] - 1];
}
catch (System.Exception)
{
throw new ArgumentException(SR.ExceptionFormulaYIndexInvalid);
}
}
// Increase data point index.
indexPoint++;
}
// Increase data series index.
indexSeries++;
}
}
///
/// Merge, split or move Y values of the series.
///
/// Comma separated list of input data series names and optional X and Y values names.
/// Comma separated list of output data series names and optional X and Y values names.
public void CopySeriesValues(string inputSeries, string outputSeries)
{
if (inputSeries == null)
throw new ArgumentNullException("inputSeries");
if (outputSeries == null)
throw new ArgumentNullException("outputSeries");
Series[] inSeries;
Series[] outSeries;
int[] inValueIndexes;
int[] outValueIndexes;
double[][] inValues;
double[][] outValues;
// Convert string with information about series and Y values
// to array of series and indexes to Y values.
ConvertToArrays(inputSeries, out inSeries, out inValueIndexes, true);
ConvertToArrays(outputSeries, out outSeries, out outValueIndexes, false);
// The number of input and output series are different.
if (inSeries.Length != outSeries.Length)
{
throw new ArgumentException(SR.ExceptionFormulaInputOutputSeriesMismatch);
}
// Check if output series points exist. If they do not exist
// create data points which are copy of Input series data points
for (int indexSeries = 0; indexSeries < inSeries.Length; indexSeries++)
{
Series[] series = new Series[2];
series[0] = inSeries[indexSeries];
series[1] = outSeries[indexSeries];
if (series[1].Points.Count == 0)
{
foreach (DataPoint point in series[0].Points)
{
DataPoint clonePoint = point.Clone();
clonePoint.series = series[1];
series[1].Points.Add(clonePoint);
}
}
}
// Check alignment of X values.
for (int indexSeries = 0; indexSeries < inSeries.Length; indexSeries++)
{
Series[] series = new Series[2];
series[0] = inSeries[indexSeries];
series[1] = outSeries[indexSeries];
CheckXValuesAlignment(series);
}
// Covert Series X and Y values to arrays of doubles
GetDoubleArray(inSeries, inValueIndexes, out inValues, true);
outValues = new double[inValues.Length][];
// Copy Series X and Y values.
for (int seriesIndex = 0; seriesIndex < inValues.Length; seriesIndex++)
{
outValues[seriesIndex] = new double[inValues[seriesIndex].Length];
for (int pointIndex = 0; pointIndex < inValues[seriesIndex].Length; pointIndex++)
{
outValues[seriesIndex][pointIndex] = inValues[seriesIndex][pointIndex];
}
}
// Copy Series X and Y value Types.
for (int seriesIndx = 0; seriesIndx < inSeries.Length; seriesIndx++)
{
// X value type
if (outSeries[seriesIndx].XValueType == ChartValueType.Auto)
{
outSeries[seriesIndx].XValueType = inSeries[seriesIndx].XValueType;
outSeries[seriesIndx].autoXValueType = inSeries[seriesIndx].autoXValueType;
}
// Y value type.
if (outSeries[seriesIndx].YValueType == ChartValueType.Auto)
{
outSeries[seriesIndx].YValueType = inSeries[seriesIndx].YValueType;
outSeries[seriesIndx].autoYValueType = inSeries[seriesIndx].autoYValueType;
}
seriesIndx++;
}
SetDoubleArray(outSeries, outValueIndexes, outValues, null);
}
///
/// This method will first copy input matrix to output matrix
/// then will remove columns, which have
/// one or more empty values (NaN) from the output matrix. This
/// method will set all values from column of input matrix
/// to be empty (NaN) if one or more values of that column
/// are empty.
///
/// Input matrix with empty values
/// Output matrix without empty values
private void RemoveEmptyValues(double[][] input, out double[][] output)
{
// Allocate memory
output = new double[input.Length][];
int seriesIndex = 0;
int numberOfRows = 0;
// Set Nan for all data points with same index in input array
// Data point loop
for (int pointIndex = 0; pointIndex < input[0].Length; pointIndex++)
{
bool isEmpty = false;
// Series loop
// Find empty data point with same point index
for (seriesIndex = 0; seriesIndex < input.Length; seriesIndex++)
{
if (seriesIndex >= input[seriesIndex].Length)
continue;
if (Double.IsNaN(input[seriesIndex][pointIndex]))
isEmpty = true;
}
if (!isEmpty)
{
numberOfRows++;
}
// There is empty data point
if (isEmpty)
{
// Set all points with same index to be empty
for (seriesIndex = 1; seriesIndex < input.Length; seriesIndex++)
{
input[seriesIndex][pointIndex] = Double.NaN;
}
}
}
// Copy input matrix to output matrix without empty columns.
for (seriesIndex = 0; seriesIndex < input.Length; seriesIndex++)
{
output[seriesIndex] = new double[numberOfRows];
int outPointIndex = 0;
for (int pointIndex = 0; pointIndex < input[0].Length; pointIndex++)
{
if (pointIndex >= input[seriesIndex].Length)
continue;
if (!double.IsNaN(input[1][pointIndex]))
{
output[seriesIndex][outPointIndex] = input[seriesIndex][pointIndex];
outPointIndex++;
}
}
}
}
/*
///
/// This method will compare a input matrix with empty data
/// points and output matrix without empty data points and
/// add empty data points to output matrix according to
/// input matrix empty data point positions.
///
/// Matrix With input data
/// Matrix without empty data points
/// New Matrix with inserted data points
*/
//private void InsertEmptyDataPoints( double [][] input, double [][] inputWithoutEmpty, out double [][] output )
//{
// *** NOTE ***
//
//
// This method is only called in one location as of this writing.
// Therefore the entire method is being commented out for now. We wish
// to preserve the code itself as it may be re-implemented in the future.
// --Microsoft 4/21/08
//
// ************
//output = inputWithoutEmpty;
//return;
//
// NOTE: Inserting empty points in the result data after applying the formula
// causes issues. The algorithm below do not cover most of the common spzces
// and as a result the formula data is completly destroyed.
//
// By removing this code the result data set will have "missing" points instaed
// of empty.
// - AG
//
/*
// Input matrix can have only empty rows. If one value
// is empty all values from a row have to be empty.
// Find the number of empty rows
int NumberOfEmptyRows = 0;
foreach( double val in input[1] )
{
if( Double.IsNaN( val ) )
{
NumberOfEmptyRows++;
}
}
if( NumberOfEmptyRows == 0 ||
inputWithoutEmpty[0].Length > input[0].Length)
{
output = inputWithoutEmpty;
return;
}
output = new double[input.Length][];
// Series loop
for( int seriesIndex = 0; seriesIndex < input.Length; seriesIndex++ )
{
int inputPointIndex = 0;
int emptyPointIndex = 0;
// Skip input index if points are not aligned .
while( input[0][inputPointIndex] != inputWithoutEmpty[0][0] && inputPointIndex < input[0].Length )
{
inputPointIndex++;
}
output[seriesIndex] = new double[inputWithoutEmpty[0].Length + NumberOfEmptyRows - inputPointIndex];
// Data Point loop
for( int pointIndex = 0; pointIndex < output[seriesIndex].Length; pointIndex++ )
{
if( inputPointIndex < input[0].Length &&
inputPointIndex < input[1].Length )
{
// If the point Y value is empty (NaN) insert empty (NaN) for all values.
if( double.IsNaN( input[1][inputPointIndex] ) )
{
output[seriesIndex][pointIndex] = input[seriesIndex][inputPointIndex];
emptyPointIndex--;
}
else if( input[0][inputPointIndex] == inputWithoutEmpty[0][emptyPointIndex] )
{
output[seriesIndex][pointIndex] = inputWithoutEmpty[seriesIndex][emptyPointIndex];
}
else
{
output[0][pointIndex] = inputWithoutEmpty[0][emptyPointIndex];
output[seriesIndex][pointIndex] = inputWithoutEmpty[seriesIndex][emptyPointIndex];
}
}
else
{
output[seriesIndex][pointIndex] = inputWithoutEmpty[seriesIndex][emptyPointIndex];
}
inputPointIndex++;
emptyPointIndex++;
}
}
*/
//}
///
/// This method splits a string with comma separated
/// parameters to the array of strings with parameters.
///
/// a string with comma separated parameters
/// the array of strings with parameters
private void SplitParameters(string parameters, out string[] parameterList)
{
// Split string by comma
parameterList = parameters.Split(',');
for (Int32 i = 0; i < parameterList.Length; i++)
{
parameterList[i] = parameterList[i].Trim();
}
}
///
/// Check if series have different number of series.
///
/// Input series.
/// true if there is different number of series.
private static bool DifferentNumberOfSeries(double[][] input)
{
for (int index = 0; index < input.Length - 1; index++)
{
if (input[index].Length != input[index + 1].Length)
{
return true;
}
}
return false;
}
///
/// This method will check if X values from different series
/// are aligned.
///
/// Array of series
internal void CheckXValuesAlignment(Series[] series)
{
// Check aligment only if more than 1 series provided
if (series.Length > 1)
{
// Series loop
for (int seriesIndex = 0; seriesIndex < series.Length - 1; seriesIndex++)
{
// Check the number of data points
if (series[seriesIndex].Points.Count != series[seriesIndex + 1].Points.Count)
{
throw new ArgumentException(SR.ExceptionFormulaDataSeriesAreNotAlignedDifferentDataPoints(series[seriesIndex].Name, series[seriesIndex + 1].Name));
}
// Data points loop
for (int pointIndex = 0; pointIndex < series[seriesIndex].Points.Count; pointIndex++)
{
// Check X values.
if (series[seriesIndex].Points[pointIndex].XValue != series[seriesIndex + 1].Points[pointIndex].XValue)
throw new ArgumentException(SR.ExceptionFormulaDataSeriesAreNotAlignedDifferentXValues(series[seriesIndex].Name, series[seriesIndex + 1].Name));
}
}
}
}
#endregion
#region Data Formulas Financial methods
///
/// This method calls a method from a formula module with
/// specified name.
///
/// Formula Name
/// Input series
[SuppressMessage("Microsoft.Design", "CA1011:ConsiderPassingBaseTypesAsParameters")]
public void FinancialFormula(FinancialFormula formulaName, Series inputSeries)
{
FinancialFormula(formulaName, inputSeries, inputSeries);
}
///
/// This method calls a method from a formula module with
/// specified name.
///
/// Formula Name
/// Input series
/// Output series
[SuppressMessage("Microsoft.Design", "CA1011:ConsiderPassingBaseTypesAsParameters")]
public void FinancialFormula(FinancialFormula formulaName, Series inputSeries, Series outputSeries)
{
FinancialFormula(formulaName, "", inputSeries, outputSeries);
}
///
/// This method calls a method from a formula module with
/// specified name.
///
/// Formula Name
/// Formula parameters
/// Input series
/// Output series
[SuppressMessage("Microsoft.Design", "CA1011:ConsiderPassingBaseTypesAsParameters")]
public void FinancialFormula(FinancialFormula formulaName, string parameters, Series inputSeries, Series outputSeries)
{
if (inputSeries == null)
throw new ArgumentNullException("inputSeries");
if (outputSeries == null)
throw new ArgumentNullException("outputSeries");
FinancialFormula(formulaName, parameters, inputSeries.Name, outputSeries.Name);
}
///
/// This method calls a method from a formula module with
/// specified name.
///
/// Formula Name
/// Comma separated list of input series names and optional X and Y values names.
[SuppressMessage("Microsoft.Design", "CA1011:ConsiderPassingBaseTypesAsParameters")]
public void FinancialFormula(FinancialFormula formulaName, string inputSeries)
{
FinancialFormula(formulaName, inputSeries, inputSeries);
}
///
/// This method calls a method from a formula module with
/// specified name.
///
/// Formula Name
/// Comma separated list of input series names and optional X and Y values names.
/// Comma separated list of output series names and optional X and Y values names.
[SuppressMessage("Microsoft.Design", "CA1011:ConsiderPassingBaseTypesAsParameters")]
public void FinancialFormula(FinancialFormula formulaName, string inputSeries, string outputSeries)
{
FinancialFormula(formulaName, "", inputSeries, outputSeries);
}
///
/// This method calls a method from a formula module with
/// specified name.
///
/// Formula Name
/// Formula parameters
/// Comma separated list of input series names and optional X and Y values names.
/// Comma separated list of output series names and optional X and Y values names.
public void FinancialFormula(FinancialFormula formulaName, string parameters, string inputSeries, string outputSeries)
{
if (inputSeries == null)
throw new ArgumentNullException("inputSeries");
if (outputSeries == null)
throw new ArgumentNullException("outputSeries");
// Get formula info
FormulaInfo formulaInfo = FormulaHelper.GetFormulaInfo(formulaName);
// Provide default parameters if necessary
if (string.IsNullOrEmpty(parameters))
{
parameters = formulaInfo.SaveParametersToString();
}
else
{
formulaInfo.CheckParameterString(parameters);
}
// Fix the InputSeries and Outputseries for cases when the series field names are not provided
SeriesFieldList inputFields = SeriesFieldList.FromString(this.Common.Chart, inputSeries, formulaInfo.InputFields);
SeriesFieldList outputFields = SeriesFieldList.FromString(this.Common.Chart, outputSeries, formulaInfo.OutputFields);
if (inputFields != null) inputSeries = inputFields.ToString();
if (outputFields != null) outputSeries = outputFields.ToString();
Formula(formulaName.ToString(), parameters, inputSeries, outputSeries);
}
#endregion
#region Data Formulas properties
///
/// Gets or sets a flag which indicates whether
/// empty points are ignored while performing calculations;
/// otherwise, empty points are treated as zeros.
///
public bool IsEmptyPointIgnored
{
get
{
return _isEmptyPointIgnored;
}
set
{
_isEmptyPointIgnored = value;
}
}
///
/// Gets or sets a flag which indicates whether
/// to start formulas like rolling average from zero.
///
public bool IsStartFromFirst
{
get
{
return bool.Parse(_extraParameters[0]);
}
set
{
if (value)
_extraParameters[0] = true.ToString(System.Globalization.CultureInfo.InvariantCulture);
else
_extraParameters[0] = false.ToString(System.Globalization.CultureInfo.InvariantCulture);
}
}
///
/// Returns a reference to the statistical utility class.
///
public StatisticFormula Statistics
{
get
{
return _statistics;
}
}
#endregion
}
}