/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1999-2004 Hewlett-Packard Development Company, L.P. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "private/gc_priv.h" #include "gc_inline.h" /* for GC_malloc_kind */ #include #include /* Allocate reclaim list for kind: */ /* Return TRUE on success */ STATIC GC_bool GC_alloc_reclaim_list(struct obj_kind *kind) { struct hblk ** result = (struct hblk **) GC_scratch_alloc((MAXOBJGRANULES+1) * sizeof(struct hblk *)); if (result == 0) return(FALSE); BZERO(result, (MAXOBJGRANULES+1)*sizeof(struct hblk *)); kind -> ok_reclaim_list = result; return(TRUE); } /* Allocate a large block of size lb bytes. */ /* The block is not cleared. */ /* Flags is 0 or IGNORE_OFF_PAGE. */ /* EXTRA_BYTES were already added to lb. */ GC_INNER ptr_t GC_alloc_large(size_t lb, int k, unsigned flags) { struct hblk * h; word n_blocks; ptr_t result; GC_bool retry = FALSE; GC_ASSERT(I_HOLD_LOCK()); lb = ROUNDUP_GRANULE_SIZE(lb); n_blocks = OBJ_SZ_TO_BLOCKS_CHECKED(lb); if (!EXPECT(GC_is_initialized, TRUE)) { DCL_LOCK_STATE; UNLOCK(); /* just to unset GC_lock_holder */ GC_init(); LOCK(); } /* Do our share of marking work */ if (GC_incremental && !GC_dont_gc) GC_collect_a_little_inner((int)n_blocks); h = GC_allochblk(lb, k, flags); # ifdef USE_MUNMAP if (0 == h) { GC_merge_unmapped(); h = GC_allochblk(lb, k, flags); } # endif while (0 == h && GC_collect_or_expand(n_blocks, flags != 0, retry)) { h = GC_allochblk(lb, k, flags); retry = TRUE; } if (h == 0) { result = 0; } else { size_t total_bytes = n_blocks * HBLKSIZE; if (n_blocks > 1) { GC_large_allocd_bytes += total_bytes; if (GC_large_allocd_bytes > GC_max_large_allocd_bytes) GC_max_large_allocd_bytes = GC_large_allocd_bytes; } /* FIXME: Do we need some way to reset GC_max_large_allocd_bytes? */ result = h -> hb_body; } return result; } /* Allocate a large block of size lb bytes. Clear if appropriate. */ /* EXTRA_BYTES were already added to lb. */ STATIC ptr_t GC_alloc_large_and_clear(size_t lb, int k, unsigned flags) { ptr_t result; GC_ASSERT(I_HOLD_LOCK()); result = GC_alloc_large(lb, k, flags); if (result != NULL && (GC_debugging_started || GC_obj_kinds[k].ok_init)) { word n_blocks = OBJ_SZ_TO_BLOCKS(lb); /* Clear the whole block, in case of GC_realloc call. */ BZERO(result, n_blocks * HBLKSIZE); } return result; } /* Fill in additional entries in GC_size_map, including the i-th one. */ /* Note that a filled in section of the array ending at n always */ /* has the length of at least n/4. */ STATIC void GC_extend_size_map(size_t i) { size_t orig_granule_sz = ROUNDED_UP_GRANULES(i); size_t granule_sz; size_t byte_sz = GRANULES_TO_BYTES(orig_granule_sz); /* The size we try to preserve. */ /* Close to i, unless this would */ /* introduce too many distinct sizes. */ size_t smaller_than_i = byte_sz - (byte_sz >> 3); size_t low_limit; /* The lowest indexed entry we initialize. */ size_t number_of_objs; GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(0 == GC_size_map[i]); if (0 == GC_size_map[smaller_than_i]) { low_limit = byte_sz - (byte_sz >> 2); /* much smaller than i */ granule_sz = orig_granule_sz; while (GC_size_map[low_limit] != 0) low_limit++; } else { low_limit = smaller_than_i + 1; while (GC_size_map[low_limit] != 0) low_limit++; granule_sz = ROUNDED_UP_GRANULES(low_limit); granule_sz += granule_sz >> 3; if (granule_sz < orig_granule_sz) granule_sz = orig_granule_sz; } /* For these larger sizes, we use an even number of granules. */ /* This makes it easier to, e.g., construct a 16-byte-aligned */ /* allocator even if GRANULE_BYTES is 8. */ granule_sz = (granule_sz + 1) & ~1; if (granule_sz > MAXOBJGRANULES) granule_sz = MAXOBJGRANULES; /* If we can fit the same number of larger objects in a block, do so. */ number_of_objs = HBLK_GRANULES / granule_sz; GC_ASSERT(number_of_objs != 0); granule_sz = (HBLK_GRANULES / number_of_objs) & ~1; byte_sz = GRANULES_TO_BYTES(granule_sz) - EXTRA_BYTES; /* We may need one extra byte; do not always */ /* fill in GC_size_map[byte_sz]. */ for (; low_limit <= byte_sz; low_limit++) GC_size_map[low_limit] = granule_sz; } /* Allocate lb bytes for an object of kind k. */ /* Should not be used to directly to allocate objects */ /* that require special handling on allocation. */ GC_INNER void * GC_generic_malloc_inner(size_t lb, int k) { void *op; GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(k < MAXOBJKINDS); if (SMALL_OBJ(lb)) { struct obj_kind * kind = GC_obj_kinds + k; size_t lg = GC_size_map[lb]; void ** opp = &(kind -> ok_freelist[lg]); op = *opp; if (EXPECT(0 == op, FALSE)) { if (lg == 0) { if (!EXPECT(GC_is_initialized, TRUE)) { DCL_LOCK_STATE; UNLOCK(); /* just to unset GC_lock_holder */ GC_init(); LOCK(); lg = GC_size_map[lb]; } if (0 == lg) { GC_extend_size_map(lb); lg = GC_size_map[lb]; GC_ASSERT(lg != 0); } /* Retry */ opp = &(kind -> ok_freelist[lg]); op = *opp; } if (0 == op) { if (0 == kind -> ok_reclaim_list && !GC_alloc_reclaim_list(kind)) return NULL; op = GC_allocobj(lg, k); if (0 == op) return NULL; } } *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES((word)lg); } else { op = (ptr_t)GC_alloc_large_and_clear(ADD_SLOP(lb), k, 0); if (op != NULL) GC_bytes_allocd += lb; } return op; } #if defined(DBG_HDRS_ALL) || defined(GC_GCJ_SUPPORT) \ || !defined(GC_NO_FINALIZATION) /* Allocate a composite object of size n bytes. The caller */ /* guarantees that pointers past the first page are not relevant. */ GC_INNER void * GC_generic_malloc_inner_ignore_off_page(size_t lb, int k) { word lb_adjusted; void * op; GC_ASSERT(I_HOLD_LOCK()); if (lb <= HBLKSIZE) return GC_generic_malloc_inner(lb, k); GC_ASSERT(k < MAXOBJKINDS); lb_adjusted = ADD_SLOP(lb); op = GC_alloc_large_and_clear(lb_adjusted, k, IGNORE_OFF_PAGE); if (op != NULL) GC_bytes_allocd += lb_adjusted; return op; } #endif #ifdef GC_COLLECT_AT_MALLOC /* Parameter to force GC at every malloc of size greater or equal to */ /* the given value. This might be handy during debugging. */ # if defined(CPPCHECK) size_t GC_dbg_collect_at_malloc_min_lb = 16*1024; /* e.g. */ # else size_t GC_dbg_collect_at_malloc_min_lb = (GC_COLLECT_AT_MALLOC); # endif #endif GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_malloc(size_t lb, int k) { void * result; DCL_LOCK_STATE; GC_ASSERT(k < MAXOBJKINDS); if (EXPECT(GC_have_errors, FALSE)) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); GC_DBG_COLLECT_AT_MALLOC(lb); if (SMALL_OBJ(lb)) { LOCK(); result = GC_generic_malloc_inner(lb, k); UNLOCK(); } else { size_t lg; size_t lb_rounded; word n_blocks; GC_bool init; lg = ROUNDED_UP_GRANULES(lb); lb_rounded = GRANULES_TO_BYTES(lg); n_blocks = OBJ_SZ_TO_BLOCKS(lb_rounded); init = GC_obj_kinds[k].ok_init; LOCK(); result = (ptr_t)GC_alloc_large(lb_rounded, k, 0); if (0 != result) { if (GC_debugging_started) { BZERO(result, n_blocks * HBLKSIZE); } else { # ifdef THREADS /* Clear any memory that might be used for GC descriptors */ /* before we release the lock. */ ((word *)result)[0] = 0; ((word *)result)[1] = 0; ((word *)result)[GRANULES_TO_WORDS(lg)-1] = 0; ((word *)result)[GRANULES_TO_WORDS(lg)-2] = 0; # endif } GC_bytes_allocd += lb_rounded; } UNLOCK(); if (init && !GC_debugging_started && 0 != result) { BZERO(result, n_blocks * HBLKSIZE); } } if (0 == result) { return((*GC_get_oom_fn())(lb)); } else { return(result); } } GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_kind_global(size_t lb, int k) { GC_ASSERT(k < MAXOBJKINDS); if (SMALL_OBJ(lb)) { void *op; void **opp; size_t lg; DCL_LOCK_STATE; GC_DBG_COLLECT_AT_MALLOC(lb); LOCK(); lg = GC_size_map[lb]; opp = &GC_obj_kinds[k].ok_freelist[lg]; op = *opp; if (EXPECT(op != NULL, TRUE)) { if (k == PTRFREE) { *opp = obj_link(op); } else { GC_ASSERT(0 == obj_link(op) || ((word)obj_link(op) <= (word)GC_greatest_plausible_heap_addr && (word)obj_link(op) >= (word)GC_least_plausible_heap_addr)); *opp = obj_link(op); obj_link(op) = 0; } GC_bytes_allocd += GRANULES_TO_BYTES((word)lg); UNLOCK(); return op; } UNLOCK(); } /* We make the GC_clear_stack() call a tail one, hoping to get more */ /* of the stack. */ return GC_clear_stack(GC_generic_malloc(lb, k)); } #if defined(THREADS) && !defined(THREAD_LOCAL_ALLOC) GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_kind(size_t lb, int k) { return GC_malloc_kind_global(lb, k); } #endif #if !IL2CPP_ENABLE_WRITE_BARRIER_VALIDATION /* Allocate lb bytes of atomic (pointer-free) data. */ GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_atomic(size_t lb) { return GC_malloc_kind(lb, PTRFREE); } /* Allocate lb bytes of composite (pointerful) data. */ GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc(size_t lb) { return GC_malloc_kind(lb, NORMAL); } #endif GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_malloc_uncollectable( size_t lb, int k) { void *op; DCL_LOCK_STATE; GC_ASSERT(k < MAXOBJKINDS); if (SMALL_OBJ(lb)) { void **opp; size_t lg; GC_DBG_COLLECT_AT_MALLOC(lb); if (EXTRA_BYTES != 0 && lb != 0) lb--; /* We don't need the extra byte, since this won't be */ /* collected anyway. */ LOCK(); lg = GC_size_map[lb]; opp = &GC_obj_kinds[k].ok_freelist[lg]; op = *opp; if (EXPECT(op != NULL, TRUE)) { *opp = obj_link(op); obj_link(op) = 0; GC_bytes_allocd += GRANULES_TO_BYTES((word)lg); /* Mark bit was already set on free list. It will be */ /* cleared only temporarily during a collection, as a */ /* result of the normal free list mark bit clearing. */ GC_non_gc_bytes += GRANULES_TO_BYTES((word)lg); UNLOCK(); } else { UNLOCK(); op = GC_generic_malloc(lb, k); /* For small objects, the free lists are completely marked. */ } GC_ASSERT(0 == op || GC_is_marked(op)); } else { hdr * hhdr; op = GC_generic_malloc(lb, k); if (NULL == op) return NULL; GC_ASSERT(((word)op & (HBLKSIZE - 1)) == 0); /* large block */ hhdr = HDR(op); /* We don't need the lock here, since we have an undisguised */ /* pointer. We do need to hold the lock while we adjust */ /* mark bits. */ LOCK(); set_mark_bit_from_hdr(hhdr, 0); /* Only object. */ # ifndef THREADS GC_ASSERT(hhdr -> hb_n_marks == 0); /* This is not guaranteed in the multi-threaded case */ /* because the counter could be updated before locking. */ # endif hhdr -> hb_n_marks = 1; UNLOCK(); } return op; } #if !IL2CPP_ENABLE_WRITE_BARRIER_VALIDATION /* Allocate lb bytes of pointerful, traced, but not collectible data. */ GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_uncollectable(size_t lb) { return GC_generic_malloc_uncollectable(lb, UNCOLLECTABLE); } #endif #ifdef GC_ATOMIC_UNCOLLECTABLE /* Allocate lb bytes of pointer-free, untraced, uncollectible data */ /* This is normally roughly equivalent to the system malloc. */ /* But it may be useful if malloc is redefined. */ GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_atomic_uncollectable(size_t lb) { return GC_generic_malloc_uncollectable(lb, AUNCOLLECTABLE); } #endif /* GC_ATOMIC_UNCOLLECTABLE */ #if defined(REDIRECT_MALLOC) && !defined(REDIRECT_MALLOC_IN_HEADER) # ifndef MSWINCE # include # endif /* Avoid unnecessary nested procedure calls here, by #defining some */ /* malloc replacements. Otherwise we end up saving a meaningless */ /* return address in the object. It also speeds things up, but it is */ /* admittedly quite ugly. */ # define GC_debug_malloc_replacement(lb) GC_debug_malloc(lb, GC_DBG_EXTRAS) # if defined(CPPCHECK) # define REDIRECT_MALLOC_F GC_malloc /* e.g. */ # else # define REDIRECT_MALLOC_F REDIRECT_MALLOC # endif void * malloc(size_t lb) { /* It might help to manually inline the GC_malloc call here. */ /* But any decent compiler should reduce the extra procedure call */ /* to at most a jump instruction in this case. */ # if defined(I386) && defined(GC_SOLARIS_THREADS) /* Thread initialization can call malloc before we are ready for. */ /* It is not clear that this is enough to help matters. */ /* The thread implementation may well call malloc at other */ /* inopportune times. */ if (!EXPECT(GC_is_initialized, TRUE)) return sbrk(lb); # endif return (void *)REDIRECT_MALLOC_F(lb); } # if defined(GC_LINUX_THREADS) STATIC ptr_t GC_libpthread_start = 0; STATIC ptr_t GC_libpthread_end = 0; STATIC ptr_t GC_libld_start = 0; STATIC ptr_t GC_libld_end = 0; STATIC void GC_init_lib_bounds(void) { IF_CANCEL(int cancel_state;) if (GC_libpthread_start != 0) return; DISABLE_CANCEL(cancel_state); GC_init(); /* if not called yet */ if (!GC_text_mapping("libpthread-", &GC_libpthread_start, &GC_libpthread_end)) { WARN("Failed to find libpthread.so text mapping: Expect crash\n", 0); /* This might still work with some versions of libpthread, */ /* so we don't abort. Perhaps we should. */ /* Generate message only once: */ GC_libpthread_start = (ptr_t)1; } if (!GC_text_mapping("ld-", &GC_libld_start, &GC_libld_end)) { WARN("Failed to find ld.so text mapping: Expect crash\n", 0); } RESTORE_CANCEL(cancel_state); } # endif /* GC_LINUX_THREADS */ void * calloc(size_t n, size_t lb) { if ((lb | n) > GC_SQRT_SIZE_MAX /* fast initial test */ && lb && n > GC_SIZE_MAX / lb) return (*GC_get_oom_fn())(GC_SIZE_MAX); /* n*lb overflow */ # if defined(GC_LINUX_THREADS) /* libpthread allocated some memory that is only pointed to by */ /* mmapped thread stacks. Make sure it is not collectible. */ { static GC_bool lib_bounds_set = FALSE; ptr_t caller = (ptr_t)__builtin_return_address(0); /* This test does not need to ensure memory visibility, since */ /* the bounds will be set when/if we create another thread. */ if (!EXPECT(lib_bounds_set, TRUE)) { GC_init_lib_bounds(); lib_bounds_set = TRUE; } if (((word)caller >= (word)GC_libpthread_start && (word)caller < (word)GC_libpthread_end) || ((word)caller >= (word)GC_libld_start && (word)caller < (word)GC_libld_end)) return GC_generic_malloc_uncollectable(n * lb, UNCOLLECTABLE); /* The two ranges are actually usually adjacent, so there may */ /* be a way to speed this up. */ } # endif return (void *)REDIRECT_MALLOC_F(n * lb); } # ifndef strdup char *strdup(const char *s) { size_t lb = strlen(s) + 1; char *result = (char *)REDIRECT_MALLOC_F(lb); if (result == 0) { errno = ENOMEM; return 0; } BCOPY(s, result, lb); return result; } # endif /* !defined(strdup) */ /* If strdup is macro defined, we assume that it actually calls malloc, */ /* and thus the right thing will happen even without overriding it. */ /* This seems to be true on most Linux systems. */ # ifndef strndup /* This is similar to strdup(). */ char *strndup(const char *str, size_t size) { char *copy; size_t len = strlen(str); if (len > size) len = size; copy = (char *)REDIRECT_MALLOC_F(len + 1); if (copy == NULL) { errno = ENOMEM; return NULL; } if (EXPECT(len > 0, TRUE)) BCOPY(str, copy, len); copy[len] = '\0'; return copy; } # endif /* !strndup */ # undef GC_debug_malloc_replacement #endif /* REDIRECT_MALLOC */ #if !IL2CPP_ENABLE_WRITE_BARRIER_VALIDATION /* Explicitly deallocate an object p. */ GC_API void GC_CALL GC_free(void * p) { struct hblk *h; hdr *hhdr; size_t sz; /* In bytes */ size_t ngranules; /* sz in granules */ int knd; struct obj_kind * ok; DCL_LOCK_STATE; if (p == 0) return; /* Required by ANSI. It's not my fault ... */ # ifdef LOG_ALLOCS GC_log_printf("GC_free(%p) after GC #%lu\n", p, (unsigned long)GC_gc_no); # endif h = HBLKPTR(p); hhdr = HDR(h); # if defined(REDIRECT_MALLOC) && \ ((defined(NEED_CALLINFO) && defined(GC_HAVE_BUILTIN_BACKTRACE)) \ || defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \ || defined(MSWIN32)) /* This might be called indirectly by GC_print_callers to free */ /* the result of backtrace_symbols. */ /* For Solaris, we have to redirect malloc calls during */ /* initialization. For the others, this seems to happen */ /* implicitly. */ /* Don't try to deallocate that memory. */ if (0 == hhdr) return; # endif GC_ASSERT(GC_base(p) == p); sz = (size_t)hhdr->hb_sz; ngranules = BYTES_TO_GRANULES(sz); knd = hhdr -> hb_obj_kind; ok = &GC_obj_kinds[knd]; if (EXPECT(ngranules <= MAXOBJGRANULES, TRUE)) { void **flh; LOCK(); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; /* Its unnecessary to clear the mark bit. If the */ /* object is reallocated, it doesn't matter. O.w. the */ /* collector will do it, since it's on a free list. */ if (ok -> ok_init && EXPECT(sz > sizeof(word), TRUE)) { BZERO((word *)p + 1, sz-sizeof(word)); } flh = &(ok -> ok_freelist[ngranules]); obj_link(p) = *flh; *flh = (ptr_t)p; UNLOCK(); } else { size_t nblocks = OBJ_SZ_TO_BLOCKS(sz); LOCK(); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; if (nblocks > 1) { GC_large_allocd_bytes -= nblocks * HBLKSIZE; } GC_freehblk(h); UNLOCK(); } } #endif /* Explicitly deallocate an object p when we already hold lock. */ /* Only used for internally allocated objects, so we can take some */ /* shortcuts. */ #ifdef THREADS GC_INNER void GC_free_inner(void * p) { struct hblk *h; hdr *hhdr; size_t sz; /* bytes */ size_t ngranules; /* sz in granules */ int knd; struct obj_kind * ok; h = HBLKPTR(p); hhdr = HDR(h); knd = hhdr -> hb_obj_kind; sz = (size_t)hhdr->hb_sz; ngranules = BYTES_TO_GRANULES(sz); ok = &GC_obj_kinds[knd]; if (ngranules <= MAXOBJGRANULES) { void ** flh; GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; if (ok -> ok_init && EXPECT(sz > sizeof(word), TRUE)) { BZERO((word *)p + 1, sz-sizeof(word)); } flh = &(ok -> ok_freelist[ngranules]); obj_link(p) = *flh; *flh = (ptr_t)p; } else { size_t nblocks = OBJ_SZ_TO_BLOCKS(sz); GC_bytes_freed += sz; if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= sz; if (nblocks > 1) { GC_large_allocd_bytes -= nblocks * HBLKSIZE; } GC_freehblk(h); } } #endif /* THREADS */ #if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE) # define REDIRECT_FREE GC_free #endif #if defined(REDIRECT_FREE) && !defined(REDIRECT_MALLOC_IN_HEADER) # if defined(CPPCHECK) # define REDIRECT_FREE_F GC_free /* e.g. */ # else # define REDIRECT_FREE_F REDIRECT_FREE # endif void free(void * p) { # ifndef IGNORE_FREE # if defined(GC_LINUX_THREADS) && !defined(USE_PROC_FOR_LIBRARIES) /* Don't bother with initialization checks. If nothing */ /* has been initialized, the check fails, and that's safe, */ /* since we have not allocated uncollectible objects neither. */ ptr_t caller = (ptr_t)__builtin_return_address(0); /* This test does not need to ensure memory visibility, since */ /* the bounds will be set when/if we create another thread. */ if (((word)caller >= (word)GC_libpthread_start && (word)caller < (word)GC_libpthread_end) || ((word)caller >= (word)GC_libld_start && (word)caller < (word)GC_libld_end)) { GC_free(p); return; } # endif REDIRECT_FREE_F(p); # endif } #endif /* REDIRECT_FREE */