//===- InductiveRangeCheckElimination.cpp - -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The InductiveRangeCheckElimination pass splits a loop's iteration space into // three disjoint ranges. It does that in a way such that the loop running in // the middle loop provably does not need range checks. As an example, it will // convert // // len = < known positive > // for (i = 0; i < n; i++) { // if (0 <= i && i < len) { // do_something(); // } else { // throw_out_of_bounds(); // } // } // // to // // len = < known positive > // limit = smin(n, len) // // no first segment // for (i = 0; i < limit; i++) { // if (0 <= i && i < len) { // this check is fully redundant // do_something(); // } else { // throw_out_of_bounds(); // } // } // for (i = limit; i < n; i++) { // if (0 <= i && i < len) { // do_something(); // } else { // throw_out_of_bounds(); // } // } // //===----------------------------------------------------------------------===// #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; static cl::opt LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden, cl::init(64)); static cl::opt PrintChangedLoops("irce-print-changed-loops", cl::Hidden, cl::init(false)); static cl::opt PrintRangeChecks("irce-print-range-checks", cl::Hidden, cl::init(false)); static cl::opt MaxExitProbReciprocal("irce-max-exit-prob-reciprocal", cl::Hidden, cl::init(10)); static cl::opt SkipProfitabilityChecks("irce-skip-profitability-checks", cl::Hidden, cl::init(false)); static cl::opt AllowUnsignedLatchCondition("irce-allow-unsigned-latch", cl::Hidden, cl::init(true)); static const char *ClonedLoopTag = "irce.loop.clone"; #define DEBUG_TYPE "irce" namespace { /// An inductive range check is conditional branch in a loop with /// /// 1. a very cold successor (i.e. the branch jumps to that successor very /// rarely) /// /// and /// /// 2. a condition that is provably true for some contiguous range of values /// taken by the containing loop's induction variable. /// class InductiveRangeCheck { // Classifies a range check enum RangeCheckKind : unsigned { // Range check of the form "0 <= I". RANGE_CHECK_LOWER = 1, // Range check of the form "I < L" where L is known positive. RANGE_CHECK_UPPER = 2, // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER // conditions. RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER, // Unrecognized range check condition. RANGE_CHECK_UNKNOWN = (unsigned)-1 }; static StringRef rangeCheckKindToStr(RangeCheckKind); const SCEV *Begin = nullptr; const SCEV *Step = nullptr; const SCEV *End = nullptr; Use *CheckUse = nullptr; RangeCheckKind Kind = RANGE_CHECK_UNKNOWN; bool IsSigned = true; static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, Value *&Index, Value *&Length, bool &IsSigned); static void extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited); public: const SCEV *getBegin() const { return Begin; } const SCEV *getStep() const { return Step; } const SCEV *getEnd() const { return End; } bool isSigned() const { return IsSigned; } void print(raw_ostream &OS) const { OS << "InductiveRangeCheck:\n"; OS << " Kind: " << rangeCheckKindToStr(Kind) << "\n"; OS << " Begin: "; Begin->print(OS); OS << " Step: "; Step->print(OS); OS << " End: "; if (End) End->print(OS); else OS << "(null)"; OS << "\n CheckUse: "; getCheckUse()->getUser()->print(OS); OS << " Operand: " << getCheckUse()->getOperandNo() << "\n"; } LLVM_DUMP_METHOD void dump() { print(dbgs()); } Use *getCheckUse() const { return CheckUse; } /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If /// R.getEnd() sle R.getBegin(), then R denotes the empty range. class Range { const SCEV *Begin; const SCEV *End; public: Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) { assert(Begin->getType() == End->getType() && "ill-typed range!"); } Type *getType() const { return Begin->getType(); } const SCEV *getBegin() const { return Begin; } const SCEV *getEnd() const { return End; } bool isEmpty(ScalarEvolution &SE, bool IsSigned) const { if (Begin == End) return true; if (IsSigned) return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End); else return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End); } }; /// This is the value the condition of the branch needs to evaluate to for the /// branch to take the hot successor (see (1) above). bool getPassingDirection() { return true; } /// Computes a range for the induction variable (IndVar) in which the range /// check is redundant and can be constant-folded away. The induction /// variable is not required to be the canonical {0,+,1} induction variable. Optional computeSafeIterationSpace(ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, bool IsLatchSigned) const; /// Parse out a set of inductive range checks from \p BI and append them to \p /// Checks. /// /// NB! There may be conditions feeding into \p BI that aren't inductive range /// checks, and hence don't end up in \p Checks. static void extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, SmallVectorImpl &Checks); }; class InductiveRangeCheckElimination : public LoopPass { public: static char ID; InductiveRangeCheckElimination() : LoopPass(ID) { initializeInductiveRangeCheckEliminationPass( *PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); getLoopAnalysisUsage(AU); } bool runOnLoop(Loop *L, LPPassManager &LPM) override; }; } // end anonymous namespace char InductiveRangeCheckElimination::ID = 0; INITIALIZE_PASS_BEGIN(InductiveRangeCheckElimination, "irce", "Inductive range check elimination", false, false) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopPass) INITIALIZE_PASS_END(InductiveRangeCheckElimination, "irce", "Inductive range check elimination", false, false) StringRef InductiveRangeCheck::rangeCheckKindToStr( InductiveRangeCheck::RangeCheckKind RCK) { switch (RCK) { case InductiveRangeCheck::RANGE_CHECK_UNKNOWN: return "RANGE_CHECK_UNKNOWN"; case InductiveRangeCheck::RANGE_CHECK_UPPER: return "RANGE_CHECK_UPPER"; case InductiveRangeCheck::RANGE_CHECK_LOWER: return "RANGE_CHECK_LOWER"; case InductiveRangeCheck::RANGE_CHECK_BOTH: return "RANGE_CHECK_BOTH"; } llvm_unreachable("unknown range check type!"); } /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot /// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set /// `Index` and `Length` to `nullptr`. Otherwise set `Index` to the value being /// range checked, and set `Length` to the upper limit `Index` is being range /// checked with if (and only if) the range check type is stronger or equal to /// RANGE_CHECK_UPPER. InductiveRangeCheck::RangeCheckKind InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE, Value *&Index, Value *&Length, bool &IsSigned) { auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) { const SCEV *S = SE.getSCEV(V); if (isa(S)) return false; return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant && SE.isKnownNonNegative(S); }; ICmpInst::Predicate Pred = ICI->getPredicate(); Value *LHS = ICI->getOperand(0); Value *RHS = ICI->getOperand(1); switch (Pred) { default: return RANGE_CHECK_UNKNOWN; case ICmpInst::ICMP_SLE: std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ICmpInst::ICMP_SGE: IsSigned = true; if (match(RHS, m_ConstantInt<0>())) { Index = LHS; return RANGE_CHECK_LOWER; } return RANGE_CHECK_UNKNOWN; case ICmpInst::ICMP_SLT: std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ICmpInst::ICMP_SGT: IsSigned = true; if (match(RHS, m_ConstantInt<-1>())) { Index = LHS; return RANGE_CHECK_LOWER; } if (IsNonNegativeAndNotLoopVarying(LHS)) { Index = RHS; Length = LHS; return RANGE_CHECK_UPPER; } return RANGE_CHECK_UNKNOWN; case ICmpInst::ICMP_ULT: std::swap(LHS, RHS); LLVM_FALLTHROUGH; case ICmpInst::ICMP_UGT: IsSigned = false; if (IsNonNegativeAndNotLoopVarying(LHS)) { Index = RHS; Length = LHS; return RANGE_CHECK_BOTH; } return RANGE_CHECK_UNKNOWN; } llvm_unreachable("default clause returns!"); } void InductiveRangeCheck::extractRangeChecksFromCond( Loop *L, ScalarEvolution &SE, Use &ConditionUse, SmallVectorImpl &Checks, SmallPtrSetImpl &Visited) { Value *Condition = ConditionUse.get(); if (!Visited.insert(Condition).second) return; // TODO: Do the same for OR, XOR, NOT etc? if (match(Condition, m_And(m_Value(), m_Value()))) { extractRangeChecksFromCond(L, SE, cast(Condition)->getOperandUse(0), Checks, Visited); extractRangeChecksFromCond(L, SE, cast(Condition)->getOperandUse(1), Checks, Visited); return; } ICmpInst *ICI = dyn_cast(Condition); if (!ICI) return; Value *Length = nullptr, *Index; bool IsSigned; auto RCKind = parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned); if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN) return; const auto *IndexAddRec = dyn_cast(SE.getSCEV(Index)); bool IsAffineIndex = IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine(); if (!IsAffineIndex) return; InductiveRangeCheck IRC; IRC.End = Length ? SE.getSCEV(Length) : nullptr; IRC.Begin = IndexAddRec->getStart(); IRC.Step = IndexAddRec->getStepRecurrence(SE); IRC.CheckUse = &ConditionUse; IRC.Kind = RCKind; IRC.IsSigned = IsSigned; Checks.push_back(IRC); } void InductiveRangeCheck::extractRangeChecksFromBranch( BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo &BPI, SmallVectorImpl &Checks) { if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch()) return; BranchProbability LikelyTaken(15, 16); if (!SkipProfitabilityChecks && BPI.getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken) return; SmallPtrSet Visited; InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0), Checks, Visited); } // Add metadata to the loop L to disable loop optimizations. Callers need to // confirm that optimizing loop L is not beneficial. static void DisableAllLoopOptsOnLoop(Loop &L) { // We do not care about any existing loopID related metadata for L, since we // are setting all loop metadata to false. LLVMContext &Context = L.getHeader()->getContext(); // Reserve first location for self reference to the LoopID metadata node. MDNode *Dummy = MDNode::get(Context, {}); MDNode *DisableUnroll = MDNode::get( Context, {MDString::get(Context, "llvm.loop.unroll.disable")}); Metadata *FalseVal = ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0)); MDNode *DisableVectorize = MDNode::get( Context, {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal}); MDNode *DisableLICMVersioning = MDNode::get( Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")}); MDNode *DisableDistribution= MDNode::get( Context, {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal}); MDNode *NewLoopID = MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize, DisableLICMVersioning, DisableDistribution}); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); L.setLoopID(NewLoopID); } namespace { // Keeps track of the structure of a loop. This is similar to llvm::Loop, // except that it is more lightweight and can track the state of a loop through // changing and potentially invalid IR. This structure also formalizes the // kinds of loops we can deal with -- ones that have a single latch that is also // an exiting block *and* have a canonical induction variable. struct LoopStructure { const char *Tag = ""; BasicBlock *Header = nullptr; BasicBlock *Latch = nullptr; // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th // successor is `LatchExit', the exit block of the loop. BranchInst *LatchBr = nullptr; BasicBlock *LatchExit = nullptr; unsigned LatchBrExitIdx = std::numeric_limits::max(); // The loop represented by this instance of LoopStructure is semantically // equivalent to: // // intN_ty inc = IndVarIncreasing ? 1 : -1; // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT; // // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase) // ... body ... Value *IndVarBase = nullptr; Value *IndVarStart = nullptr; Value *IndVarStep = nullptr; Value *LoopExitAt = nullptr; bool IndVarIncreasing = false; bool IsSignedPredicate = true; LoopStructure() = default; template LoopStructure map(M Map) const { LoopStructure Result; Result.Tag = Tag; Result.Header = cast(Map(Header)); Result.Latch = cast(Map(Latch)); Result.LatchBr = cast(Map(LatchBr)); Result.LatchExit = cast(Map(LatchExit)); Result.LatchBrExitIdx = LatchBrExitIdx; Result.IndVarBase = Map(IndVarBase); Result.IndVarStart = Map(IndVarStart); Result.IndVarStep = Map(IndVarStep); Result.LoopExitAt = Map(LoopExitAt); Result.IndVarIncreasing = IndVarIncreasing; Result.IsSignedPredicate = IsSignedPredicate; return Result; } static Optional parseLoopStructure(ScalarEvolution &, BranchProbabilityInfo &BPI, Loop &, const char *&); }; /// This class is used to constrain loops to run within a given iteration space. /// The algorithm this class implements is given a Loop and a range [Begin, /// End). The algorithm then tries to break out a "main loop" out of the loop /// it is given in a way that the "main loop" runs with the induction variable /// in a subset of [Begin, End). The algorithm emits appropriate pre and post /// loops to run any remaining iterations. The pre loop runs any iterations in /// which the induction variable is < Begin, and the post loop runs any /// iterations in which the induction variable is >= End. class LoopConstrainer { // The representation of a clone of the original loop we started out with. struct ClonedLoop { // The cloned blocks std::vector Blocks; // `Map` maps values in the clonee into values in the cloned version ValueToValueMapTy Map; // An instance of `LoopStructure` for the cloned loop LoopStructure Structure; }; // Result of rewriting the range of a loop. See changeIterationSpaceEnd for // more details on what these fields mean. struct RewrittenRangeInfo { BasicBlock *PseudoExit = nullptr; BasicBlock *ExitSelector = nullptr; std::vector PHIValuesAtPseudoExit; PHINode *IndVarEnd = nullptr; RewrittenRangeInfo() = default; }; // Calculated subranges we restrict the iteration space of the main loop to. // See the implementation of `calculateSubRanges' for more details on how // these fields are computed. `LowLimit` is None if there is no restriction // on low end of the restricted iteration space of the main loop. `HighLimit` // is None if there is no restriction on high end of the restricted iteration // space of the main loop. struct SubRanges { Optional LowLimit; Optional HighLimit; }; // A utility function that does a `replaceUsesOfWith' on the incoming block // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's // incoming block list with `ReplaceBy'. static void replacePHIBlock(PHINode *PN, BasicBlock *Block, BasicBlock *ReplaceBy); // Compute a safe set of limits for the main loop to run in -- effectively the // intersection of `Range' and the iteration space of the original loop. // Return None if unable to compute the set of subranges. Optional calculateSubRanges(bool IsSignedPredicate) const; // Clone `OriginalLoop' and return the result in CLResult. The IR after // running `cloneLoop' is well formed except for the PHI nodes in CLResult -- // the PHI nodes say that there is an incoming edge from `OriginalPreheader` // but there is no such edge. void cloneLoop(ClonedLoop &CLResult, const char *Tag) const; // Create the appropriate loop structure needed to describe a cloned copy of // `Original`. The clone is described by `VM`. Loop *createClonedLoopStructure(Loop *Original, Loop *Parent, ValueToValueMapTy &VM); // Rewrite the iteration space of the loop denoted by (LS, Preheader). The // iteration space of the rewritten loop ends at ExitLoopAt. The start of the // iteration space is not changed. `ExitLoopAt' is assumed to be slt // `OriginalHeaderCount'. // // If there are iterations left to execute, control is made to jump to // `ContinuationBlock', otherwise they take the normal loop exit. The // returned `RewrittenRangeInfo' object is populated as follows: // // .PseudoExit is a basic block that unconditionally branches to // `ContinuationBlock'. // // .ExitSelector is a basic block that decides, on exit from the loop, // whether to branch to the "true" exit or to `PseudoExit'. // // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value // for each PHINode in the loop header on taking the pseudo exit. // // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate // preheader because it is made to branch to the loop header only // conditionally. RewrittenRangeInfo changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader, Value *ExitLoopAt, BasicBlock *ContinuationBlock) const; // The loop denoted by `LS' has `OldPreheader' as its preheader. This // function creates a new preheader for `LS' and returns it. BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, const char *Tag) const; // `ContinuationBlockAndPreheader' was the continuation block for some call to // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'. // This function rewrites the PHI nodes in `LS.Header' to start with the // correct value. void rewriteIncomingValuesForPHIs( LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader, const LoopConstrainer::RewrittenRangeInfo &RRI) const; // Even though we do not preserve any passes at this time, we at least need to // keep the parent loop structure consistent. The `LPPassManager' seems to // verify this after running a loop pass. This function adds the list of // blocks denoted by BBs to this loops parent loop if required. void addToParentLoopIfNeeded(ArrayRef BBs); // Some global state. Function &F; LLVMContext &Ctx; ScalarEvolution &SE; DominatorTree &DT; LPPassManager &LPM; LoopInfo &LI; // Information about the original loop we started out with. Loop &OriginalLoop; const SCEV *LatchTakenCount = nullptr; BasicBlock *OriginalPreheader = nullptr; // The preheader of the main loop. This may or may not be different from // `OriginalPreheader'. BasicBlock *MainLoopPreheader = nullptr; // The range we need to run the main loop in. InductiveRangeCheck::Range Range; // The structure of the main loop (see comment at the beginning of this class // for a definition) LoopStructure MainLoopStructure; public: LoopConstrainer(Loop &L, LoopInfo &LI, LPPassManager &LPM, const LoopStructure &LS, ScalarEvolution &SE, DominatorTree &DT, InductiveRangeCheck::Range R) : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE), DT(DT), LPM(LPM), LI(LI), OriginalLoop(L), Range(R), MainLoopStructure(LS) {} // Entry point for the algorithm. Returns true on success. bool run(); }; } // end anonymous namespace void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block, BasicBlock *ReplaceBy) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingBlock(i) == Block) PN->setIncomingBlock(i, ReplaceBy); } static bool CanBeMax(ScalarEvolution &SE, const SCEV *S, bool Signed) { APInt Max = Signed ? APInt::getSignedMaxValue(cast(S->getType())->getBitWidth()) : APInt::getMaxValue(cast(S->getType())->getBitWidth()); return SE.getSignedRange(S).contains(Max) && SE.getUnsignedRange(S).contains(Max); } static bool SumCanReachMax(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, bool Signed) { // S1 < INT_MAX - S2 ===> S1 + S2 < INT_MAX. assert(SE.isKnownNonNegative(S2) && "We expected the 2nd arg to be non-negative!"); const SCEV *Max = SE.getConstant( Signed ? APInt::getSignedMaxValue( cast(S1->getType())->getBitWidth()) : APInt::getMaxValue( cast(S1->getType())->getBitWidth())); const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, S1, CapForS1); } static bool CanBeMin(ScalarEvolution &SE, const SCEV *S, bool Signed) { APInt Min = Signed ? APInt::getSignedMinValue(cast(S->getType())->getBitWidth()) : APInt::getMinValue(cast(S->getType())->getBitWidth()); return SE.getSignedRange(S).contains(Min) && SE.getUnsignedRange(S).contains(Min); } static bool SumCanReachMin(ScalarEvolution &SE, const SCEV *S1, const SCEV *S2, bool Signed) { // S1 > INT_MIN - S2 ===> S1 + S2 > INT_MIN. assert(SE.isKnownNonPositive(S2) && "We expected the 2nd arg to be non-positive!"); const SCEV *Max = SE.getConstant( Signed ? APInt::getSignedMinValue( cast(S1->getType())->getBitWidth()) : APInt::getMinValue( cast(S1->getType())->getBitWidth())); const SCEV *CapForS1 = SE.getMinusSCEV(Max, S2); return !SE.isKnownPredicate(Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, S1, CapForS1); } Optional LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI, Loop &L, const char *&FailureReason) { if (!L.isLoopSimplifyForm()) { FailureReason = "loop not in LoopSimplify form"; return None; } BasicBlock *Latch = L.getLoopLatch(); assert(Latch && "Simplified loops only have one latch!"); if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) { FailureReason = "loop has already been cloned"; return None; } if (!L.isLoopExiting(Latch)) { FailureReason = "no loop latch"; return None; } BasicBlock *Header = L.getHeader(); BasicBlock *Preheader = L.getLoopPreheader(); if (!Preheader) { FailureReason = "no preheader"; return None; } BranchInst *LatchBr = dyn_cast(Latch->getTerminator()); if (!LatchBr || LatchBr->isUnconditional()) { FailureReason = "latch terminator not conditional branch"; return None; } unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0; BranchProbability ExitProbability = BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx); if (!SkipProfitabilityChecks && ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) { FailureReason = "short running loop, not profitable"; return None; } ICmpInst *ICI = dyn_cast(LatchBr->getCondition()); if (!ICI || !isa(ICI->getOperand(0)->getType())) { FailureReason = "latch terminator branch not conditional on integral icmp"; return None; } const SCEV *LatchCount = SE.getExitCount(&L, Latch); if (isa(LatchCount)) { FailureReason = "could not compute latch count"; return None; } ICmpInst::Predicate Pred = ICI->getPredicate(); Value *LeftValue = ICI->getOperand(0); const SCEV *LeftSCEV = SE.getSCEV(LeftValue); IntegerType *IndVarTy = cast(LeftValue->getType()); Value *RightValue = ICI->getOperand(1); const SCEV *RightSCEV = SE.getSCEV(RightValue); // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. if (!isa(LeftSCEV)) { if (isa(RightSCEV)) { std::swap(LeftSCEV, RightSCEV); std::swap(LeftValue, RightValue); Pred = ICmpInst::getSwappedPredicate(Pred); } else { FailureReason = "no add recurrences in the icmp"; return None; } } auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { if (AR->getNoWrapFlags(SCEV::FlagNSW)) return true; IntegerType *Ty = cast(AR->getType()); IntegerType *WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2); const SCEVAddRecExpr *ExtendAfterOp = dyn_cast(SE.getSignExtendExpr(AR, WideTy)); if (ExtendAfterOp) { const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy); const SCEV *ExtendedStep = SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy); bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; if (NoSignedWrap) return true; } // We may have proved this when computing the sign extension above. return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap; }; // Here we check whether the suggested AddRec is an induction variable that // can be handled (i.e. with known constant step), and if yes, calculate its // step and identify whether it is increasing or decreasing. auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing, ConstantInt *&StepCI) { if (!AR->isAffine()) return false; // Currently we only work with induction variables that have been proved to // not wrap. This restriction can potentially be lifted in the future. if (!HasNoSignedWrap(AR)) return false; if (const SCEVConstant *StepExpr = dyn_cast(AR->getStepRecurrence(SE))) { StepCI = StepExpr->getValue(); assert(!StepCI->isZero() && "Zero step?"); IsIncreasing = !StepCI->isNegative(); return true; } return false; }; // `ICI` is interpreted as taking the backedge if the *next* value of the // induction variable satisfies some constraint. const SCEVAddRecExpr *IndVarBase = cast(LeftSCEV); bool IsIncreasing = false; bool IsSignedPredicate = true; ConstantInt *StepCI; if (!IsInductionVar(IndVarBase, IsIncreasing, StepCI)) { FailureReason = "LHS in icmp not induction variable"; return None; } const SCEV *StartNext = IndVarBase->getStart(); const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE)); const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend); const SCEV *Step = SE.getSCEV(StepCI); ConstantInt *One = ConstantInt::get(IndVarTy, 1); if (IsIncreasing) { bool DecreasedRightValueByOne = false; if (StepCI->isOne()) { // Try to turn eq/ne predicates to those we can work with. if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) // while (++i != len) { while (++i < len) { // ... ---> ... // } } // If both parts are known non-negative, it is profitable to use // unsigned comparison in increasing loop. This allows us to make the // comparison check against "RightSCEV + 1" more optimistic. if (SE.isKnownNonNegative(IndVarStart) && SE.isKnownNonNegative(RightSCEV)) Pred = ICmpInst::ICMP_ULT; else Pred = ICmpInst::ICMP_SLT; else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && !CanBeMin(SE, RightSCEV, /* IsSignedPredicate */ true)) { // while (true) { while (true) { // if (++i == len) ---> if (++i > len - 1) // break; break; // ... ... // } } // TODO: Insert ICMP_UGT if both are non-negative? Pred = ICmpInst::ICMP_SGT; RightSCEV = SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())); DecreasedRightValueByOne = true; } } bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); bool FoundExpectedPred = (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); if (!FoundExpectedPred) { FailureReason = "expected icmp slt semantically, found something else"; return None; } IsSignedPredicate = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { FailureReason = "unsigned latch conditions are explicitly prohibited"; return None; } // The predicate that we need to check that the induction variable lies // within bounds. ICmpInst::Predicate BoundPred = IsSignedPredicate ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; if (LatchBrExitIdx == 0) { const SCEV *StepMinusOne = SE.getMinusSCEV(Step, SE.getOne(Step->getType())); if (SumCanReachMax(SE, RightSCEV, StepMinusOne, IsSignedPredicate)) { // TODO: this restriction is easily removable -- we just have to // remember that the icmp was an slt and not an sle. FailureReason = "limit may overflow when coercing le to lt"; return None; } if (!SE.isLoopEntryGuardedByCond( &L, BoundPred, IndVarStart, SE.getAddExpr(RightSCEV, Step))) { FailureReason = "Induction variable start not bounded by upper limit"; return None; } // We need to increase the right value unless we have already decreased // it virtually when we replaced EQ with SGT. if (!DecreasedRightValueByOne) { IRBuilder<> B(Preheader->getTerminator()); RightValue = B.CreateAdd(RightValue, One); } } else { if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { FailureReason = "Induction variable start not bounded by upper limit"; return None; } assert(!DecreasedRightValueByOne && "Right value can be decreased only for LatchBrExitIdx == 0!"); } } else { bool IncreasedRightValueByOne = false; if (StepCI->isMinusOne()) { // Try to turn eq/ne predicates to those we can work with. if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) // while (--i != len) { while (--i > len) { // ... ---> ... // } } // We intentionally don't turn the predicate into UGT even if we know // that both operands are non-negative, because it will only pessimize // our check against "RightSCEV - 1". Pred = ICmpInst::ICMP_SGT; else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0 && !CanBeMax(SE, RightSCEV, /* IsSignedPredicate */ true)) { // while (true) { while (true) { // if (--i == len) ---> if (--i < len + 1) // break; break; // ... ... // } } // TODO: Insert ICMP_ULT if both are non-negative? Pred = ICmpInst::ICMP_SLT; RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType())); IncreasedRightValueByOne = true; } } bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); bool FoundExpectedPred = (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); if (!FoundExpectedPred) { FailureReason = "expected icmp sgt semantically, found something else"; return None; } IsSignedPredicate = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; if (!IsSignedPredicate && !AllowUnsignedLatchCondition) { FailureReason = "unsigned latch conditions are explicitly prohibited"; return None; } // The predicate that we need to check that the induction variable lies // within bounds. ICmpInst::Predicate BoundPred = IsSignedPredicate ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; if (LatchBrExitIdx == 0) { const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType())); if (SumCanReachMin(SE, RightSCEV, StepPlusOne, IsSignedPredicate)) { // TODO: this restriction is easily removable -- we just have to // remember that the icmp was an sgt and not an sge. FailureReason = "limit may overflow when coercing ge to gt"; return None; } if (!SE.isLoopEntryGuardedByCond( &L, BoundPred, IndVarStart, SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType())))) { FailureReason = "Induction variable start not bounded by lower limit"; return None; } // We need to decrease the right value unless we have already increased // it virtually when we replaced EQ with SLT. if (!IncreasedRightValueByOne) { IRBuilder<> B(Preheader->getTerminator()); RightValue = B.CreateSub(RightValue, One); } } else { if (!SE.isLoopEntryGuardedByCond(&L, BoundPred, IndVarStart, RightSCEV)) { FailureReason = "Induction variable start not bounded by lower limit"; return None; } assert(!IncreasedRightValueByOne && "Right value can be increased only for LatchBrExitIdx == 0!"); } } BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx); assert(SE.getLoopDisposition(LatchCount, &L) == ScalarEvolution::LoopInvariant && "loop variant exit count doesn't make sense!"); assert(!L.contains(LatchExit) && "expected an exit block!"); const DataLayout &DL = Preheader->getModule()->getDataLayout(); Value *IndVarStartV = SCEVExpander(SE, DL, "irce") .expandCodeFor(IndVarStart, IndVarTy, Preheader->getTerminator()); IndVarStartV->setName("indvar.start"); LoopStructure Result; Result.Tag = "main"; Result.Header = Header; Result.Latch = Latch; Result.LatchBr = LatchBr; Result.LatchExit = LatchExit; Result.LatchBrExitIdx = LatchBrExitIdx; Result.IndVarStart = IndVarStartV; Result.IndVarStep = StepCI; Result.IndVarBase = LeftValue; Result.IndVarIncreasing = IsIncreasing; Result.LoopExitAt = RightValue; Result.IsSignedPredicate = IsSignedPredicate; FailureReason = nullptr; return Result; } Optional LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const { IntegerType *Ty = cast(LatchTakenCount->getType()); if (Range.getType() != Ty) return None; LoopConstrainer::SubRanges Result; // I think we can be more aggressive here and make this nuw / nsw if the // addition that feeds into the icmp for the latch's terminating branch is nuw // / nsw. In any case, a wrapping 2's complement addition is safe. const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart); const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt); bool Increasing = MainLoopStructure.IndVarIncreasing; // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or // [Smallest, GreatestSeen] is the range of values the induction variable // takes. const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr; const SCEV *One = SE.getOne(Ty); if (Increasing) { Smallest = Start; Greatest = End; // No overflow, because the range [Smallest, GreatestSeen] is not empty. GreatestSeen = SE.getMinusSCEV(End, One); } else { // These two computations may sign-overflow. Here is why that is okay: // // We know that the induction variable does not sign-overflow on any // iteration except the last one, and it starts at `Start` and ends at // `End`, decrementing by one every time. // // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the // induction variable is decreasing we know that that the smallest value // the loop body is actually executed with is `INT_SMIN` == `Smallest`. // // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In // that case, `Clamp` will always return `Smallest` and // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`) // will be an empty range. Returning an empty range is always safe. Smallest = SE.getAddExpr(End, One); Greatest = SE.getAddExpr(Start, One); GreatestSeen = Start; } auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) { return IsSignedPredicate ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S)) : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S)); }; // In some cases we can prove that we don't need a pre or post loop. ICmpInst::Predicate PredLE = IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; ICmpInst::Predicate PredLT = IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; bool ProvablyNoPreloop = SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest); if (!ProvablyNoPreloop) Result.LowLimit = Clamp(Range.getBegin()); bool ProvablyNoPostLoop = SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd()); if (!ProvablyNoPostLoop) Result.HighLimit = Clamp(Range.getEnd()); return Result; } void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, const char *Tag) const { for (BasicBlock *BB : OriginalLoop.getBlocks()) { BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F); Result.Blocks.push_back(Clone); Result.Map[BB] = Clone; } auto GetClonedValue = [&Result](Value *V) { assert(V && "null values not in domain!"); auto It = Result.Map.find(V); if (It == Result.Map.end()) return V; return static_cast(It->second); }; auto *ClonedLatch = cast(GetClonedValue(OriginalLoop.getLoopLatch())); ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag, MDNode::get(Ctx, {})); Result.Structure = MainLoopStructure.map(GetClonedValue); Result.Structure.Tag = Tag; for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { BasicBlock *ClonedBB = Result.Blocks[i]; BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; assert(Result.Map[OriginalBB] == ClonedBB && "invariant!"); for (Instruction &I : *ClonedBB) RemapInstruction(&I, Result.Map, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); // Exit blocks will now have one more predecessor and their PHI nodes need // to be edited to reflect that. No phi nodes need to be introduced because // the loop is in LCSSA. for (auto *SBB : successors(OriginalBB)) { if (OriginalLoop.contains(SBB)) continue; // not an exit block for (PHINode &PN : SBB->phis()) { Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB); PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB); } } } } LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt, BasicBlock *ContinuationBlock) const { // We start with a loop with a single latch: // // +--------------------+ // | | // | preheader | // | | // +--------+-----------+ // | ----------------\ // | / | // +--------v----v------+ | // | | | // | header | | // | | | // +--------------------+ | // | // ..... | // | // +--------------------+ | // | | | // | latch >----------/ // | | // +-------v------------+ // | // | // | +--------------------+ // | | | // +---> original exit | // | | // +--------------------+ // // We change the control flow to look like // // // +--------------------+ // | | // | preheader >-------------------------+ // | | | // +--------v-----------+ | // | /-------------+ | // | / | | // +--------v--v--------+ | | // | | | | // | header | | +--------+ | // | | | | | | // +--------------------+ | | +-----v-----v-----------+ // | | | | // | | | .pseudo.exit | // | | | | // | | +-----------v-----------+ // | | | // ..... | | | // | | +--------v-------------+ // +--------------------+ | | | | // | | | | | ContinuationBlock | // | latch >------+ | | | // | | | +----------------------+ // +---------v----------+ | // | | // | | // | +---------------^-----+ // | | | // +-----> .exit.selector | // | | // +----------v----------+ // | // +--------------------+ | // | | | // | original exit <----+ // | | // +--------------------+ RewrittenRangeInfo RRI; BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector", &F, BBInsertLocation); RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F, BBInsertLocation); BranchInst *PreheaderJump = cast(Preheader->getTerminator()); bool Increasing = LS.IndVarIncreasing; bool IsSignedPredicate = LS.IsSignedPredicate; IRBuilder<> B(PreheaderJump); // EnterLoopCond - is it okay to start executing this `LS'? Value *EnterLoopCond = nullptr; if (Increasing) EnterLoopCond = IsSignedPredicate ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt) : B.CreateICmpULT(LS.IndVarStart, ExitSubloopAt); else EnterLoopCond = IsSignedPredicate ? B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt) : B.CreateICmpUGT(LS.IndVarStart, ExitSubloopAt); B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit); PreheaderJump->eraseFromParent(); LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector); B.SetInsertPoint(LS.LatchBr); Value *TakeBackedgeLoopCond = nullptr; if (Increasing) TakeBackedgeLoopCond = IsSignedPredicate ? B.CreateICmpSLT(LS.IndVarBase, ExitSubloopAt) : B.CreateICmpULT(LS.IndVarBase, ExitSubloopAt); else TakeBackedgeLoopCond = IsSignedPredicate ? B.CreateICmpSGT(LS.IndVarBase, ExitSubloopAt) : B.CreateICmpUGT(LS.IndVarBase, ExitSubloopAt); Value *CondForBranch = LS.LatchBrExitIdx == 1 ? TakeBackedgeLoopCond : B.CreateNot(TakeBackedgeLoopCond); LS.LatchBr->setCondition(CondForBranch); B.SetInsertPoint(RRI.ExitSelector); // IterationsLeft - are there any more iterations left, given the original // upper bound on the induction variable? If not, we branch to the "real" // exit. Value *IterationsLeft = nullptr; if (Increasing) IterationsLeft = IsSignedPredicate ? B.CreateICmpSLT(LS.IndVarBase, LS.LoopExitAt) : B.CreateICmpULT(LS.IndVarBase, LS.LoopExitAt); else IterationsLeft = IsSignedPredicate ? B.CreateICmpSGT(LS.IndVarBase, LS.LoopExitAt) : B.CreateICmpUGT(LS.IndVarBase, LS.LoopExitAt); B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit); BranchInst *BranchToContinuation = BranchInst::Create(ContinuationBlock, RRI.PseudoExit); // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of // each of the PHI nodes in the loop header. This feeds into the initial // value of the same PHI nodes if/when we continue execution. for (PHINode &PN : LS.Header->phis()) { PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy", BranchToContinuation); NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader); NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch), RRI.ExitSelector); RRI.PHIValuesAtPseudoExit.push_back(NewPHI); } RRI.IndVarEnd = PHINode::Create(LS.IndVarBase->getType(), 2, "indvar.end", BranchToContinuation); RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader); RRI.IndVarEnd->addIncoming(LS.IndVarBase, RRI.ExitSelector); // The latch exit now has a branch from `RRI.ExitSelector' instead of // `LS.Latch'. The PHI nodes need to be updated to reflect that. for (PHINode &PN : LS.LatchExit->phis()) replacePHIBlock(&PN, LS.Latch, RRI.ExitSelector); return RRI; } void LoopConstrainer::rewriteIncomingValuesForPHIs( LoopStructure &LS, BasicBlock *ContinuationBlock, const LoopConstrainer::RewrittenRangeInfo &RRI) const { unsigned PHIIndex = 0; for (PHINode &PN : LS.Header->phis()) for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) if (PN.getIncomingBlock(i) == ContinuationBlock) PN.setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]); LS.IndVarStart = RRI.IndVarEnd; } BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader, const char *Tag) const { BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header); BranchInst::Create(LS.Header, Preheader); for (PHINode &PN : LS.Header->phis()) for (unsigned i = 0, e = PN.getNumIncomingValues(); i < e; ++i) replacePHIBlock(&PN, OldPreheader, Preheader); return Preheader; } void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef BBs) { Loop *ParentLoop = OriginalLoop.getParentLoop(); if (!ParentLoop) return; for (BasicBlock *BB : BBs) ParentLoop->addBasicBlockToLoop(BB, LI); } Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, ValueToValueMapTy &VM) { Loop &New = *LI.AllocateLoop(); if (Parent) Parent->addChildLoop(&New); else LI.addTopLevelLoop(&New); LPM.addLoop(New); // Add all of the blocks in Original to the new loop. for (auto *BB : Original->blocks()) if (LI.getLoopFor(BB) == Original) New.addBasicBlockToLoop(cast(VM[BB]), LI); // Add all of the subloops to the new loop. for (Loop *SubLoop : *Original) createClonedLoopStructure(SubLoop, &New, VM); return &New; } bool LoopConstrainer::run() { BasicBlock *Preheader = nullptr; LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch); Preheader = OriginalLoop.getLoopPreheader(); assert(!isa(LatchTakenCount) && Preheader != nullptr && "preconditions!"); OriginalPreheader = Preheader; MainLoopPreheader = Preheader; bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; Optional MaybeSR = calculateSubRanges(IsSignedPredicate); if (!MaybeSR.hasValue()) { DEBUG(dbgs() << "irce: could not compute subranges\n"); return false; } SubRanges SR = MaybeSR.getValue(); bool Increasing = MainLoopStructure.IndVarIncreasing; IntegerType *IVTy = cast(MainLoopStructure.IndVarBase->getType()); SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce"); Instruction *InsertPt = OriginalPreheader->getTerminator(); // It would have been better to make `PreLoop' and `PostLoop' // `Optional's, but `ValueToValueMapTy' does not have a copy // constructor. ClonedLoop PreLoop, PostLoop; bool NeedsPreLoop = Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue(); bool NeedsPostLoop = Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue(); Value *ExitPreLoopAt = nullptr; Value *ExitMainLoopAt = nullptr; const SCEVConstant *MinusOneS = cast(SE.getConstant(IVTy, -1, true /* isSigned */)); if (NeedsPreLoop) { const SCEV *ExitPreLoopAtSCEV = nullptr; if (Increasing) ExitPreLoopAtSCEV = *SR.LowLimit; else { if (CanBeMin(SE, *SR.HighLimit, IsSignedPredicate)) { DEBUG(dbgs() << "irce: could not prove no-overflow when computing " << "preloop exit limit. HighLimit = " << *(*SR.HighLimit) << "\n"); return false; } ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS); } if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) { DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" << " preloop exit limit " << *ExitPreLoopAtSCEV << " at block " << InsertPt->getParent()->getName() << "\n"); return false; } ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt); ExitPreLoopAt->setName("exit.preloop.at"); } if (NeedsPostLoop) { const SCEV *ExitMainLoopAtSCEV = nullptr; if (Increasing) ExitMainLoopAtSCEV = *SR.HighLimit; else { if (CanBeMin(SE, *SR.LowLimit, IsSignedPredicate)) { DEBUG(dbgs() << "irce: could not prove no-overflow when computing " << "mainloop exit limit. LowLimit = " << *(*SR.LowLimit) << "\n"); return false; } ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS); } if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) { DEBUG(dbgs() << "irce: could not prove that it is safe to expand the" << " main loop exit limit " << *ExitMainLoopAtSCEV << " at block " << InsertPt->getParent()->getName() << "\n"); return false; } ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt); ExitMainLoopAt->setName("exit.mainloop.at"); } // We clone these ahead of time so that we don't have to deal with changing // and temporarily invalid IR as we transform the loops. if (NeedsPreLoop) cloneLoop(PreLoop, "preloop"); if (NeedsPostLoop) cloneLoop(PostLoop, "postloop"); RewrittenRangeInfo PreLoopRRI; if (NeedsPreLoop) { Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header, PreLoop.Structure.Header); MainLoopPreheader = createPreheader(MainLoopStructure, Preheader, "mainloop"); PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader, ExitPreLoopAt, MainLoopPreheader); rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader, PreLoopRRI); } BasicBlock *PostLoopPreheader = nullptr; RewrittenRangeInfo PostLoopRRI; if (NeedsPostLoop) { PostLoopPreheader = createPreheader(PostLoop.Structure, Preheader, "postloop"); PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader, ExitMainLoopAt, PostLoopPreheader); rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader, PostLoopRRI); } BasicBlock *NewMainLoopPreheader = MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, PostLoopRRI.ExitSelector, NewMainLoopPreheader}; // Some of the above may be nullptr, filter them out before passing to // addToParentLoopIfNeeded. auto NewBlocksEnd = std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr); addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd)); DT.recalculate(F); // We need to first add all the pre and post loop blocks into the loop // structures (as part of createClonedLoopStructure), and then update the // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating // LI when LoopSimplifyForm is generated. Loop *PreL = nullptr, *PostL = nullptr; if (!PreLoop.Blocks.empty()) { PreL = createClonedLoopStructure( &OriginalLoop, OriginalLoop.getParentLoop(), PreLoop.Map); } if (!PostLoop.Blocks.empty()) { PostL = createClonedLoopStructure( &OriginalLoop, OriginalLoop.getParentLoop(), PostLoop.Map); } // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) { formLCSSARecursively(*L, DT, &LI, &SE); simplifyLoop(L, &DT, &LI, &SE, nullptr, true); // Pre/post loops are slow paths, we do not need to perform any loop // optimizations on them. if (!IsOriginalLoop) DisableAllLoopOptsOnLoop(*L); }; if (PreL) CanonicalizeLoop(PreL, false); if (PostL) CanonicalizeLoop(PostL, false); CanonicalizeLoop(&OriginalLoop, true); return true; } /// Computes and returns a range of values for the induction variable (IndVar) /// in which the range check can be safely elided. If it cannot compute such a /// range, returns None. Optional InductiveRangeCheck::computeSafeIterationSpace( ScalarEvolution &SE, const SCEVAddRecExpr *IndVar, bool IsLatchSigned) const { // IndVar is of the form "A + B * I" (where "I" is the canonical induction // variable, that may or may not exist as a real llvm::Value in the loop) and // this inductive range check is a range check on the "C + D * I" ("C" is // getBegin() and "D" is getStep()). We rewrite the value being range // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA". // // The actual inequalities we solve are of the form // // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1) // // Here L stands for upper limit of the safe iteration space. // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid // overflows when calculating (0 - M) and (L - M) we, depending on type of // IV's iteration space, limit the calculations by borders of the iteration // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0. // If we figured out that "anything greater than (-M) is safe", we strengthen // this to "everything greater than 0 is safe", assuming that values between // -M and 0 just do not exist in unsigned iteration space, and we don't want // to deal with overflown values. if (!IndVar->isAffine()) return None; const SCEV *A = IndVar->getStart(); const SCEVConstant *B = dyn_cast(IndVar->getStepRecurrence(SE)); if (!B) return None; assert(!B->isZero() && "Recurrence with zero step?"); const SCEV *C = getBegin(); const SCEVConstant *D = dyn_cast(getStep()); if (D != B) return None; assert(!D->getValue()->isZero() && "Recurrence with zero step?"); unsigned BitWidth = cast(IndVar->getType())->getBitWidth(); const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth)); // Substract Y from X so that it does not go through border of the IV // iteration space. Mathematically, it is equivalent to: // // ClampedSubstract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1] // // In [1], 'X - Y' is a mathematical substraction (result is not bounded to // any width of bit grid). But after we take min/max, the result is // guaranteed to be within [INT_MIN, INT_MAX]. // // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min // values, depending on type of latch condition that defines IV iteration // space. auto ClampedSubstract = [&](const SCEV *X, const SCEV *Y) { assert(SE.isKnownNonNegative(X) && "We can only substract from values in [0; SINT_MAX]!"); if (IsLatchSigned) { // X is a number from signed range, Y is interpreted as signed. // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only // thing we should care about is that we didn't cross SINT_MAX. // So, if Y is positive, we substract Y safely. // Rule 1: Y > 0 ---> Y. // If 0 <= -Y <= (SINT_MAX - X), we substract Y safely. // Rule 2: Y >=s (X - SINT_MAX) ---> Y. // If 0 <= (SINT_MAX - X) < -Y, we can only substract (X - SINT_MAX). // Rule 3: Y (X - SINT_MAX). // It gives us smax(Y, X - SINT_MAX) to substract in all cases. const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax); return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax), SCEV::FlagNSW); } else // X is a number from unsigned range, Y is interpreted as signed. // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only // thing we should care about is that we didn't cross zero. // So, if Y is negative, we substract Y safely. // Rule 1: Y Y. // If 0 <= Y <= X, we substract Y safely. // Rule 2: Y <=s X ---> Y. // If 0 <= X < Y, we should stop at 0 and can only substract X. // Rule 3: Y >s X ---> X. // It gives us smin(X, Y) to substract in all cases. return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW); }; const SCEV *M = SE.getMinusSCEV(C, A); const SCEV *Zero = SE.getZero(M->getType()); const SCEV *Begin = ClampedSubstract(Zero, M); const SCEV *L = nullptr; // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L". // We can potentially do much better here. if (const SCEV *EndLimit = getEnd()) L = EndLimit; else { assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!"); L = SIntMax; } const SCEV *End = ClampedSubstract(L, M); return InductiveRangeCheck::Range(Begin, End); } static Optional IntersectSignedRange(ScalarEvolution &SE, const Optional &R1, const InductiveRangeCheck::Range &R2) { if (R2.isEmpty(SE, /* IsSigned */ true)) return None; if (!R1.hasValue()) return R2; auto &R1Value = R1.getValue(); // We never return empty ranges from this function, and R1 is supposed to be // a result of intersection. Thus, R1 is never empty. assert(!R1Value.isEmpty(SE, /* IsSigned */ true) && "We should never have empty R1!"); // TODO: we could widen the smaller range and have this work; but for now we // bail out to keep things simple. if (R1Value.getType() != R2.getType()) return None; const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin()); const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd()); // If the resulting range is empty, just return None. auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); if (Ret.isEmpty(SE, /* IsSigned */ true)) return None; return Ret; } static Optional IntersectUnsignedRange(ScalarEvolution &SE, const Optional &R1, const InductiveRangeCheck::Range &R2) { if (R2.isEmpty(SE, /* IsSigned */ false)) return None; if (!R1.hasValue()) return R2; auto &R1Value = R1.getValue(); // We never return empty ranges from this function, and R1 is supposed to be // a result of intersection. Thus, R1 is never empty. assert(!R1Value.isEmpty(SE, /* IsSigned */ false) && "We should never have empty R1!"); // TODO: we could widen the smaller range and have this work; but for now we // bail out to keep things simple. if (R1Value.getType() != R2.getType()) return None; const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin()); const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd()); // If the resulting range is empty, just return None. auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd); if (Ret.isEmpty(SE, /* IsSigned */ false)) return None; return Ret; } bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) { if (skipLoop(L)) return false; if (L->getBlocks().size() >= LoopSizeCutoff) { DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";); return false; } BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) { DEBUG(dbgs() << "irce: loop has no preheader, leaving\n"); return false; } LLVMContext &Context = Preheader->getContext(); SmallVector RangeChecks; ScalarEvolution &SE = getAnalysis().getSE(); BranchProbabilityInfo &BPI = getAnalysis().getBPI(); for (auto BBI : L->getBlocks()) if (BranchInst *TBI = dyn_cast(BBI->getTerminator())) InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI, RangeChecks); if (RangeChecks.empty()) return false; auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) { OS << "irce: looking at loop "; L->print(OS); OS << "irce: loop has " << RangeChecks.size() << " inductive range checks: \n"; for (InductiveRangeCheck &IRC : RangeChecks) IRC.print(OS); }; DEBUG(PrintRecognizedRangeChecks(dbgs())); if (PrintRangeChecks) PrintRecognizedRangeChecks(errs()); const char *FailureReason = nullptr; Optional MaybeLoopStructure = LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason); if (!MaybeLoopStructure.hasValue()) { DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason << "\n";); return false; } LoopStructure LS = MaybeLoopStructure.getValue(); const SCEVAddRecExpr *IndVar = cast(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep))); Optional SafeIterRange; Instruction *ExprInsertPt = Preheader->getTerminator(); SmallVector RangeChecksToEliminate; // Basing on the type of latch predicate, we interpret the IV iteration range // as signed or unsigned range. We use different min/max functions (signed or // unsigned) when intersecting this range with safe iteration ranges implied // by range checks. auto IntersectRange = LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange; IRBuilder<> B(ExprInsertPt); for (InductiveRangeCheck &IRC : RangeChecks) { auto Result = IRC.computeSafeIterationSpace(SE, IndVar, LS.IsSignedPredicate); if (Result.hasValue()) { auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, Result.getValue()); if (MaybeSafeIterRange.hasValue()) { assert( !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) && "We should never return empty ranges!"); RangeChecksToEliminate.push_back(IRC); SafeIterRange = MaybeSafeIterRange.getValue(); } } } if (!SafeIterRange.hasValue()) return false; auto &DT = getAnalysis().getDomTree(); LoopConstrainer LC(*L, getAnalysis().getLoopInfo(), LPM, LS, SE, DT, SafeIterRange.getValue()); bool Changed = LC.run(); if (Changed) { auto PrintConstrainedLoopInfo = [L]() { dbgs() << "irce: in function "; dbgs() << L->getHeader()->getParent()->getName() << ": "; dbgs() << "constrained "; L->print(dbgs()); }; DEBUG(PrintConstrainedLoopInfo()); if (PrintChangedLoops) PrintConstrainedLoopInfo(); // Optimize away the now-redundant range checks. for (InductiveRangeCheck &IRC : RangeChecksToEliminate) { ConstantInt *FoldedRangeCheck = IRC.getPassingDirection() ? ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context); IRC.getCheckUse()->set(FoldedRangeCheck); } } return Changed; } Pass *llvm::createInductiveRangeCheckEliminationPass() { return new InductiveRangeCheckElimination; }