//===----------------------- AlignmentFromAssumptions.cpp -----------------===// // Set Load/Store Alignments From Assumptions // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a ScalarEvolution-based transformation to set // the alignments of load, stores and memory intrinsics based on the truth // expressions of assume intrinsics. The primary motivation is to handle // complex alignment assumptions that apply to vector loads and stores that // appear after vectorization and unrolling. // //===----------------------------------------------------------------------===// #define AA_NAME "alignment-from-assumptions" #define DEBUG_TYPE AA_NAME #include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; STATISTIC(NumLoadAlignChanged, "Number of loads changed by alignment assumptions"); STATISTIC(NumStoreAlignChanged, "Number of stores changed by alignment assumptions"); STATISTIC(NumMemIntAlignChanged, "Number of memory intrinsics changed by alignment assumptions"); namespace { struct AlignmentFromAssumptions : public FunctionPass { static char ID; // Pass identification, replacement for typeid AlignmentFromAssumptions() : FunctionPass(ID) { initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesCFG(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } AlignmentFromAssumptionsPass Impl; }; } char AlignmentFromAssumptions::ID = 0; static const char aip_name[] = "Alignment from assumptions"; INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME, aip_name, false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME, aip_name, false, false) FunctionPass *llvm::createAlignmentFromAssumptionsPass() { return new AlignmentFromAssumptions(); } // Given an expression for the (constant) alignment, AlignSCEV, and an // expression for the displacement between a pointer and the aligned address, // DiffSCEV, compute the alignment of the displaced pointer if it can be reduced // to a constant. Using SCEV to compute alignment handles the case where // DiffSCEV is a recurrence with constant start such that the aligned offset // is constant. e.g. {16,+,32} % 32 -> 16. static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV, const SCEV *AlignSCEV, ScalarEvolution *SE) { // DiffUnits = Diff % int64_t(Alignment) const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV); const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV); const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV); DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is " << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n"); if (const SCEVConstant *ConstDUSCEV = dyn_cast(DiffUnitsSCEV)) { int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue(); // If the displacement is an exact multiple of the alignment, then the // displaced pointer has the same alignment as the aligned pointer, so // return the alignment value. if (!DiffUnits) return (unsigned) cast(AlignSCEV)->getValue()->getSExtValue(); // If the displacement is not an exact multiple, but the remainder is a // constant, then return this remainder (but only if it is a power of 2). uint64_t DiffUnitsAbs = std::abs(DiffUnits); if (isPowerOf2_64(DiffUnitsAbs)) return (unsigned) DiffUnitsAbs; } return 0; } // There is an address given by an offset OffSCEV from AASCEV which has an // alignment AlignSCEV. Use that information, if possible, to compute a new // alignment for Ptr. static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV, const SCEV *OffSCEV, Value *Ptr, ScalarEvolution *SE) { const SCEV *PtrSCEV = SE->getSCEV(Ptr); const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV); // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always // sign-extended OffSCEV to i64, so make sure they agree again. DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType()); // What we really want to know is the overall offset to the aligned // address. This address is displaced by the provided offset. DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV); DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to " << *AlignSCEV << " and offset " << *OffSCEV << " using diff " << *DiffSCEV << "\n"); unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE); DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n"); if (NewAlignment) { return NewAlignment; } else if (const SCEVAddRecExpr *DiffARSCEV = dyn_cast(DiffSCEV)) { // The relative offset to the alignment assumption did not yield a constant, // but we should try harder: if we assume that a is 32-byte aligned, then in // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are // 32-byte aligned, but instead alternate between 32 and 16-byte alignment. // As a result, the new alignment will not be a constant, but can still // be improved over the default (of 4) to 16. const SCEV *DiffStartSCEV = DiffARSCEV->getStart(); const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE); DEBUG(dbgs() << "\ttrying start/inc alignment using start " << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n"); // Now compute the new alignment using the displacement to the value in the // first iteration, and also the alignment using the per-iteration delta. // If these are the same, then use that answer. Otherwise, use the smaller // one, but only if it divides the larger one. NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE); unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE); DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n"); DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n"); if (!NewAlignment || !NewIncAlignment) { return 0; } else if (NewAlignment > NewIncAlignment) { if (NewAlignment % NewIncAlignment == 0) { DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment << "\n"); return NewIncAlignment; } } else if (NewIncAlignment > NewAlignment) { if (NewIncAlignment % NewAlignment == 0) { DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment << "\n"); return NewAlignment; } } else if (NewIncAlignment == NewAlignment) { DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment << "\n"); return NewAlignment; } } return 0; } bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I, Value *&AAPtr, const SCEV *&AlignSCEV, const SCEV *&OffSCEV) { // An alignment assume must be a statement about the least-significant // bits of the pointer being zero, possibly with some offset. ICmpInst *ICI = dyn_cast(I->getArgOperand(0)); if (!ICI) return false; // This must be an expression of the form: x & m == 0. if (ICI->getPredicate() != ICmpInst::ICMP_EQ) return false; // Swap things around so that the RHS is 0. Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS); const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS); if (CmpLHSSCEV->isZero()) std::swap(CmpLHS, CmpRHS); else if (!CmpRHSSCEV->isZero()) return false; BinaryOperator *CmpBO = dyn_cast(CmpLHS); if (!CmpBO || CmpBO->getOpcode() != Instruction::And) return false; // Swap things around so that the right operand of the and is a constant // (the mask); we cannot deal with variable masks. Value *AndLHS = CmpBO->getOperand(0); Value *AndRHS = CmpBO->getOperand(1); const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS); const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS); if (isa(AndLHSSCEV)) { std::swap(AndLHS, AndRHS); std::swap(AndLHSSCEV, AndRHSSCEV); } const SCEVConstant *MaskSCEV = dyn_cast(AndRHSSCEV); if (!MaskSCEV) return false; // The mask must have some trailing ones (otherwise the condition is // trivial and tells us nothing about the alignment of the left operand). unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes(); if (!TrailingOnes) return false; // Cap the alignment at the maximum with which LLVM can deal (and make sure // we don't overflow the shift). uint64_t Alignment; TrailingOnes = std::min(TrailingOnes, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment); Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext()); AlignSCEV = SE->getConstant(Int64Ty, Alignment); // The LHS might be a ptrtoint instruction, or it might be the pointer // with an offset. AAPtr = nullptr; OffSCEV = nullptr; if (PtrToIntInst *PToI = dyn_cast(AndLHS)) { AAPtr = PToI->getPointerOperand(); OffSCEV = SE->getZero(Int64Ty); } else if (const SCEVAddExpr* AndLHSAddSCEV = dyn_cast(AndLHSSCEV)) { // Try to find the ptrtoint; subtract it and the rest is the offset. for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(), JE = AndLHSAddSCEV->op_end(); J != JE; ++J) if (const SCEVUnknown *OpUnk = dyn_cast(*J)) if (PtrToIntInst *PToI = dyn_cast(OpUnk->getValue())) { AAPtr = PToI->getPointerOperand(); OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J); break; } } if (!AAPtr) return false; // Sign extend the offset to 64 bits (so that it is like all of the other // expressions). unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits(); if (OffSCEVBits < 64) OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty); else if (OffSCEVBits > 64) return false; AAPtr = AAPtr->stripPointerCasts(); return true; } bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) { Value *AAPtr; const SCEV *AlignSCEV, *OffSCEV; if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV)) return false; // Skip ConstantPointerNull and UndefValue. Assumptions on these shouldn't // affect other users. if (isa(AAPtr)) return false; const SCEV *AASCEV = SE->getSCEV(AAPtr); // Apply the assumption to all other users of the specified pointer. SmallPtrSet Visited; SmallVector WorkList; for (User *J : AAPtr->users()) { if (J == ACall) continue; if (Instruction *K = dyn_cast(J)) if (isValidAssumeForContext(ACall, K, DT)) WorkList.push_back(K); } while (!WorkList.empty()) { Instruction *J = WorkList.pop_back_val(); if (LoadInst *LI = dyn_cast(J)) { unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, LI->getPointerOperand(), SE); if (NewAlignment > LI->getAlignment()) { LI->setAlignment(NewAlignment); ++NumLoadAlignChanged; } } else if (StoreInst *SI = dyn_cast(J)) { unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, SI->getPointerOperand(), SE); if (NewAlignment > SI->getAlignment()) { SI->setAlignment(NewAlignment); ++NumStoreAlignChanged; } } else if (MemIntrinsic *MI = dyn_cast(J)) { unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MI->getDest(), SE); // For memory transfers, we need a common alignment for both the // source and destination. If we have a new alignment for this // instruction, but only for one operand, save it. If we reach the // other operand through another assumption later, then we may // change the alignment at that point. if (MemTransferInst *MTI = dyn_cast(MI)) { unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV, MTI->getSource(), SE); DenseMap::iterator DI = NewDestAlignments.find(MTI); unsigned AltDestAlignment = (DI == NewDestAlignments.end()) ? 0 : DI->second; DenseMap::iterator SI = NewSrcAlignments.find(MTI); unsigned AltSrcAlignment = (SI == NewSrcAlignments.end()) ? 0 : SI->second; DEBUG(dbgs() << "\tmem trans: " << NewDestAlignment << " " << AltDestAlignment << " " << NewSrcAlignment << " " << AltSrcAlignment << "\n"); // Of these four alignments, pick the largest possible... unsigned NewAlignment = 0; if (NewDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment)) NewAlignment = std::max(NewAlignment, NewDestAlignment); if (AltDestAlignment <= std::max(NewSrcAlignment, AltSrcAlignment)) NewAlignment = std::max(NewAlignment, AltDestAlignment); if (NewSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment)) NewAlignment = std::max(NewAlignment, NewSrcAlignment); if (AltSrcAlignment <= std::max(NewDestAlignment, AltDestAlignment)) NewAlignment = std::max(NewAlignment, AltSrcAlignment); if (NewAlignment > MI->getAlignment()) { MI->setAlignment(ConstantInt::get(Type::getInt32Ty( MI->getParent()->getContext()), NewAlignment)); ++NumMemIntAlignChanged; } NewDestAlignments.insert(std::make_pair(MTI, NewDestAlignment)); NewSrcAlignments.insert(std::make_pair(MTI, NewSrcAlignment)); } else if (NewDestAlignment > MI->getAlignment()) { assert((!isa(MI) || isa(MI)) && "Unknown memory intrinsic"); MI->setAlignment(ConstantInt::get(Type::getInt32Ty( MI->getParent()->getContext()), NewDestAlignment)); ++NumMemIntAlignChanged; } } // Now that we've updated that use of the pointer, look for other uses of // the pointer to update. Visited.insert(J); for (User *UJ : J->users()) { Instruction *K = cast(UJ); if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT)) WorkList.push_back(K); } } return true; } bool AlignmentFromAssumptions::runOnFunction(Function &F) { if (skipFunction(F)) return false; auto &AC = getAnalysis().getAssumptionCache(F); ScalarEvolution *SE = &getAnalysis().getSE(); DominatorTree *DT = &getAnalysis().getDomTree(); return Impl.runImpl(F, AC, SE, DT); } bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC, ScalarEvolution *SE_, DominatorTree *DT_) { SE = SE_; DT = DT_; NewDestAlignments.clear(); NewSrcAlignments.clear(); bool Changed = false; for (auto &AssumeVH : AC.assumptions()) if (AssumeVH) Changed |= processAssumption(cast(AssumeVH)); return Changed; } PreservedAnalyses AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) { AssumptionCache &AC = AM.getResult(F); ScalarEvolution &SE = AM.getResult(F); DominatorTree &DT = AM.getResult(F); if (!runImpl(F, AC, &SE, &DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; }