//===- llvm/CodeGen/DwarfCompileUnit.cpp - Dwarf Compile Units ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for constructing a dwarf compile unit. // //===----------------------------------------------------------------------===// #include "DwarfCompileUnit.h" #include "AddressPool.h" #include "DwarfDebug.h" #include "DwarfExpression.h" #include "DwarfUnit.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DIE.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetLoweringObjectFile.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MachineLocation.h" #include "llvm/Support/Casting.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include using namespace llvm; DwarfCompileUnit::DwarfCompileUnit(unsigned UID, const DICompileUnit *Node, AsmPrinter *A, DwarfDebug *DW, DwarfFile *DWU) : DwarfUnit(dwarf::DW_TAG_compile_unit, Node, A, DW, DWU), UniqueID(UID) { insertDIE(Node, &getUnitDie()); MacroLabelBegin = Asm->createTempSymbol("cu_macro_begin"); } /// addLabelAddress - Add a dwarf label attribute data and value using /// DW_FORM_addr or DW_FORM_GNU_addr_index. void DwarfCompileUnit::addLabelAddress(DIE &Die, dwarf::Attribute Attribute, const MCSymbol *Label) { // Don't use the address pool in non-fission or in the skeleton unit itself. // FIXME: Once GDB supports this, it's probably worthwhile using the address // pool from the skeleton - maybe even in non-fission (possibly fewer // relocations by sharing them in the pool, but we have other ideas about how // to reduce the number of relocations as well/instead). if (!DD->useSplitDwarf() || !Skeleton) return addLocalLabelAddress(Die, Attribute, Label); if (Label) DD->addArangeLabel(SymbolCU(this, Label)); unsigned idx = DD->getAddressPool().getIndex(Label); Die.addValue(DIEValueAllocator, Attribute, dwarf::DW_FORM_GNU_addr_index, DIEInteger(idx)); } void DwarfCompileUnit::addLocalLabelAddress(DIE &Die, dwarf::Attribute Attribute, const MCSymbol *Label) { if (Label) DD->addArangeLabel(SymbolCU(this, Label)); if (Label) Die.addValue(DIEValueAllocator, Attribute, dwarf::DW_FORM_addr, DIELabel(Label)); else Die.addValue(DIEValueAllocator, Attribute, dwarf::DW_FORM_addr, DIEInteger(0)); } unsigned DwarfCompileUnit::getOrCreateSourceID(StringRef FileName, StringRef DirName) { // If we print assembly, we can't separate .file entries according to // compile units. Thus all files will belong to the default compile unit. // FIXME: add a better feature test than hasRawTextSupport. Even better, // extend .file to support this. return Asm->OutStreamer->EmitDwarfFileDirective( 0, DirName, FileName, Asm->OutStreamer->hasRawTextSupport() ? 0 : getUniqueID()); } DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE( const DIGlobalVariable *GV, ArrayRef GlobalExprs) { // Check for pre-existence. if (DIE *Die = getDIE(GV)) return Die; assert(GV); auto *GVContext = GV->getScope(); auto *GTy = DD->resolve(GV->getType()); // Construct the context before querying for the existence of the DIE in // case such construction creates the DIE. DIE *ContextDIE = getOrCreateContextDIE(GVContext); // Add to map. DIE *VariableDIE = &createAndAddDIE(GV->getTag(), *ContextDIE, GV); DIScope *DeclContext; if (auto *SDMDecl = GV->getStaticDataMemberDeclaration()) { DeclContext = resolve(SDMDecl->getScope()); assert(SDMDecl->isStaticMember() && "Expected static member decl"); assert(GV->isDefinition()); // We need the declaration DIE that is in the static member's class. DIE *VariableSpecDIE = getOrCreateStaticMemberDIE(SDMDecl); addDIEEntry(*VariableDIE, dwarf::DW_AT_specification, *VariableSpecDIE); // If the global variable's type is different from the one in the class // member type, assume that it's more specific and also emit it. if (GTy != DD->resolve(SDMDecl->getBaseType())) addType(*VariableDIE, GTy); } else { DeclContext = GV->getScope(); // Add name and type. addString(*VariableDIE, dwarf::DW_AT_name, GV->getDisplayName()); addType(*VariableDIE, GTy); // Add scoping info. if (!GV->isLocalToUnit()) addFlag(*VariableDIE, dwarf::DW_AT_external); // Add line number info. addSourceLine(*VariableDIE, GV); } if (!GV->isDefinition()) addFlag(*VariableDIE, dwarf::DW_AT_declaration); else addGlobalName(GV->getName(), *VariableDIE, DeclContext); if (uint32_t AlignInBytes = GV->getAlignInBytes()) addUInt(*VariableDIE, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata, AlignInBytes); // Add location. bool addToAccelTable = false; DIELoc *Loc = nullptr; std::unique_ptr DwarfExpr; for (const auto &GE : GlobalExprs) { const GlobalVariable *Global = GE.Var; const DIExpression *Expr = GE.Expr; // For compatibility with DWARF 3 and earlier, // DW_AT_location(DW_OP_constu, X, DW_OP_stack_value) becomes // DW_AT_const_value(X). if (GlobalExprs.size() == 1 && Expr && Expr->isConstant()) { addToAccelTable = true; addConstantValue(*VariableDIE, /*Unsigned=*/true, Expr->getElement(1)); break; } // We cannot describe the location of dllimport'd variables: the // computation of their address requires loads from the IAT. if (Global && Global->hasDLLImportStorageClass()) continue; // Nothing to describe without address or constant. if (!Global && (!Expr || !Expr->isConstant())) continue; if (!Loc) { addToAccelTable = true; Loc = new (DIEValueAllocator) DIELoc; DwarfExpr = llvm::make_unique(*Asm, *this, *Loc); } if (Global) { const MCSymbol *Sym = Asm->getSymbol(Global); if (Global->isThreadLocal()) { if (Asm->TM.Options.EmulatedTLS) { // TODO: add debug info for emulated thread local mode. } else { // FIXME: Make this work with -gsplit-dwarf. unsigned PointerSize = Asm->getDataLayout().getPointerSize(); assert((PointerSize == 4 || PointerSize == 8) && "Add support for other sizes if necessary"); // Based on GCC's support for TLS: if (!DD->useSplitDwarf()) { // 1) Start with a constNu of the appropriate pointer size addUInt(*Loc, dwarf::DW_FORM_data1, PointerSize == 4 ? dwarf::DW_OP_const4u : dwarf::DW_OP_const8u); // 2) containing the (relocated) offset of the TLS variable // within the module's TLS block. addExpr(*Loc, dwarf::DW_FORM_udata, Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym)); } else { addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index); addUInt(*Loc, dwarf::DW_FORM_udata, DD->getAddressPool().getIndex(Sym, /* TLS */ true)); } // 3) followed by an OP to make the debugger do a TLS lookup. addUInt(*Loc, dwarf::DW_FORM_data1, DD->useGNUTLSOpcode() ? dwarf::DW_OP_GNU_push_tls_address : dwarf::DW_OP_form_tls_address); } } else { DD->addArangeLabel(SymbolCU(this, Sym)); addOpAddress(*Loc, Sym); } } if (Expr) { DwarfExpr->addFragmentOffset(Expr); DwarfExpr->addExpression(Expr); } } if (Loc) addBlock(*VariableDIE, dwarf::DW_AT_location, DwarfExpr->finalize()); if (DD->useAllLinkageNames()) addLinkageName(*VariableDIE, GV->getLinkageName()); if (addToAccelTable) { DD->addAccelName(GV->getName(), *VariableDIE); // If the linkage name is different than the name, go ahead and output // that as well into the name table. if (GV->getLinkageName() != "" && GV->getName() != GV->getLinkageName()) DD->addAccelName(GV->getLinkageName(), *VariableDIE); } return VariableDIE; } void DwarfCompileUnit::addRange(RangeSpan Range) { bool SameAsPrevCU = this == DD->getPrevCU(); DD->setPrevCU(this); // If we have no current ranges just add the range and return, otherwise, // check the current section and CU against the previous section and CU we // emitted into and the subprogram was contained within. If these are the // same then extend our current range, otherwise add this as a new range. if (CURanges.empty() || !SameAsPrevCU || (&CURanges.back().getEnd()->getSection() != &Range.getEnd()->getSection())) { CURanges.push_back(Range); return; } CURanges.back().setEnd(Range.getEnd()); } void DwarfCompileUnit::initStmtList() { // Define start line table label for each Compile Unit. MCSymbol *LineTableStartSym = Asm->OutStreamer->getDwarfLineTableSymbol(getUniqueID()); // DW_AT_stmt_list is a offset of line number information for this // compile unit in debug_line section. For split dwarf this is // left in the skeleton CU and so not included. // The line table entries are not always emitted in assembly, so it // is not okay to use line_table_start here. const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); StmtListValue = addSectionLabel(getUnitDie(), dwarf::DW_AT_stmt_list, LineTableStartSym, TLOF.getDwarfLineSection()->getBeginSymbol()); } void DwarfCompileUnit::applyStmtList(DIE &D) { D.addValue(DIEValueAllocator, *StmtListValue); } void DwarfCompileUnit::attachLowHighPC(DIE &D, const MCSymbol *Begin, const MCSymbol *End) { assert(Begin && "Begin label should not be null!"); assert(End && "End label should not be null!"); assert(Begin->isDefined() && "Invalid starting label"); assert(End->isDefined() && "Invalid end label"); addLabelAddress(D, dwarf::DW_AT_low_pc, Begin); if (DD->getDwarfVersion() < 4) addLabelAddress(D, dwarf::DW_AT_high_pc, End); else addLabelDelta(D, dwarf::DW_AT_high_pc, End, Begin); } // Find DIE for the given subprogram and attach appropriate DW_AT_low_pc // and DW_AT_high_pc attributes. If there are global variables in this // scope then create and insert DIEs for these variables. DIE &DwarfCompileUnit::updateSubprogramScopeDIE(const DISubprogram *SP) { DIE *SPDie = getOrCreateSubprogramDIE(SP, includeMinimalInlineScopes()); attachLowHighPC(*SPDie, Asm->getFunctionBegin(), Asm->getFunctionEnd()); if (DD->useAppleExtensionAttributes() && !DD->getCurrentFunction()->getTarget().Options.DisableFramePointerElim( *DD->getCurrentFunction())) addFlag(*SPDie, dwarf::DW_AT_APPLE_omit_frame_ptr); // Only include DW_AT_frame_base in full debug info if (!includeMinimalInlineScopes()) { const TargetRegisterInfo *RI = Asm->MF->getSubtarget().getRegisterInfo(); MachineLocation Location(RI->getFrameRegister(*Asm->MF)); if (RI->isPhysicalRegister(Location.getReg())) addAddress(*SPDie, dwarf::DW_AT_frame_base, Location); } // Add name to the name table, we do this here because we're guaranteed // to have concrete versions of our DW_TAG_subprogram nodes. DD->addSubprogramNames(SP, *SPDie); return *SPDie; } // Construct a DIE for this scope. void DwarfCompileUnit::constructScopeDIE( LexicalScope *Scope, SmallVectorImpl &FinalChildren) { if (!Scope || !Scope->getScopeNode()) return; auto *DS = Scope->getScopeNode(); assert((Scope->getInlinedAt() || !isa(DS)) && "Only handle inlined subprograms here, use " "constructSubprogramScopeDIE for non-inlined " "subprograms"); SmallVector Children; // We try to create the scope DIE first, then the children DIEs. This will // avoid creating un-used children then removing them later when we find out // the scope DIE is null. DIE *ScopeDIE; if (Scope->getParent() && isa(DS)) { ScopeDIE = constructInlinedScopeDIE(Scope); if (!ScopeDIE) return; // We create children when the scope DIE is not null. createScopeChildrenDIE(Scope, Children); } else { // Early exit when we know the scope DIE is going to be null. if (DD->isLexicalScopeDIENull(Scope)) return; bool HasNonScopeChildren = false; // We create children here when we know the scope DIE is not going to be // null and the children will be added to the scope DIE. createScopeChildrenDIE(Scope, Children, &HasNonScopeChildren); // If there are only other scopes as children, put them directly in the // parent instead, as this scope would serve no purpose. if (!HasNonScopeChildren) { FinalChildren.insert(FinalChildren.end(), std::make_move_iterator(Children.begin()), std::make_move_iterator(Children.end())); return; } ScopeDIE = constructLexicalScopeDIE(Scope); assert(ScopeDIE && "Scope DIE should not be null."); } // Add children for (auto &I : Children) ScopeDIE->addChild(std::move(I)); FinalChildren.push_back(std::move(ScopeDIE)); } void DwarfCompileUnit::addScopeRangeList(DIE &ScopeDIE, SmallVector Range) { const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); // Emit offset in .debug_range as a relocatable label. emitDIE will handle // emitting it appropriately. const MCSymbol *RangeSectionSym = TLOF.getDwarfRangesSection()->getBeginSymbol(); RangeSpanList List(Asm->createTempSymbol("debug_ranges"), std::move(Range)); // Under fission, ranges are specified by constant offsets relative to the // CU's DW_AT_GNU_ranges_base. if (isDwoUnit()) addSectionDelta(ScopeDIE, dwarf::DW_AT_ranges, List.getSym(), RangeSectionSym); else addSectionLabel(ScopeDIE, dwarf::DW_AT_ranges, List.getSym(), RangeSectionSym); // Add the range list to the set of ranges to be emitted. (Skeleton ? Skeleton : this)->CURangeLists.push_back(std::move(List)); } void DwarfCompileUnit::attachRangesOrLowHighPC( DIE &Die, SmallVector Ranges) { if (Ranges.size() == 1) { const auto &single = Ranges.front(); attachLowHighPC(Die, single.getStart(), single.getEnd()); } else addScopeRangeList(Die, std::move(Ranges)); } void DwarfCompileUnit::attachRangesOrLowHighPC( DIE &Die, const SmallVectorImpl &Ranges) { SmallVector List; List.reserve(Ranges.size()); for (const InsnRange &R : Ranges) List.push_back(RangeSpan(DD->getLabelBeforeInsn(R.first), DD->getLabelAfterInsn(R.second))); attachRangesOrLowHighPC(Die, std::move(List)); } // This scope represents inlined body of a function. Construct DIE to // represent this concrete inlined copy of the function. DIE *DwarfCompileUnit::constructInlinedScopeDIE(LexicalScope *Scope) { assert(Scope->getScopeNode()); auto *DS = Scope->getScopeNode(); auto *InlinedSP = getDISubprogram(DS); // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram // was inlined from another compile unit. DIE *OriginDIE = getAbstractSPDies()[InlinedSP]; assert(OriginDIE && "Unable to find original DIE for an inlined subprogram."); auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_inlined_subroutine); addDIEEntry(*ScopeDIE, dwarf::DW_AT_abstract_origin, *OriginDIE); attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges()); // Add the call site information to the DIE. const DILocation *IA = Scope->getInlinedAt(); addUInt(*ScopeDIE, dwarf::DW_AT_call_file, None, getOrCreateSourceID(IA->getFilename(), IA->getDirectory())); addUInt(*ScopeDIE, dwarf::DW_AT_call_line, None, IA->getLine()); if (IA->getDiscriminator() && DD->getDwarfVersion() >= 4) addUInt(*ScopeDIE, dwarf::DW_AT_GNU_discriminator, None, IA->getDiscriminator()); // Add name to the name table, we do this here because we're guaranteed // to have concrete versions of our DW_TAG_inlined_subprogram nodes. DD->addSubprogramNames(InlinedSP, *ScopeDIE); return ScopeDIE; } // Construct new DW_TAG_lexical_block for this scope and attach // DW_AT_low_pc/DW_AT_high_pc labels. DIE *DwarfCompileUnit::constructLexicalScopeDIE(LexicalScope *Scope) { if (DD->isLexicalScopeDIENull(Scope)) return nullptr; auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_lexical_block); if (Scope->isAbstractScope()) return ScopeDIE; attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges()); return ScopeDIE; } /// constructVariableDIE - Construct a DIE for the given DbgVariable. DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV, bool Abstract) { auto D = constructVariableDIEImpl(DV, Abstract); DV.setDIE(*D); return D; } DIE *DwarfCompileUnit::constructVariableDIEImpl(const DbgVariable &DV, bool Abstract) { // Define variable debug information entry. auto VariableDie = DIE::get(DIEValueAllocator, DV.getTag()); if (Abstract) { applyVariableAttributes(DV, *VariableDie); return VariableDie; } // Add variable address. unsigned Offset = DV.getDebugLocListIndex(); if (Offset != ~0U) { addLocationList(*VariableDie, dwarf::DW_AT_location, Offset); return VariableDie; } // Check if variable is described by a DBG_VALUE instruction. if (const MachineInstr *DVInsn = DV.getMInsn()) { assert(DVInsn->getNumOperands() == 4); if (DVInsn->getOperand(0).isReg()) { auto RegOp = DVInsn->getOperand(0); auto Op1 = DVInsn->getOperand(1); // If the second operand is an immediate, this is an indirect value. assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); MachineLocation Location(RegOp.getReg(), Op1.isImm()); addVariableAddress(DV, *VariableDie, Location); } else if (DVInsn->getOperand(0).isImm()) { // This variable is described by a single constant. // Check whether it has a DIExpression. auto *Expr = DV.getSingleExpression(); if (Expr && Expr->getNumElements()) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); // If there is an expression, emit raw unsigned bytes. DwarfExpr.addFragmentOffset(Expr); DwarfExpr.addUnsignedConstant(DVInsn->getOperand(0).getImm()); DwarfExpr.addExpression(Expr); addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize()); } else addConstantValue(*VariableDie, DVInsn->getOperand(0), DV.getType()); } else if (DVInsn->getOperand(0).isFPImm()) addConstantFPValue(*VariableDie, DVInsn->getOperand(0)); else if (DVInsn->getOperand(0).isCImm()) addConstantValue(*VariableDie, DVInsn->getOperand(0).getCImm(), DV.getType()); return VariableDie; } // .. else use frame index. if (!DV.hasFrameIndexExprs()) return VariableDie; DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); for (auto &Fragment : DV.getFrameIndexExprs()) { unsigned FrameReg = 0; const DIExpression *Expr = Fragment.Expr; const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering(); int Offset = TFI->getFrameIndexReference(*Asm->MF, Fragment.FI, FrameReg); DwarfExpr.addFragmentOffset(Expr); SmallVector Ops; Ops.push_back(dwarf::DW_OP_plus_uconst); Ops.push_back(Offset); Ops.append(Expr->elements_begin(), Expr->elements_end()); DIExpressionCursor Cursor(Ops); DwarfExpr.setMemoryLocationKind(); DwarfExpr.addMachineRegExpression( *Asm->MF->getSubtarget().getRegisterInfo(), Cursor, FrameReg); DwarfExpr.addExpression(std::move(Cursor)); } addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize()); return VariableDie; } DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV, const LexicalScope &Scope, DIE *&ObjectPointer) { auto Var = constructVariableDIE(DV, Scope.isAbstractScope()); if (DV.isObjectPointer()) ObjectPointer = Var; return Var; } DIE *DwarfCompileUnit::createScopeChildrenDIE(LexicalScope *Scope, SmallVectorImpl &Children, bool *HasNonScopeChildren) { assert(Children.empty()); DIE *ObjectPointer = nullptr; for (DbgVariable *DV : DU->getScopeVariables().lookup(Scope)) Children.push_back(constructVariableDIE(*DV, *Scope, ObjectPointer)); // Skip imported directives in gmlt-like data. if (!includeMinimalInlineScopes()) { // There is no need to emit empty lexical block DIE. for (const auto *IE : ImportedEntities[Scope->getScopeNode()]) Children.push_back( constructImportedEntityDIE(cast(IE))); } if (HasNonScopeChildren) *HasNonScopeChildren = !Children.empty(); for (LexicalScope *LS : Scope->getChildren()) constructScopeDIE(LS, Children); return ObjectPointer; } void DwarfCompileUnit::constructSubprogramScopeDIE(const DISubprogram *Sub, LexicalScope *Scope) { DIE &ScopeDIE = updateSubprogramScopeDIE(Sub); if (Scope) { assert(!Scope->getInlinedAt()); assert(!Scope->isAbstractScope()); // Collect lexical scope children first. // ObjectPointer might be a local (non-argument) local variable if it's a // block's synthetic this pointer. if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, ScopeDIE)) addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer); } // If this is a variadic function, add an unspecified parameter. DITypeRefArray FnArgs = Sub->getType()->getTypeArray(); // If we have a single element of null, it is a function that returns void. // If we have more than one elements and the last one is null, it is a // variadic function. if (FnArgs.size() > 1 && !FnArgs[FnArgs.size() - 1] && !includeMinimalInlineScopes()) ScopeDIE.addChild( DIE::get(DIEValueAllocator, dwarf::DW_TAG_unspecified_parameters)); } DIE *DwarfCompileUnit::createAndAddScopeChildren(LexicalScope *Scope, DIE &ScopeDIE) { // We create children when the scope DIE is not null. SmallVector Children; DIE *ObjectPointer = createScopeChildrenDIE(Scope, Children); // Add children for (auto &I : Children) ScopeDIE.addChild(std::move(I)); return ObjectPointer; } void DwarfCompileUnit::constructAbstractSubprogramScopeDIE( LexicalScope *Scope) { DIE *&AbsDef = getAbstractSPDies()[Scope->getScopeNode()]; if (AbsDef) return; auto *SP = cast(Scope->getScopeNode()); DIE *ContextDIE; DwarfCompileUnit *ContextCU = this; if (includeMinimalInlineScopes()) ContextDIE = &getUnitDie(); // Some of this is duplicated from DwarfUnit::getOrCreateSubprogramDIE, with // the important distinction that the debug node is not associated with the // DIE (since the debug node will be associated with the concrete DIE, if // any). It could be refactored to some common utility function. else if (auto *SPDecl = SP->getDeclaration()) { ContextDIE = &getUnitDie(); getOrCreateSubprogramDIE(SPDecl); } else { ContextDIE = getOrCreateContextDIE(resolve(SP->getScope())); // The scope may be shared with a subprogram that has already been // constructed in another CU, in which case we need to construct this // subprogram in the same CU. ContextCU = DD->lookupCU(ContextDIE->getUnitDie()); } // Passing null as the associated node because the abstract definition // shouldn't be found by lookup. AbsDef = &ContextCU->createAndAddDIE(dwarf::DW_TAG_subprogram, *ContextDIE, nullptr); ContextCU->applySubprogramAttributesToDefinition(SP, *AbsDef); if (!ContextCU->includeMinimalInlineScopes()) ContextCU->addUInt(*AbsDef, dwarf::DW_AT_inline, None, dwarf::DW_INL_inlined); if (DIE *ObjectPointer = ContextCU->createAndAddScopeChildren(Scope, *AbsDef)) ContextCU->addDIEEntry(*AbsDef, dwarf::DW_AT_object_pointer, *ObjectPointer); } DIE *DwarfCompileUnit::constructImportedEntityDIE( const DIImportedEntity *Module) { DIE *IMDie = DIE::get(DIEValueAllocator, (dwarf::Tag)Module->getTag()); insertDIE(Module, IMDie); DIE *EntityDie; auto *Entity = resolve(Module->getEntity()); if (auto *NS = dyn_cast(Entity)) EntityDie = getOrCreateNameSpace(NS); else if (auto *M = dyn_cast(Entity)) EntityDie = getOrCreateModule(M); else if (auto *SP = dyn_cast(Entity)) EntityDie = getOrCreateSubprogramDIE(SP); else if (auto *T = dyn_cast(Entity)) EntityDie = getOrCreateTypeDIE(T); else if (auto *GV = dyn_cast(Entity)) EntityDie = getOrCreateGlobalVariableDIE(GV, {}); else EntityDie = getDIE(Entity); assert(EntityDie); auto *File = Module->getFile(); addSourceLine(*IMDie, Module->getLine(), File ? File->getFilename() : "", File ? File->getDirectory() : ""); addDIEEntry(*IMDie, dwarf::DW_AT_import, *EntityDie); StringRef Name = Module->getName(); if (!Name.empty()) addString(*IMDie, dwarf::DW_AT_name, Name); return IMDie; } void DwarfCompileUnit::finishSubprogramDefinition(const DISubprogram *SP) { DIE *D = getDIE(SP); if (DIE *AbsSPDIE = getAbstractSPDies().lookup(SP)) { if (D) // If this subprogram has an abstract definition, reference that addDIEEntry(*D, dwarf::DW_AT_abstract_origin, *AbsSPDIE); } else { assert(D || includeMinimalInlineScopes()); if (D) // And attach the attributes applySubprogramAttributesToDefinition(SP, *D); } } void DwarfCompileUnit::finishVariableDefinition(const DbgVariable &Var) { DbgVariable *AbsVar = getExistingAbstractVariable( InlinedVariable(Var.getVariable(), Var.getInlinedAt())); auto *VariableDie = Var.getDIE(); if (AbsVar && AbsVar->getDIE()) { addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin, *AbsVar->getDIE()); } else applyVariableAttributes(Var, *VariableDie); } DbgVariable *DwarfCompileUnit::getExistingAbstractVariable(InlinedVariable IV) { const DILocalVariable *Cleansed; return getExistingAbstractVariable(IV, Cleansed); } // Find abstract variable, if any, associated with Var. DbgVariable *DwarfCompileUnit::getExistingAbstractVariable( InlinedVariable IV, const DILocalVariable *&Cleansed) { // More then one inlined variable corresponds to one abstract variable. Cleansed = IV.first; auto &AbstractVariables = getAbstractVariables(); auto I = AbstractVariables.find(Cleansed); if (I != AbstractVariables.end()) return I->second.get(); return nullptr; } void DwarfCompileUnit::createAbstractVariable(const DILocalVariable *Var, LexicalScope *Scope) { assert(Scope && Scope->isAbstractScope()); auto AbsDbgVariable = llvm::make_unique(Var, /* IA */ nullptr); DU->addScopeVariable(Scope, AbsDbgVariable.get()); getAbstractVariables()[Var] = std::move(AbsDbgVariable); } void DwarfCompileUnit::emitHeader(bool UseOffsets) { // Don't bother labeling the .dwo unit, as its offset isn't used. if (!Skeleton) { LabelBegin = Asm->createTempSymbol("cu_begin"); Asm->OutStreamer->EmitLabel(LabelBegin); } dwarf::UnitType UT = Skeleton ? dwarf::DW_UT_split_compile : DD->useSplitDwarf() ? dwarf::DW_UT_skeleton : dwarf::DW_UT_compile; DwarfUnit::emitCommonHeader(UseOffsets, UT); } bool DwarfCompileUnit::hasDwarfPubSections() const { // Opting in to GNU Pubnames/types overrides the default to ensure these are // generated for things like Gold's gdb_index generation. if (CUNode->getGnuPubnames()) return true; return DD->tuneForGDB() && !includeMinimalInlineScopes(); } /// addGlobalName - Add a new global name to the compile unit. void DwarfCompileUnit::addGlobalName(StringRef Name, const DIE &Die, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Name.str(); GlobalNames[FullName] = &Die; } void DwarfCompileUnit::addGlobalNameForTypeUnit(StringRef Name, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Name.str(); // Insert, allowing the entry to remain as-is if it's already present // This way the CU-level type DIE is preferred over the "can't describe this // type as a unit offset because it's not really in the CU at all, it's only // in a type unit" GlobalNames.insert(std::make_pair(std::move(FullName), &getUnitDie())); } /// Add a new global type to the unit. void DwarfCompileUnit::addGlobalType(const DIType *Ty, const DIE &Die, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Ty->getName().str(); GlobalTypes[FullName] = &Die; } void DwarfCompileUnit::addGlobalTypeUnitType(const DIType *Ty, const DIScope *Context) { if (!hasDwarfPubSections()) return; std::string FullName = getParentContextString(Context) + Ty->getName().str(); // Insert, allowing the entry to remain as-is if it's already present // This way the CU-level type DIE is preferred over the "can't describe this // type as a unit offset because it's not really in the CU at all, it's only // in a type unit" GlobalTypes.insert(std::make_pair(std::move(FullName), &getUnitDie())); } /// addVariableAddress - Add DW_AT_location attribute for a /// DbgVariable based on provided MachineLocation. void DwarfCompileUnit::addVariableAddress(const DbgVariable &DV, DIE &Die, MachineLocation Location) { // addBlockByrefAddress is obsolete and will be removed soon. // The clang frontend always generates block byref variables with a // complex expression that encodes exactly what addBlockByrefAddress // would do. assert((!DV.isBlockByrefVariable() || DV.hasComplexAddress()) && "block byref variable without a complex expression"); if (DV.hasComplexAddress()) addComplexAddress(DV, Die, dwarf::DW_AT_location, Location); else if (DV.isBlockByrefVariable()) addBlockByrefAddress(DV, Die, dwarf::DW_AT_location, Location); else addAddress(Die, dwarf::DW_AT_location, Location); } /// Add an address attribute to a die based on the location provided. void DwarfCompileUnit::addAddress(DIE &Die, dwarf::Attribute Attribute, const MachineLocation &Location) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); if (Location.isIndirect()) DwarfExpr.setMemoryLocationKind(); DIExpressionCursor Cursor({}); const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo(); if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) return; DwarfExpr.addExpression(std::move(Cursor)); // Now attach the location information to the DIE. addBlock(Die, Attribute, DwarfExpr.finalize()); } /// Start with the address based on the location provided, and generate the /// DWARF information necessary to find the actual variable given the extra /// address information encoded in the DbgVariable, starting from the starting /// location. Add the DWARF information to the die. void DwarfCompileUnit::addComplexAddress(const DbgVariable &DV, DIE &Die, dwarf::Attribute Attribute, const MachineLocation &Location) { DIELoc *Loc = new (DIEValueAllocator) DIELoc; DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc); const DIExpression *DIExpr = DV.getSingleExpression(); DwarfExpr.addFragmentOffset(DIExpr); if (Location.isIndirect()) DwarfExpr.setMemoryLocationKind(); DIExpressionCursor Cursor(DIExpr); const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo(); if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) return; DwarfExpr.addExpression(std::move(Cursor)); // Now attach the location information to the DIE. addBlock(Die, Attribute, DwarfExpr.finalize()); } /// Add a Dwarf loclistptr attribute data and value. void DwarfCompileUnit::addLocationList(DIE &Die, dwarf::Attribute Attribute, unsigned Index) { dwarf::Form Form = DD->getDwarfVersion() >= 4 ? dwarf::DW_FORM_sec_offset : dwarf::DW_FORM_data4; Die.addValue(DIEValueAllocator, Attribute, Form, DIELocList(Index)); } void DwarfCompileUnit::applyVariableAttributes(const DbgVariable &Var, DIE &VariableDie) { StringRef Name = Var.getName(); if (!Name.empty()) addString(VariableDie, dwarf::DW_AT_name, Name); const auto *DIVar = Var.getVariable(); if (DIVar) if (uint32_t AlignInBytes = DIVar->getAlignInBytes()) addUInt(VariableDie, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata, AlignInBytes); addSourceLine(VariableDie, DIVar); addType(VariableDie, Var.getType()); if (Var.isArtificial()) addFlag(VariableDie, dwarf::DW_AT_artificial); } /// Add a Dwarf expression attribute data and value. void DwarfCompileUnit::addExpr(DIELoc &Die, dwarf::Form Form, const MCExpr *Expr) { Die.addValue(DIEValueAllocator, (dwarf::Attribute)0, Form, DIEExpr(Expr)); } void DwarfCompileUnit::applySubprogramAttributesToDefinition( const DISubprogram *SP, DIE &SPDie) { auto *SPDecl = SP->getDeclaration(); auto *Context = resolve(SPDecl ? SPDecl->getScope() : SP->getScope()); applySubprogramAttributes(SP, SPDie, includeMinimalInlineScopes()); addGlobalName(SP->getName(), SPDie, Context); } bool DwarfCompileUnit::isDwoUnit() const { return DD->useSplitDwarf() && Skeleton; } bool DwarfCompileUnit::includeMinimalInlineScopes() const { return getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly || (DD->useSplitDwarf() && !Skeleton); }