//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements sparse conditional constant propagation and merging: // // Specifically, this: // * Assumes values are constant unless proven otherwise // * Assumes BasicBlocks are dead unless proven otherwise // * Proves values to be constant, and replaces them with constants // * Proves conditional branches to be unconditional // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/SCCP.h" #include "llvm/Transforms/Scalar/SCCP.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueLattice.h" #include "llvm/Analysis/ValueLatticeUtils.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "sccp" STATISTIC(NumInstRemoved, "Number of instructions removed"); STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); STATISTIC(IPNumRangeInfoUsed, "Number of times constant range info was used by" "IPSCCP"); namespace { /// LatticeVal class - This class represents the different lattice values that /// an LLVM value may occupy. It is a simple class with value semantics. /// class LatticeVal { enum LatticeValueTy { /// unknown - This LLVM Value has no known value yet. unknown, /// constant - This LLVM Value has a specific constant value. constant, /// forcedconstant - This LLVM Value was thought to be undef until /// ResolvedUndefsIn. This is treated just like 'constant', but if merged /// with another (different) constant, it goes to overdefined, instead of /// asserting. forcedconstant, /// overdefined - This instruction is not known to be constant, and we know /// it has a value. overdefined }; /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'forcedconstant' value. PointerIntPair Val; LatticeValueTy getLatticeValue() const { return Val.getInt(); } public: LatticeVal() : Val(nullptr, unknown) {} bool isUnknown() const { return getLatticeValue() == unknown; } bool isConstant() const { return getLatticeValue() == constant || getLatticeValue() == forcedconstant; } bool isOverdefined() const { return getLatticeValue() == overdefined; } Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val.getPointer(); } /// markOverdefined - Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; Val.setInt(overdefined); return true; } /// markConstant - Return true if this is a change in status. bool markConstant(Constant *V) { if (getLatticeValue() == constant) { // Constant but not forcedconstant. assert(getConstant() == V && "Marking constant with different value"); return false; } if (isUnknown()) { Val.setInt(constant); assert(V && "Marking constant with NULL"); Val.setPointer(V); } else { assert(getLatticeValue() == forcedconstant && "Cannot move from overdefined to constant!"); // Stay at forcedconstant if the constant is the same. if (V == getConstant()) return false; // Otherwise, we go to overdefined. Assumptions made based on the // forced value are possibly wrong. Assuming this is another constant // could expose a contradiction. Val.setInt(overdefined); } return true; } /// getConstantInt - If this is a constant with a ConstantInt value, return it /// otherwise return null. ConstantInt *getConstantInt() const { if (isConstant()) return dyn_cast(getConstant()); return nullptr; } /// getBlockAddress - If this is a constant with a BlockAddress value, return /// it, otherwise return null. BlockAddress *getBlockAddress() const { if (isConstant()) return dyn_cast(getConstant()); return nullptr; } void markForcedConstant(Constant *V) { assert(isUnknown() && "Can't force a defined value!"); Val.setInt(forcedconstant); Val.setPointer(V); } ValueLatticeElement toValueLattice() const { if (isOverdefined()) return ValueLatticeElement::getOverdefined(); if (isConstant()) return ValueLatticeElement::get(getConstant()); return ValueLatticeElement(); } }; //===----------------------------------------------------------------------===// // /// SCCPSolver - This class is a general purpose solver for Sparse Conditional /// Constant Propagation. /// class SCCPSolver : public InstVisitor { const DataLayout &DL; const TargetLibraryInfo *TLI; SmallPtrSet BBExecutable; // The BBs that are executable. DenseMap ValueState; // The state each value is in. // The state each parameter is in. DenseMap ParamState; /// StructValueState - This maintains ValueState for values that have /// StructType, for example for formal arguments, calls, insertelement, etc. DenseMap, LatticeVal> StructValueState; /// GlobalValue - If we are tracking any values for the contents of a global /// variable, we keep a mapping from the constant accessor to the element of /// the global, to the currently known value. If the value becomes /// overdefined, it's entry is simply removed from this map. DenseMap TrackedGlobals; /// TrackedRetVals - If we are tracking arguments into and the return /// value out of a function, it will have an entry in this map, indicating /// what the known return value for the function is. DenseMap TrackedRetVals; /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions /// that return multiple values. DenseMap, LatticeVal> TrackedMultipleRetVals; /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is /// represented here for efficient lookup. SmallPtrSet MRVFunctionsTracked; /// MustTailFunctions - Each function here is a callee of non-removable /// musttail call site. SmallPtrSet MustTailCallees; /// TrackingIncomingArguments - This is the set of functions for whose /// arguments we make optimistic assumptions about and try to prove as /// constants. SmallPtrSet TrackingIncomingArguments; /// The reason for two worklists is that overdefined is the lowest state /// on the lattice, and moving things to overdefined as fast as possible /// makes SCCP converge much faster. /// /// By having a separate worklist, we accomplish this because everything /// possibly overdefined will become overdefined at the soonest possible /// point. SmallVector OverdefinedInstWorkList; SmallVector InstWorkList; // The BasicBlock work list SmallVector BBWorkList; /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. using Edge = std::pair; DenseSet KnownFeasibleEdges; public: SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) : DL(DL), TLI(tli) {} /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. /// /// This returns true if the block was not considered live before. bool MarkBlockExecutable(BasicBlock *BB) { if (!BBExecutable.insert(BB).second) return false; DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); BBWorkList.push_back(BB); // Add the block to the work list! return true; } /// TrackValueOfGlobalVariable - Clients can use this method to /// inform the SCCPSolver that it should track loads and stores to the /// specified global variable if it can. This is only legal to call if /// performing Interprocedural SCCP. void TrackValueOfGlobalVariable(GlobalVariable *GV) { // We only track the contents of scalar globals. if (GV->getValueType()->isSingleValueType()) { LatticeVal &IV = TrackedGlobals[GV]; if (!isa(GV->getInitializer())) IV.markConstant(GV->getInitializer()); } } /// AddTrackedFunction - If the SCCP solver is supposed to track calls into /// and out of the specified function (which cannot have its address taken), /// this method must be called. void AddTrackedFunction(Function *F) { // Add an entry, F -> undef. if (auto *STy = dyn_cast(F->getReturnType())) { MRVFunctionsTracked.insert(F); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), LatticeVal())); } else TrackedRetVals.insert(std::make_pair(F, LatticeVal())); } /// AddMustTailCallee - If the SCCP solver finds that this function is called /// from non-removable musttail call site. void AddMustTailCallee(Function *F) { MustTailCallees.insert(F); } /// Returns true if the given function is called from non-removable musttail /// call site. bool isMustTailCallee(Function *F) { return MustTailCallees.count(F); } void AddArgumentTrackedFunction(Function *F) { TrackingIncomingArguments.insert(F); } /// Returns true if the given function is in the solver's set of /// argument-tracked functions. bool isArgumentTrackedFunction(Function *F) { return TrackingIncomingArguments.count(F); } /// Solve - Solve for constants and executable blocks. void Solve(); /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. bool ResolvedUndefsIn(Function &F); bool isBlockExecutable(BasicBlock *BB) const { return BBExecutable.count(BB); } std::vector getStructLatticeValueFor(Value *V) const { std::vector StructValues; auto *STy = dyn_cast(V->getType()); assert(STy && "getStructLatticeValueFor() can be called only on structs"); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { auto I = StructValueState.find(std::make_pair(V, i)); assert(I != StructValueState.end() && "Value not in valuemap!"); StructValues.push_back(I->second); } return StructValues; } ValueLatticeElement getLatticeValueFor(Value *V) { assert(!V->getType()->isStructTy() && "Should use getStructLatticeValueFor"); std::pair::iterator, bool> PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); ValueLatticeElement &LV = PI.first->second; if (PI.second) { DenseMap::const_iterator I = ValueState.find(V); assert(I != ValueState.end() && "V not found in ValueState nor Paramstate map!"); LV = I->second.toValueLattice(); } return LV; } /// getTrackedRetVals - Get the inferred return value map. const DenseMap &getTrackedRetVals() { return TrackedRetVals; } /// getTrackedGlobals - Get and return the set of inferred initializers for /// global variables. const DenseMap &getTrackedGlobals() { return TrackedGlobals; } /// getMRVFunctionsTracked - Get the set of functions which return multiple /// values tracked by the pass. const SmallPtrSet getMRVFunctionsTracked() { return MRVFunctionsTracked; } /// getMustTailCallees - Get the set of functions which are called /// from non-removable musttail call sites. const SmallPtrSet getMustTailCallees() { return MustTailCallees; } /// markOverdefined - Mark the specified value overdefined. This /// works with both scalars and structs. void markOverdefined(Value *V) { if (auto *STy = dyn_cast(V->getType())) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) markOverdefined(getStructValueState(V, i), V); else markOverdefined(ValueState[V], V); } // isStructLatticeConstant - Return true if all the lattice values // corresponding to elements of the structure are not overdefined, // false otherwise. bool isStructLatticeConstant(Function *F, StructType *STy) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); assert(It != TrackedMultipleRetVals.end()); LatticeVal LV = It->second; if (LV.isOverdefined()) return false; } return true; } private: // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined void pushToWorkList(LatticeVal &IV, Value *V) { if (IV.isOverdefined()) return OverdefinedInstWorkList.push_back(V); InstWorkList.push_back(V); } // markConstant - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that // the users of the instruction are updated later. void markConstant(LatticeVal &IV, Value *V, Constant *C) { if (!IV.markConstant(C)) return; DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); pushToWorkList(IV, V); } void markConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); markConstant(ValueState[V], V, C); } void markForcedConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); LatticeVal &IV = ValueState[V]; IV.markForcedConstant(C); DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); pushToWorkList(IV, V); } // markOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the overdefined instruction // work list so that the users of the instruction are updated later. void markOverdefined(LatticeVal &IV, Value *V) { if (!IV.markOverdefined()) return; DEBUG(dbgs() << "markOverdefined: "; if (auto *F = dyn_cast(V)) dbgs() << "Function '" << F->getName() << "'\n"; else dbgs() << *V << '\n'); // Only instructions go on the work list pushToWorkList(IV, V); } void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { if (IV.isOverdefined() || MergeWithV.isUnknown()) return; // Noop. if (MergeWithV.isOverdefined()) return markOverdefined(IV, V); if (IV.isUnknown()) return markConstant(IV, V, MergeWithV.getConstant()); if (IV.getConstant() != MergeWithV.getConstant()) return markOverdefined(IV, V); } void mergeInValue(Value *V, LatticeVal MergeWithV) { assert(!V->getType()->isStructTy() && "non-structs should use markConstant"); mergeInValue(ValueState[V], V, MergeWithV); } /// getValueState - Return the LatticeVal object that corresponds to the /// value. This function handles the case when the value hasn't been seen yet /// by properly seeding constants etc. LatticeVal &getValueState(Value *V) { assert(!V->getType()->isStructTy() && "Should use getStructValueState"); std::pair::iterator, bool> I = ValueState.insert(std::make_pair(V, LatticeVal())); LatticeVal &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (auto *C = dyn_cast(V)) { // Undef values remain unknown. if (!isa(V)) LV.markConstant(C); // Constants are constant } // All others are underdefined by default. return LV; } ValueLatticeElement &getParamState(Value *V) { assert(!V->getType()->isStructTy() && "Should use getStructValueState"); std::pair::iterator, bool> PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); ValueLatticeElement &LV = PI.first->second; if (PI.second) LV = getValueState(V).toValueLattice(); return LV; } /// getStructValueState - Return the LatticeVal object that corresponds to the /// value/field pair. This function handles the case when the value hasn't /// been seen yet by properly seeding constants etc. LatticeVal &getStructValueState(Value *V, unsigned i) { assert(V->getType()->isStructTy() && "Should use getValueState"); assert(i < cast(V->getType())->getNumElements() && "Invalid element #"); std::pair, LatticeVal>::iterator, bool> I = StructValueState.insert( std::make_pair(std::make_pair(V, i), LatticeVal())); LatticeVal &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (auto *C = dyn_cast(V)) { Constant *Elt = C->getAggregateElement(i); if (!Elt) LV.markOverdefined(); // Unknown sort of constant. else if (isa(Elt)) ; // Undef values remain unknown. else LV.markConstant(Elt); // Constants are constant. } // All others are underdefined by default. return LV; } /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) return; // This edge is already known to be executable! if (!MarkBlockExecutable(Dest)) { // If the destination is already executable, we just made an *edge* // feasible that wasn't before. Revisit the PHI nodes in the block // because they have potentially new operands. DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> " << Dest->getName() << '\n'); for (PHINode &PN : Dest->phis()) visitPHINode(PN); } } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl &Succs); // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible. bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow. Based on this // information, we need to update the specified user of this instruction. void OperandChangedState(Instruction *I) { if (BBExecutable.count(I->getParent())) // Inst is executable? visit(*I); } private: friend class InstVisitor; // visit implementations - Something changed in this instruction. Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. void visitPHINode(PHINode &I); // Terminators void visitReturnInst(ReturnInst &I); void visitTerminatorInst(TerminatorInst &TI); void visitCastInst(CastInst &I); void visitSelectInst(SelectInst &I); void visitBinaryOperator(Instruction &I); void visitCmpInst(CmpInst &I); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); void visitCatchSwitchInst(CatchSwitchInst &CPI) { markOverdefined(&CPI); visitTerminatorInst(CPI); } // Instructions that cannot be folded away. void visitStoreInst (StoreInst &I); void visitLoadInst (LoadInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitCallInst (CallInst &I) { visitCallSite(&I); } void visitInvokeInst (InvokeInst &II) { visitCallSite(&II); visitTerminatorInst(II); } void visitCallSite (CallSite CS); void visitResumeInst (TerminatorInst &I) { /*returns void*/ } void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } void visitFenceInst (FenceInst &I) { /*returns void*/ } void visitInstruction(Instruction &I) { // All the instructions we don't do any special handling for just // go to overdefined. DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); markOverdefined(&I); } }; } // end anonymous namespace // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl &Succs) { Succs.resize(TI.getNumSuccessors()); if (auto *BI = dyn_cast(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; return; } LatticeVal BCValue = getValueState(BI->getCondition()); ConstantInt *CI = BCValue.getConstantInt(); if (!CI) { // Overdefined condition variables, and branches on unfoldable constant // conditions, mean the branch could go either way. if (!BCValue.isUnknown()) Succs[0] = Succs[1] = true; return; } // Constant condition variables mean the branch can only go a single way. Succs[CI->isZero()] = true; return; } // Unwinding instructions successors are always executable. if (TI.isExceptional()) { Succs.assign(TI.getNumSuccessors(), true); return; } if (auto *SI = dyn_cast(&TI)) { if (!SI->getNumCases()) { Succs[0] = true; return; } LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); if (!CI) { // Overdefined or unknown condition? // All destinations are executable! if (!SCValue.isUnknown()) Succs.assign(TI.getNumSuccessors(), true); return; } Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; return; } // In case of indirect branch and its address is a blockaddress, we mark // the target as executable. if (auto *IBR = dyn_cast(&TI)) { // Casts are folded by visitCastInst. LatticeVal IBRValue = getValueState(IBR->getAddress()); BlockAddress *Addr = IBRValue.getBlockAddress(); if (!Addr) { // Overdefined or unknown condition? // All destinations are executable! if (!IBRValue.isUnknown()) Succs.assign(TI.getNumSuccessors(), true); return; } BasicBlock* T = Addr->getBasicBlock(); assert(Addr->getFunction() == T->getParent() && "Block address of a different function ?"); for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { // This is the target. if (IBR->getDestination(i) == T) { Succs[i] = true; return; } } // If we didn't find our destination in the IBR successor list, then we // have undefined behavior. Its ok to assume no successor is executable. return; } DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); llvm_unreachable("SCCP: Don't know how to handle this terminator!"); } // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible. bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { assert(BBExecutable.count(To) && "Dest should always be alive!"); // Make sure the source basic block is executable!! if (!BBExecutable.count(From)) return false; // Check to make sure this edge itself is actually feasible now. TerminatorInst *TI = From->getTerminator(); if (auto *BI = dyn_cast(TI)) { if (BI->isUnconditional()) return true; LatticeVal BCValue = getValueState(BI->getCondition()); // Overdefined condition variables mean the branch could go either way, // undef conditions mean that neither edge is feasible yet. ConstantInt *CI = BCValue.getConstantInt(); if (!CI) return !BCValue.isUnknown(); // Constant condition variables mean the branch can only go a single way. return BI->getSuccessor(CI->isZero()) == To; } // Unwinding instructions successors are always executable. if (TI->isExceptional()) return true; if (auto *SI = dyn_cast(TI)) { if (SI->getNumCases() < 1) return true; LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); if (!CI) return !SCValue.isUnknown(); return SI->findCaseValue(CI)->getCaseSuccessor() == To; } // In case of indirect branch and its address is a blockaddress, we mark // the target as executable. if (auto *IBR = dyn_cast(TI)) { LatticeVal IBRValue = getValueState(IBR->getAddress()); BlockAddress *Addr = IBRValue.getBlockAddress(); if (!Addr) return !IBRValue.isUnknown(); // At this point, the indirectbr is branching on a blockaddress. return Addr->getBasicBlock() == To; } DEBUG(dbgs() << "Unknown terminator instruction: " << *TI << '\n'); llvm_unreachable("SCCP: Don't know how to handle this terminator!"); } // visit Implementations - Something changed in this instruction, either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. This method // makes sure to do the following actions: // // 1. If a phi node merges two constants in, and has conflicting value coming // from different branches, or if the PHI node merges in an overdefined // value, then the PHI node becomes overdefined. // 2. If a phi node merges only constants in, and they all agree on value, the // PHI node becomes a constant value equal to that. // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined // 6. If a conditional branch has a value that is constant, make the selected // destination executable // 7. If a conditional branch has a value that is overdefined, make all // successors executable. void SCCPSolver::visitPHINode(PHINode &PN) { // If this PN returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (PN.getType()->isStructTy()) return markOverdefined(&PN); if (getValueState(&PN).isOverdefined()) return; // Quick exit // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) return markOverdefined(&PN); // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical // constant. If they are constant and don't agree, the PHI is overdefined. // If there are no executable operands, the PHI remains unknown. Constant *OperandVal = nullptr; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { LatticeVal IV = getValueState(PN.getIncomingValue(i)); if (IV.isUnknown()) continue; // Doesn't influence PHI node. if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) continue; if (IV.isOverdefined()) // PHI node becomes overdefined! return markOverdefined(&PN); if (!OperandVal) { // Grab the first value. OperandVal = IV.getConstant(); continue; } // There is already a reachable operand. If we conflict with it, // then the PHI node becomes overdefined. If we agree with it, we // can continue on. // Check to see if there are two different constants merging, if so, the PHI // node is overdefined. if (IV.getConstant() != OperandVal) return markOverdefined(&PN); } // If we exited the loop, this means that the PHI node only has constant // arguments that agree with each other(and OperandVal is the constant) or // OperandVal is null because there are no defined incoming arguments. If // this is the case, the PHI remains unknown. if (OperandVal) markConstant(&PN, OperandVal); // Acquire operand value } void SCCPSolver::visitReturnInst(ReturnInst &I) { if (I.getNumOperands() == 0) return; // ret void Function *F = I.getParent()->getParent(); Value *ResultOp = I.getOperand(0); // If we are tracking the return value of this function, merge it in. if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { DenseMap::iterator TFRVI = TrackedRetVals.find(F); if (TFRVI != TrackedRetVals.end()) { mergeInValue(TFRVI->second, F, getValueState(ResultOp)); return; } } // Handle functions that return multiple values. if (!TrackedMultipleRetVals.empty()) { if (auto *STy = dyn_cast(ResultOp->getType())) if (MRVFunctionsTracked.count(F)) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, getStructValueState(ResultOp, i)); } } void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { SmallVector SuccFeasible; getFeasibleSuccessors(TI, SuccFeasible); BasicBlock *BB = TI.getParent(); // Mark all feasible successors executable. for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) markEdgeExecutable(BB, TI.getSuccessor(i)); } void SCCPSolver::visitCastInst(CastInst &I) { LatticeVal OpSt = getValueState(I.getOperand(0)); if (OpSt.isOverdefined()) // Inherit overdefinedness of operand markOverdefined(&I); else if (OpSt.isConstant()) { // Fold the constant as we build. Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), I.getType(), DL); if (isa(C)) return; // Propagate constant value markConstant(&I, C); } } void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { // If this returns a struct, mark all elements over defined, we don't track // structs in structs. if (EVI.getType()->isStructTy()) return markOverdefined(&EVI); // If this is extracting from more than one level of struct, we don't know. if (EVI.getNumIndices() != 1) return markOverdefined(&EVI); Value *AggVal = EVI.getAggregateOperand(); if (AggVal->getType()->isStructTy()) { unsigned i = *EVI.idx_begin(); LatticeVal EltVal = getStructValueState(AggVal, i); mergeInValue(getValueState(&EVI), &EVI, EltVal); } else { // Otherwise, must be extracting from an array. return markOverdefined(&EVI); } } void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { auto *STy = dyn_cast(IVI.getType()); if (!STy) return markOverdefined(&IVI); // If this has more than one index, we can't handle it, drive all results to // undef. if (IVI.getNumIndices() != 1) return markOverdefined(&IVI); Value *Aggr = IVI.getAggregateOperand(); unsigned Idx = *IVI.idx_begin(); // Compute the result based on what we're inserting. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // This passes through all values that aren't the inserted element. if (i != Idx) { LatticeVal EltVal = getStructValueState(Aggr, i); mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); continue; } Value *Val = IVI.getInsertedValueOperand(); if (Val->getType()->isStructTy()) // We don't track structs in structs. markOverdefined(getStructValueState(&IVI, i), &IVI); else { LatticeVal InVal = getValueState(Val); mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); } } } void SCCPSolver::visitSelectInst(SelectInst &I) { // If this select returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (I.getType()->isStructTy()) return markOverdefined(&I); LatticeVal CondValue = getValueState(I.getCondition()); if (CondValue.isUnknown()) return; if (ConstantInt *CondCB = CondValue.getConstantInt()) { Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); mergeInValue(&I, getValueState(OpVal)); return; } // Otherwise, the condition is overdefined or a constant we can't evaluate. // See if we can produce something better than overdefined based on the T/F // value. LatticeVal TVal = getValueState(I.getTrueValue()); LatticeVal FVal = getValueState(I.getFalseValue()); // select ?, C, C -> C. if (TVal.isConstant() && FVal.isConstant() && TVal.getConstant() == FVal.getConstant()) return markConstant(&I, FVal.getConstant()); if (TVal.isUnknown()) // select ?, undef, X -> X. return mergeInValue(&I, FVal); if (FVal.isUnknown()) // select ?, X, undef -> X. return mergeInValue(&I, TVal); markOverdefined(&I); } // Handle Binary Operators. void SCCPSolver::visitBinaryOperator(Instruction &I) { LatticeVal V1State = getValueState(I.getOperand(0)); LatticeVal V2State = getValueState(I.getOperand(1)); LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (V1State.isConstant() && V2State.isConstant()) { Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), V2State.getConstant()); // X op Y -> undef. if (isa(C)) return; return markConstant(IV, &I, C); } // If something is undef, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; // Otherwise, one of our operands is overdefined. Try to produce something // better than overdefined with some tricks. // If this is 0 / Y, it doesn't matter that the second operand is // overdefined, and we can replace it with zero. if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv) if (V1State.isConstant() && V1State.getConstant()->isNullValue()) return markConstant(IV, &I, V1State.getConstant()); // If this is: // -> AND/MUL with 0 // -> OR with -1 // it doesn't matter that the other operand is overdefined. if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul || I.getOpcode() == Instruction::Or) { LatticeVal *NonOverdefVal = nullptr; if (!V1State.isOverdefined()) NonOverdefVal = &V1State; else if (!V2State.isOverdefined()) NonOverdefVal = &V2State; if (NonOverdefVal) { if (NonOverdefVal->isUnknown()) return; if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul) { // X and 0 = 0 // X * 0 = 0 if (NonOverdefVal->getConstant()->isNullValue()) return markConstant(IV, &I, NonOverdefVal->getConstant()); } else { // X or -1 = -1 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) if (CI->isMinusOne()) return markConstant(IV, &I, NonOverdefVal->getConstant()); } } } markOverdefined(&I); } // Handle ICmpInst instruction. void SCCPSolver::visitCmpInst(CmpInst &I) { LatticeVal V1State = getValueState(I.getOperand(0)); LatticeVal V2State = getValueState(I.getOperand(1)); LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (V1State.isConstant() && V2State.isConstant()) { Constant *C = ConstantExpr::getCompare( I.getPredicate(), V1State.getConstant(), V2State.getConstant()); if (isa(C)) return; return markConstant(IV, &I, C); } // If operands are still unknown, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; markOverdefined(&I); } // Handle getelementptr instructions. If all operands are constants then we // can turn this into a getelementptr ConstantExpr. void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { if (ValueState[&I].isOverdefined()) return; SmallVector Operands; Operands.reserve(I.getNumOperands()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { LatticeVal State = getValueState(I.getOperand(i)); if (State.isUnknown()) return; // Operands are not resolved yet. if (State.isOverdefined()) return markOverdefined(&I); assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } Constant *Ptr = Operands[0]; auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); Constant *C = ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); if (isa(C)) return; markConstant(&I, C); } void SCCPSolver::visitStoreInst(StoreInst &SI) { // If this store is of a struct, ignore it. if (SI.getOperand(0)->getType()->isStructTy()) return; if (TrackedGlobals.empty() || !isa(SI.getOperand(1))) return; GlobalVariable *GV = cast(SI.getOperand(1)); DenseMap::iterator I = TrackedGlobals.find(GV); if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; // Get the value we are storing into the global, then merge it. mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); if (I->second.isOverdefined()) TrackedGlobals.erase(I); // No need to keep tracking this! } // Handle load instructions. If the operand is a constant pointer to a constant // global, we can replace the load with the loaded constant value! void SCCPSolver::visitLoadInst(LoadInst &I) { // If this load is of a struct, just mark the result overdefined. if (I.getType()->isStructTy()) return markOverdefined(&I); LatticeVal PtrVal = getValueState(I.getOperand(0)); if (PtrVal.isUnknown()) return; // The pointer is not resolved yet! LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (!PtrVal.isConstant() || I.isVolatile()) return markOverdefined(IV, &I); Constant *Ptr = PtrVal.getConstant(); // load null is undefined. if (isa(Ptr) && I.getPointerAddressSpace() == 0) return; // Transform load (constant global) into the value loaded. if (auto *GV = dyn_cast(Ptr)) { if (!TrackedGlobals.empty()) { // If we are tracking this global, merge in the known value for it. DenseMap::iterator It = TrackedGlobals.find(GV); if (It != TrackedGlobals.end()) { mergeInValue(IV, &I, It->second); return; } } } // Transform load from a constant into a constant if possible. if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { if (isa(C)) return; return markConstant(IV, &I, C); } // Otherwise we cannot say for certain what value this load will produce. // Bail out. markOverdefined(IV, &I); } void SCCPSolver::visitCallSite(CallSite CS) { Function *F = CS.getCalledFunction(); Instruction *I = CS.getInstruction(); // The common case is that we aren't tracking the callee, either because we // are not doing interprocedural analysis or the callee is indirect, or is // external. Handle these cases first. if (!F || F->isDeclaration()) { CallOverdefined: // Void return and not tracking callee, just bail. if (I->getType()->isVoidTy()) return; // Otherwise, if we have a single return value case, and if the function is // a declaration, maybe we can constant fold it. if (F && F->isDeclaration() && !I->getType()->isStructTy() && canConstantFoldCallTo(CS, F)) { SmallVector Operands; for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) { LatticeVal State = getValueState(*AI); if (State.isUnknown()) return; // Operands are not resolved yet. if (State.isOverdefined()) return markOverdefined(I); assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } if (getValueState(I).isOverdefined()) return; // If we can constant fold this, mark the result of the call as a // constant. if (Constant *C = ConstantFoldCall(CS, F, Operands, TLI)) { // call -> undef. if (isa(C)) return; return markConstant(I, C); } } // Otherwise, we don't know anything about this call, mark it overdefined. return markOverdefined(I); } // If this is a local function that doesn't have its address taken, mark its // entry block executable and merge in the actual arguments to the call into // the formal arguments of the function. if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ MarkBlockExecutable(&F->front()); // Propagate information from this call site into the callee. CallSite::arg_iterator CAI = CS.arg_begin(); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++CAI) { // If this argument is byval, and if the function is not readonly, there // will be an implicit copy formed of the input aggregate. if (AI->hasByValAttr() && !F->onlyReadsMemory()) { markOverdefined(&*AI); continue; } if (auto *STy = dyn_cast(AI->getType())) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { LatticeVal CallArg = getStructValueState(*CAI, i); mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); } } else { // Most other parts of the Solver still only use the simpler value // lattice, so we propagate changes for parameters to both lattices. getParamState(&*AI).mergeIn(getValueState(*CAI).toValueLattice(), DL); mergeInValue(&*AI, getValueState(*CAI)); } } } // If this is a single/zero retval case, see if we're tracking the function. if (auto *STy = dyn_cast(F->getReturnType())) { if (!MRVFunctionsTracked.count(F)) goto CallOverdefined; // Not tracking this callee. // If we are tracking this callee, propagate the result of the function // into this call site. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(getStructValueState(I, i), I, TrackedMultipleRetVals[std::make_pair(F, i)]); } else { DenseMap::iterator TFRVI = TrackedRetVals.find(F); if (TFRVI == TrackedRetVals.end()) goto CallOverdefined; // Not tracking this callee. // If so, propagate the return value of the callee into this call result. mergeInValue(I, TFRVI->second); } } void SCCPSolver::Solve() { // Process the work lists until they are empty! while (!BBWorkList.empty() || !InstWorkList.empty() || !OverdefinedInstWorkList.empty()) { // Process the overdefined instruction's work list first, which drives other // things to overdefined more quickly. while (!OverdefinedInstWorkList.empty()) { Value *I = OverdefinedInstWorkList.pop_back_val(); DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); // "I" got into the work list because it either made the transition from // bottom to constant, or to overdefined. // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined // Update all of the users of this instruction's value. // for (User *U : I->users()) if (auto *UI = dyn_cast(U)) OperandChangedState(UI); } // Process the instruction work list. while (!InstWorkList.empty()) { Value *I = InstWorkList.pop_back_val(); DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); // "I" got into the work list because it made the transition from undef to // constant. // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined. // Update all of the users of this instruction's value. // if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) for (User *U : I->users()) if (auto *UI = dyn_cast(U)) OperandChangedState(UI); } // Process the basic block work list. while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.back(); BBWorkList.pop_back(); DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); // Notify all instructions in this basic block that they are newly // executable. visit(BB); } } } /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. /// /// This method handles this by finding an unresolved branch and marking it one /// of the edges from the block as being feasible, even though the condition /// doesn't say it would otherwise be. This allows SCCP to find the rest of the /// CFG and only slightly pessimizes the analysis results (by marking one, /// potentially infeasible, edge feasible). This cannot usefully modify the /// constraints on the condition of the branch, as that would impact other users /// of the value. /// /// This scan also checks for values that use undefs, whose results are actually /// defined. For example, 'zext i8 undef to i32' should produce all zeros /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, /// even if X isn't defined. bool SCCPSolver::ResolvedUndefsIn(Function &F) { for (BasicBlock &BB : F) { if (!BBExecutable.count(&BB)) continue; for (Instruction &I : BB) { // Look for instructions which produce undef values. if (I.getType()->isVoidTy()) continue; if (auto *STy = dyn_cast(I.getType())) { // Only a few things that can be structs matter for undef. // Tracked calls must never be marked overdefined in ResolvedUndefsIn. if (CallSite CS = CallSite(&I)) if (Function *F = CS.getCalledFunction()) if (MRVFunctionsTracked.count(F)) continue; // extractvalue and insertvalue don't need to be marked; they are // tracked as precisely as their operands. if (isa(I) || isa(I)) continue; // Send the results of everything else to overdefined. We could be // more precise than this but it isn't worth bothering. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { LatticeVal &LV = getStructValueState(&I, i); if (LV.isUnknown()) markOverdefined(LV, &I); } continue; } LatticeVal &LV = getValueState(&I); if (!LV.isUnknown()) continue; // extractvalue is safe; check here because the argument is a struct. if (isa(I)) continue; // Compute the operand LatticeVals, for convenience below. // Anything taking a struct is conservatively assumed to require // overdefined markings. if (I.getOperand(0)->getType()->isStructTy()) { markOverdefined(&I); return true; } LatticeVal Op0LV = getValueState(I.getOperand(0)); LatticeVal Op1LV; if (I.getNumOperands() == 2) { if (I.getOperand(1)->getType()->isStructTy()) { markOverdefined(&I); return true; } Op1LV = getValueState(I.getOperand(1)); } // If this is an instructions whose result is defined even if the input is // not fully defined, propagate the information. Type *ITy = I.getType(); switch (I.getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: break; // Any undef -> undef case Instruction::FSub: case Instruction::FAdd: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: // Floating-point binary operation: be conservative. if (Op0LV.isUnknown() && Op1LV.isUnknown()) markForcedConstant(&I, Constant::getNullValue(ITy)); else markOverdefined(&I); return true; case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: // undef -> 0; some outputs are impossible markForcedConstant(&I, Constant::getNullValue(ITy)); return true; case Instruction::Mul: case Instruction::And: // Both operands undef -> undef if (Op0LV.isUnknown() && Op1LV.isUnknown()) break; // undef * X -> 0. X could be zero. // undef & X -> 0. X could be zero. markForcedConstant(&I, Constant::getNullValue(ITy)); return true; case Instruction::Or: // Both operands undef -> undef if (Op0LV.isUnknown() && Op1LV.isUnknown()) break; // undef | X -> -1. X could be -1. markForcedConstant(&I, Constant::getAllOnesValue(ITy)); return true; case Instruction::Xor: // undef ^ undef -> 0; strictly speaking, this is not strictly // necessary, but we try to be nice to people who expect this // behavior in simple cases if (Op0LV.isUnknown() && Op1LV.isUnknown()) { markForcedConstant(&I, Constant::getNullValue(ITy)); return true; } // undef ^ X -> undef break; case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: // X / undef -> undef. No change. // X % undef -> undef. No change. if (Op1LV.isUnknown()) break; // X / 0 -> undef. No change. // X % 0 -> undef. No change. if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) break; // undef / X -> 0. X could be maxint. // undef % X -> 0. X could be 1. markForcedConstant(&I, Constant::getNullValue(ITy)); return true; case Instruction::AShr: // X >>a undef -> undef. if (Op1LV.isUnknown()) break; // Shifting by the bitwidth or more is undefined. if (Op1LV.isConstant()) { if (auto *ShiftAmt = Op1LV.getConstantInt()) if (ShiftAmt->getLimitedValue() >= ShiftAmt->getType()->getScalarSizeInBits()) break; } // undef >>a X -> 0 markForcedConstant(&I, Constant::getNullValue(ITy)); return true; case Instruction::LShr: case Instruction::Shl: // X << undef -> undef. // X >> undef -> undef. if (Op1LV.isUnknown()) break; // Shifting by the bitwidth or more is undefined. if (Op1LV.isConstant()) { if (auto *ShiftAmt = Op1LV.getConstantInt()) if (ShiftAmt->getLimitedValue() >= ShiftAmt->getType()->getScalarSizeInBits()) break; } // undef << X -> 0 // undef >> X -> 0 markForcedConstant(&I, Constant::getNullValue(ITy)); return true; case Instruction::Select: Op1LV = getValueState(I.getOperand(1)); // undef ? X : Y -> X or Y. There could be commonality between X/Y. if (Op0LV.isUnknown()) { if (!Op1LV.isConstant()) // Pick the constant one if there is any. Op1LV = getValueState(I.getOperand(2)); } else if (Op1LV.isUnknown()) { // c ? undef : undef -> undef. No change. Op1LV = getValueState(I.getOperand(2)); if (Op1LV.isUnknown()) break; // Otherwise, c ? undef : x -> x. } else { // Leave Op1LV as Operand(1)'s LatticeValue. } if (Op1LV.isConstant()) markForcedConstant(&I, Op1LV.getConstant()); else markOverdefined(&I); return true; case Instruction::Load: // A load here means one of two things: a load of undef from a global, // a load from an unknown pointer. Either way, having it return undef // is okay. break; case Instruction::ICmp: // X == undef -> undef. Other comparisons get more complicated. if (cast(&I)->isEquality()) break; markOverdefined(&I); return true; case Instruction::Call: case Instruction::Invoke: // There are two reasons a call can have an undef result // 1. It could be tracked. // 2. It could be constant-foldable. // Because of the way we solve return values, tracked calls must // never be marked overdefined in ResolvedUndefsIn. if (Function *F = CallSite(&I).getCalledFunction()) if (TrackedRetVals.count(F)) break; // If the call is constant-foldable, we mark it overdefined because // we do not know what return values are valid. markOverdefined(&I); return true; default: // If we don't know what should happen here, conservatively mark it // overdefined. markOverdefined(&I); return true; } } // Check to see if we have a branch or switch on an undefined value. If so // we force the branch to go one way or the other to make the successor // values live. It doesn't really matter which way we force it. TerminatorInst *TI = BB.getTerminator(); if (auto *BI = dyn_cast(TI)) { if (!BI->isConditional()) continue; if (!getValueState(BI->getCondition()).isUnknown()) continue; // If the input to SCCP is actually branch on undef, fix the undef to // false. if (isa(BI->getCondition())) { BI->setCondition(ConstantInt::getFalse(BI->getContext())); markEdgeExecutable(&BB, TI->getSuccessor(1)); return true; } // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Handle this by forcing the input value to the // branch to false. markForcedConstant(BI->getCondition(), ConstantInt::getFalse(TI->getContext())); return true; } if (auto *IBR = dyn_cast(TI)) { // Indirect branch with no successor ?. Its ok to assume it branches // to no target. if (IBR->getNumSuccessors() < 1) continue; if (!getValueState(IBR->getAddress()).isUnknown()) continue; // If the input to SCCP is actually branch on undef, fix the undef to // the first successor of the indirect branch. if (isa(IBR->getAddress())) { IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); markEdgeExecutable(&BB, IBR->getSuccessor(0)); return true; } // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Handle this by forcing the input value to the // branch to the first successor. markForcedConstant(IBR->getAddress(), BlockAddress::get(IBR->getSuccessor(0))); return true; } if (auto *SI = dyn_cast(TI)) { if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) continue; // If the input to SCCP is actually switch on undef, fix the undef to // the first constant. if (isa(SI->getCondition())) { SI->setCondition(SI->case_begin()->getCaseValue()); markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); return true; } markForcedConstant(SI->getCondition(), SI->case_begin()->getCaseValue()); return true; } } return false; } static bool tryToReplaceWithConstantRange(SCCPSolver &Solver, Value *V) { bool Changed = false; // Currently we only use range information for integer values. if (!V->getType()->isIntegerTy()) return false; const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); if (!IV.isConstantRange()) return false; for (auto UI = V->uses().begin(), E = V->uses().end(); UI != E;) { const Use &U = *UI++; auto *Icmp = dyn_cast(U.getUser()); if (!Icmp || !Solver.isBlockExecutable(Icmp->getParent())) continue; auto getIcmpLatticeValue = [&](Value *Op) { if (auto *C = dyn_cast(Op)) return ValueLatticeElement::get(C); return Solver.getLatticeValueFor(Op); }; ValueLatticeElement A = getIcmpLatticeValue(Icmp->getOperand(0)); ValueLatticeElement B = getIcmpLatticeValue(Icmp->getOperand(1)); Constant *C = nullptr; if (A.satisfiesPredicate(Icmp->getPredicate(), B)) C = ConstantInt::getTrue(Icmp->getType()); else if (A.satisfiesPredicate(Icmp->getInversePredicate(), B)) C = ConstantInt::getFalse(Icmp->getType()); if (C) { Icmp->replaceAllUsesWith(C); DEBUG(dbgs() << "Replacing " << *Icmp << " with " << *C << ", because of range information " << A << " " << B << "\n"); Icmp->eraseFromParent(); Changed = true; } } return Changed; } static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { Constant *Const = nullptr; if (V->getType()->isStructTy()) { std::vector IVs = Solver.getStructLatticeValueFor(V); if (llvm::any_of(IVs, [](const LatticeVal &LV) { return LV.isOverdefined(); })) return false; std::vector ConstVals; auto *ST = dyn_cast(V->getType()); for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { LatticeVal V = IVs[i]; ConstVals.push_back(V.isConstant() ? V.getConstant() : UndefValue::get(ST->getElementType(i))); } Const = ConstantStruct::get(ST, ConstVals); } else { const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); if (IV.isOverdefined()) return false; if (IV.isConstantRange()) { if (IV.getConstantRange().isSingleElement()) Const = ConstantInt::get(V->getType(), IV.asConstantInteger().getValue()); else return false; } else Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); } assert(Const && "Constant is nullptr here!"); // Replacing `musttail` instructions with constant breaks `musttail` invariant // unless the call itself can be removed CallInst *CI = dyn_cast(V); if (CI && CI->isMustTailCall() && !isInstructionTriviallyDead(CI)) { CallSite CS(CI); Function *F = CS.getCalledFunction(); // Don't zap returns of the callee if (F) Solver.AddMustTailCallee(F); DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI << " as a constant\n"); return false; } DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); // Replaces all of the uses of a variable with uses of the constant. V->replaceAllUsesWith(Const); return true; } // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, // and return true if the function was modified. static bool runSCCP(Function &F, const DataLayout &DL, const TargetLibraryInfo *TLI) { DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); SCCPSolver Solver(DL, TLI); // Mark the first block of the function as being executable. Solver.MarkBlockExecutable(&F.front()); // Mark all arguments to the function as being overdefined. for (Argument &AI : F.args()) Solver.markOverdefined(&AI); // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.Solve(); DEBUG(dbgs() << "RESOLVING UNDEFs\n"); ResolvedUndefs = Solver.ResolvedUndefsIn(F); } bool MadeChanges = false; // If we decided that there are basic blocks that are dead in this function, // delete their contents now. Note that we cannot actually delete the blocks, // as we cannot modify the CFG of the function. for (BasicBlock &BB : F) { if (!Solver.isBlockExecutable(&BB)) { DEBUG(dbgs() << " BasicBlock Dead:" << BB); ++NumDeadBlocks; NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); MadeChanges = true; continue; } // Iterate over all of the instructions in a function, replacing them with // constants if we have found them to be of constant values. for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { Instruction *Inst = &*BI++; if (Inst->getType()->isVoidTy() || isa(Inst)) continue; if (tryToReplaceWithConstant(Solver, Inst)) { if (isInstructionTriviallyDead(Inst)) Inst->eraseFromParent(); // Hey, we just changed something! MadeChanges = true; ++NumInstRemoved; } } } return MadeChanges; } PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { const DataLayout &DL = F.getParent()->getDataLayout(); auto &TLI = AM.getResult(F); if (!runSCCP(F, DL, &TLI)) return PreservedAnalyses::all(); auto PA = PreservedAnalyses(); PA.preserve(); return PA; } namespace { //===--------------------------------------------------------------------===// // /// SCCP Class - This class uses the SCCPSolver to implement a per-function /// Sparse Conditional Constant Propagator. /// class SCCPLegacyPass : public FunctionPass { public: // Pass identification, replacement for typeid static char ID; SCCPLegacyPass() : FunctionPass(ID) { initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); } // runOnFunction - Run the Sparse Conditional Constant Propagation // algorithm, and return true if the function was modified. bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; const DataLayout &DL = F.getParent()->getDataLayout(); const TargetLibraryInfo *TLI = &getAnalysis().getTLI(); return runSCCP(F, DL, TLI); } }; } // end anonymous namespace char SCCPLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", "Sparse Conditional Constant Propagation", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", "Sparse Conditional Constant Propagation", false, false) // createSCCPPass - This is the public interface to this file. FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } static void findReturnsToZap(Function &F, SmallVector &ReturnsToZap, SCCPSolver &Solver) { // We can only do this if we know that nothing else can call the function. if (!Solver.isArgumentTrackedFunction(&F)) return; // There is a non-removable musttail call site of this function. Zapping // returns is not allowed. if (Solver.isMustTailCallee(&F)) { DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName() << " due to present musttail call of it\n"); return; } for (BasicBlock &BB : F) { if (CallInst *CI = BB.getTerminatingMustTailCall()) { DEBUG(dbgs() << "Can't zap return of the block due to present " << "musttail call : " << *CI << "\n"); return; } if (auto *RI = dyn_cast(BB.getTerminator())) if (!isa(RI->getOperand(0))) ReturnsToZap.push_back(RI); } } static bool runIPSCCP(Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI) { SCCPSolver Solver(DL, TLI); // Loop over all functions, marking arguments to those with their addresses // taken or that are external as overdefined. for (Function &F : M) { if (F.isDeclaration()) continue; // Determine if we can track the function's return values. If so, add the // function to the solver's set of return-tracked functions. if (canTrackReturnsInterprocedurally(&F)) Solver.AddTrackedFunction(&F); // Determine if we can track the function's arguments. If so, add the // function to the solver's set of argument-tracked functions. if (canTrackArgumentsInterprocedurally(&F)) { Solver.AddArgumentTrackedFunction(&F); continue; } // Assume the function is called. Solver.MarkBlockExecutable(&F.front()); // Assume nothing about the incoming arguments. for (Argument &AI : F.args()) Solver.markOverdefined(&AI); } // Determine if we can track any of the module's global variables. If so, add // the global variables we can track to the solver's set of tracked global // variables. for (GlobalVariable &G : M.globals()) { G.removeDeadConstantUsers(); if (canTrackGlobalVariableInterprocedurally(&G)) Solver.TrackValueOfGlobalVariable(&G); } // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.Solve(); DEBUG(dbgs() << "RESOLVING UNDEFS\n"); ResolvedUndefs = false; for (Function &F : M) ResolvedUndefs |= Solver.ResolvedUndefsIn(F); } bool MadeChanges = false; // Iterate over all of the instructions in the module, replacing them with // constants if we have found them to be of constant values. SmallVector BlocksToErase; for (Function &F : M) { if (F.isDeclaration()) continue; if (Solver.isBlockExecutable(&F.front())) for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; ++AI) { if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) { ++IPNumArgsElimed; continue; } if (!AI->use_empty() && tryToReplaceWithConstantRange(Solver, &*AI)) ++IPNumRangeInfoUsed; } for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (!Solver.isBlockExecutable(&*BB)) { DEBUG(dbgs() << " BasicBlock Dead:" << *BB); ++NumDeadBlocks; NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false); MadeChanges = true; if (&*BB != &F.front()) BlocksToErase.push_back(&*BB); continue; } for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { Instruction *Inst = &*BI++; if (Inst->getType()->isVoidTy()) continue; if (tryToReplaceWithConstant(Solver, Inst)) { if (!isa(Inst) && !isa(Inst)) Inst->eraseFromParent(); // Hey, we just changed something! MadeChanges = true; ++IPNumInstRemoved; } } } // Now that all instructions in the function are constant folded, erase dead // blocks, because we can now use ConstantFoldTerminator to get rid of // in-edges. for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { // If there are any PHI nodes in this successor, drop entries for BB now. BasicBlock *DeadBB = BlocksToErase[i]; for (Value::user_iterator UI = DeadBB->user_begin(), UE = DeadBB->user_end(); UI != UE;) { // Grab the user and then increment the iterator early, as the user // will be deleted. Step past all adjacent uses from the same user. auto *I = dyn_cast(*UI); do { ++UI; } while (UI != UE && *UI == I); // Ignore blockaddress users; BasicBlock's dtor will handle them. if (!I) continue; bool Folded = ConstantFoldTerminator(I->getParent()); if (!Folded) { // The constant folder may not have been able to fold the terminator // if this is a branch or switch on undef. Fold it manually as a // branch to the first successor. #ifndef NDEBUG if (auto *BI = dyn_cast(I)) { assert(BI->isConditional() && isa(BI->getCondition()) && "Branch should be foldable!"); } else if (auto *SI = dyn_cast(I)) { assert(isa(SI->getCondition()) && "Switch should fold"); } else { llvm_unreachable("Didn't fold away reference to block!"); } #endif // Make this an uncond branch to the first successor. TerminatorInst *TI = I->getParent()->getTerminator(); BranchInst::Create(TI->getSuccessor(0), TI); // Remove entries in successor phi nodes to remove edges. for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) TI->getSuccessor(i)->removePredecessor(TI->getParent()); // Remove the old terminator. TI->eraseFromParent(); } } // Finally, delete the basic block. F.getBasicBlockList().erase(DeadBB); } BlocksToErase.clear(); } // If we inferred constant or undef return values for a function, we replaced // all call uses with the inferred value. This means we don't need to bother // actually returning anything from the function. Replace all return // instructions with return undef. // // Do this in two stages: first identify the functions we should process, then // actually zap their returns. This is important because we can only do this // if the address of the function isn't taken. In cases where a return is the // last use of a function, the order of processing functions would affect // whether other functions are optimizable. SmallVector ReturnsToZap; const DenseMap &RV = Solver.getTrackedRetVals(); for (const auto &I : RV) { Function *F = I.first; if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) continue; findReturnsToZap(*F, ReturnsToZap, Solver); } for (const auto &F : Solver.getMRVFunctionsTracked()) { assert(F->getReturnType()->isStructTy() && "The return type should be a struct"); StructType *STy = cast(F->getReturnType()); if (Solver.isStructLatticeConstant(F, STy)) findReturnsToZap(*F, ReturnsToZap, Solver); } // Zap all returns which we've identified as zap to change. for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { Function *F = ReturnsToZap[i]->getParent()->getParent(); ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); } // If we inferred constant or undef values for globals variables, we can // delete the global and any stores that remain to it. const DenseMap &TG = Solver.getTrackedGlobals(); for (DenseMap::const_iterator I = TG.begin(), E = TG.end(); I != E; ++I) { GlobalVariable *GV = I->first; assert(!I->second.isOverdefined() && "Overdefined values should have been taken out of the map!"); DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); while (!GV->use_empty()) { StoreInst *SI = cast(GV->user_back()); SI->eraseFromParent(); } M.getGlobalList().erase(GV); ++IPNumGlobalConst; } return MadeChanges; } PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) { const DataLayout &DL = M.getDataLayout(); auto &TLI = AM.getResult(M); if (!runIPSCCP(M, DL, &TLI)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } namespace { //===--------------------------------------------------------------------===// // /// IPSCCP Class - This class implements interprocedural Sparse Conditional /// Constant Propagation. /// class IPSCCPLegacyPass : public ModulePass { public: static char ID; IPSCCPLegacyPass() : ModulePass(ID) { initializeIPSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { if (skipModule(M)) return false; const DataLayout &DL = M.getDataLayout(); const TargetLibraryInfo *TLI = &getAnalysis().getTLI(); return runIPSCCP(M, DL, TLI); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } }; } // end anonymous namespace char IPSCCPLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(IPSCCPLegacyPass, "ipsccp", "Interprocedural Sparse Conditional Constant Propagation", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(IPSCCPLegacyPass, "ipsccp", "Interprocedural Sparse Conditional Constant Propagation", false, false) // createIPSCCPPass - This is the public interface to this file. ModulePass *llvm::createIPSCCPPass() { return new IPSCCPLegacyPass(); }