//===- llvm/CodeGen/DwarfAccelTable.cpp - Dwarf Accelerator Tables --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for writing dwarf accelerator tables. // //===----------------------------------------------------------------------===// #include "DwarfAccelTable.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DIE.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCStreamer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; // The length of the header data is always going to be 4 + 4 + 4*NumAtoms. DwarfAccelTable::DwarfAccelTable(ArrayRef atomList) : Header(8 + (atomList.size() * 4)), HeaderData(atomList), Entries(Allocator) {} void DwarfAccelTable::AddName(DwarfStringPoolEntryRef Name, const DIE *die, char Flags) { assert(Data.empty() && "Already finalized!"); // If the string is in the list already then add this die to the list // otherwise add a new one. DataArray &DIEs = Entries[Name.getString()]; assert(!DIEs.Name || DIEs.Name == Name); DIEs.Name = Name; DIEs.Values.push_back(new (Allocator) HashDataContents(die, Flags)); } void DwarfAccelTable::ComputeBucketCount() { // First get the number of unique hashes. std::vector uniques(Data.size()); for (size_t i = 0, e = Data.size(); i < e; ++i) uniques[i] = Data[i]->HashValue; array_pod_sort(uniques.begin(), uniques.end()); std::vector::iterator p = std::unique(uniques.begin(), uniques.end()); uint32_t num = std::distance(uniques.begin(), p); // Then compute the bucket size, minimum of 1 bucket. if (num > 1024) Header.bucket_count = num / 4; else if (num > 16) Header.bucket_count = num / 2; else Header.bucket_count = num > 0 ? num : 1; Header.hashes_count = num; } // compareDIEs - comparison predicate that sorts DIEs by their offset. static bool compareDIEs(const DwarfAccelTable::HashDataContents *A, const DwarfAccelTable::HashDataContents *B) { return A->Die->getOffset() < B->Die->getOffset(); } void DwarfAccelTable::FinalizeTable(AsmPrinter *Asm, StringRef Prefix) { // Create the individual hash data outputs. Data.reserve(Entries.size()); for (StringMap::iterator EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { // Unique the entries. std::stable_sort(EI->second.Values.begin(), EI->second.Values.end(), compareDIEs); EI->second.Values.erase( std::unique(EI->second.Values.begin(), EI->second.Values.end()), EI->second.Values.end()); HashData *Entry = new (Allocator) HashData(EI->getKey(), EI->second); Data.push_back(Entry); } // Figure out how many buckets we need, then compute the bucket // contents and the final ordering. We'll emit the hashes and offsets // by doing a walk during the emission phase. We add temporary // symbols to the data so that we can reference them during the offset // later, we'll emit them when we emit the data. ComputeBucketCount(); // Compute bucket contents and final ordering. Buckets.resize(Header.bucket_count); for (size_t i = 0, e = Data.size(); i < e; ++i) { uint32_t bucket = Data[i]->HashValue % Header.bucket_count; Buckets[bucket].push_back(Data[i]); Data[i]->Sym = Asm->createTempSymbol(Prefix); } // Sort the contents of the buckets by hash value so that hash // collisions end up together. Stable sort makes testing easier and // doesn't cost much more. for (size_t i = 0; i < Buckets.size(); ++i) std::stable_sort(Buckets[i].begin(), Buckets[i].end(), [] (HashData *LHS, HashData *RHS) { return LHS->HashValue < RHS->HashValue; }); } // Emits the header for the table via the AsmPrinter. void DwarfAccelTable::EmitHeader(AsmPrinter *Asm) { Asm->OutStreamer->AddComment("Header Magic"); Asm->EmitInt32(Header.magic); Asm->OutStreamer->AddComment("Header Version"); Asm->EmitInt16(Header.version); Asm->OutStreamer->AddComment("Header Hash Function"); Asm->EmitInt16(Header.hash_function); Asm->OutStreamer->AddComment("Header Bucket Count"); Asm->EmitInt32(Header.bucket_count); Asm->OutStreamer->AddComment("Header Hash Count"); Asm->EmitInt32(Header.hashes_count); Asm->OutStreamer->AddComment("Header Data Length"); Asm->EmitInt32(Header.header_data_len); Asm->OutStreamer->AddComment("HeaderData Die Offset Base"); Asm->EmitInt32(HeaderData.die_offset_base); Asm->OutStreamer->AddComment("HeaderData Atom Count"); Asm->EmitInt32(HeaderData.Atoms.size()); for (size_t i = 0; i < HeaderData.Atoms.size(); i++) { Atom A = HeaderData.Atoms[i]; Asm->OutStreamer->AddComment(dwarf::AtomTypeString(A.type)); Asm->EmitInt16(A.type); Asm->OutStreamer->AddComment(dwarf::FormEncodingString(A.form)); Asm->EmitInt16(A.form); } } // Walk through and emit the buckets for the table. Each index is // an offset into the list of hashes. void DwarfAccelTable::EmitBuckets(AsmPrinter *Asm) { unsigned index = 0; for (size_t i = 0, e = Buckets.size(); i < e; ++i) { Asm->OutStreamer->AddComment("Bucket " + Twine(i)); if (!Buckets[i].empty()) Asm->EmitInt32(index); else Asm->EmitInt32(std::numeric_limits::max()); // Buckets point in the list of hashes, not to the data. Do not // increment the index multiple times in case of hash collisions. uint64_t PrevHash = std::numeric_limits::max(); for (auto *HD : Buckets[i]) { uint32_t HashValue = HD->HashValue; if (PrevHash != HashValue) ++index; PrevHash = HashValue; } } } // Walk through the buckets and emit the individual hashes for each // bucket. void DwarfAccelTable::EmitHashes(AsmPrinter *Asm) { uint64_t PrevHash = std::numeric_limits::max(); for (size_t i = 0, e = Buckets.size(); i < e; ++i) { for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) { uint32_t HashValue = (*HI)->HashValue; if (PrevHash == HashValue) continue; Asm->OutStreamer->AddComment("Hash in Bucket " + Twine(i)); Asm->EmitInt32(HashValue); PrevHash = HashValue; } } } // Walk through the buckets and emit the individual offsets for each // element in each bucket. This is done via a symbol subtraction from the // beginning of the section. The non-section symbol will be output later // when we emit the actual data. void DwarfAccelTable::emitOffsets(AsmPrinter *Asm, const MCSymbol *SecBegin) { uint64_t PrevHash = std::numeric_limits::max(); for (size_t i = 0, e = Buckets.size(); i < e; ++i) { for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) { uint32_t HashValue = (*HI)->HashValue; if (PrevHash == HashValue) continue; PrevHash = HashValue; Asm->OutStreamer->AddComment("Offset in Bucket " + Twine(i)); MCContext &Context = Asm->OutStreamer->getContext(); const MCExpr *Sub = MCBinaryExpr::createSub( MCSymbolRefExpr::create((*HI)->Sym, Context), MCSymbolRefExpr::create(SecBegin, Context), Context); Asm->OutStreamer->EmitValue(Sub, sizeof(uint32_t)); } } } // Walk through the buckets and emit the full data for each element in // the bucket. For the string case emit the dies and the various offsets. // Terminate each HashData bucket with 0. void DwarfAccelTable::EmitData(AsmPrinter *Asm, DwarfDebug *D) { for (size_t i = 0, e = Buckets.size(); i < e; ++i) { uint64_t PrevHash = std::numeric_limits::max(); for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) { // Terminate the previous entry if there is no hash collision // with the current one. if (PrevHash != std::numeric_limits::max() && PrevHash != (*HI)->HashValue) Asm->EmitInt32(0); // Remember to emit the label for our offset. Asm->OutStreamer->EmitLabel((*HI)->Sym); Asm->OutStreamer->AddComment((*HI)->Str); Asm->emitDwarfStringOffset((*HI)->Data.Name); Asm->OutStreamer->AddComment("Num DIEs"); Asm->EmitInt32((*HI)->Data.Values.size()); for (HashDataContents *HD : (*HI)->Data.Values) { // Emit the DIE offset Asm->EmitInt32(HD->Die->getDebugSectionOffset()); // If we have multiple Atoms emit that info too. // FIXME: A bit of a hack, we either emit only one atom or all info. if (HeaderData.Atoms.size() > 1) { Asm->EmitInt16(HD->Die->getTag()); Asm->EmitInt8(HD->Flags); } } PrevHash = (*HI)->HashValue; } // Emit the final end marker for the bucket. if (!Buckets[i].empty()) Asm->EmitInt32(0); } } // Emit the entire data structure to the output file. void DwarfAccelTable::emit(AsmPrinter *Asm, const MCSymbol *SecBegin, DwarfDebug *D) { // Emit the header. EmitHeader(Asm); // Emit the buckets. EmitBuckets(Asm); // Emit the hashes. EmitHashes(Asm); // Emit the offsets. emitOffsets(Asm, SecBegin); // Emit the hash data. EmitData(Asm, D); } #ifndef NDEBUG void DwarfAccelTable::print(raw_ostream &OS) { Header.print(OS); HeaderData.print(OS); OS << "Entries: \n"; for (StringMap::const_iterator EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) { OS << "Name: " << EI->getKeyData() << "\n"; for (HashDataContents *HD : EI->second.Values) HD->print(OS); } OS << "Buckets and Hashes: \n"; for (size_t i = 0, e = Buckets.size(); i < e; ++i) for (HashList::const_iterator HI = Buckets[i].begin(), HE = Buckets[i].end(); HI != HE; ++HI) (*HI)->print(OS); OS << "Data: \n"; for (std::vector::const_iterator DI = Data.begin(), DE = Data.end(); DI != DE; ++DI) (*DI)->print(OS); } #endif