//-------------------------------------------------------------
//
// Copyright © Microsoft Corporation. All Rights Reserved.
//
//-------------------------------------------------------------
// @owner=alexgor, deliant
//=================================================================
// File: PriceIndicators.cs
//
// Namespace: System.Web.UI.WebControls[Windows.Forms].Charting.Formulas
//
// Classes: PriceIndicators
//
// Purpose: This class is used to calculate Price
// indicators used in Technical Analyses.
//
// Reviewed: GS - August 7, 2002
// AG - August 7, 2002
//
//===================================================================
using System;
#if Microsoft_CONTROL
namespace System.Windows.Forms.DataVisualization.Charting.Formulas
#else
namespace System.Web.UI.DataVisualization.Charting.Formulas
#endif
{
///
/// Price indicator is module with mathematical calculations
/// that apply to a security's price.
///
internal class PriceIndicators : IFormula
{
#region Error strings
// Error strings
//internal string inputArrayStart = "Formula requires";
//internal string inputArrayEnd = "arrays";
//internal string SR.ExceptionPriceIndicatorsSameYNumber = "Formula requires the same number of Y values for each input data point";
//internal string SR.ExceptionPriceIndicatorsFormulaRequiresFourArrays = "Formula requires the same number of X and Y values for each input data point";
//internal string periodMissing = "Formula error - Period parameter is missing. ";
//internal string SR.ExceptionPriceIndicatorsFormulaRequiresFourArrays = "Formula error - There are not enough data points for the Period. ";
#endregion
#region Properties
///
/// Formula Module name
///
virtual public string Name { get { return SR.FormulaNamePriceIndicators; } }
#endregion
#region Formulas
///
/// A Moving Average is an indicator that shows the average
/// value of a security's price over a period of time. When
/// calculating a moving average, a mathematical analysis of
/// the security's average value over a predetermined time
/// period is made. As the security's price changes,
/// its average price moves up or down.
/// A simple, or arithmetic, moving average is calculated by
/// adding the closing price of the security for a number of
/// time periods (e.g., 12 days) and then dividing this total
/// by the number of time periods. The result is the average
/// price of the security over the time period. Simple moving
/// averages give equal weight to each daily price.
/// ---------------------------------------------------------
/// Input:
/// - Y values.
/// Output:
/// - Moving Average.
/// Parameters:
/// - Period
/// Extra Parameters:
/// - Start from First
///
///
/// Array of doubles: Y values
/// Arrays of doubles: Moving average
/// Period
/// Start from first value
internal void MovingAverage(double [] inputValues, out double [] outputValues, int period, bool FromFirst )
{
double [][] tempInput = new double [2][];
double [][] tempOutput = new double [2][];
string [] parList = new string [1];
string [] extList = new string [1];
parList[0] = period.ToString(System.Globalization.CultureInfo.InvariantCulture);
extList[0] = FromFirst.ToString(System.Globalization.CultureInfo.InvariantCulture);
tempInput[0] = new double[inputValues.Length];
tempInput[1] = inputValues;
MovingAverage( tempInput, out tempOutput, parList, extList );
outputValues = tempOutput[1];
}
///
/// A Moving Average is an indicator that shows the average
/// value of a security's price over a period of time. When
/// calculating a moving average, a mathematical analysis of
/// the security's average value over a predetermined time
/// period is made. As the security's price changes,
/// its average price moves up or down.
/// A simple, or arithmetic, moving average is calculated by
/// adding the closing price of the security for a number of
/// time periods (e.g., 12 days) and then dividing this total
/// by the number of time periods. The result is the average
/// price of the security over the time period. Simple moving
/// averages give equal weight to each daily price.
/// ---------------------------------------------------------
/// Input:
/// - Y values.
/// Output:
/// - Moving Average.
/// Parameters:
/// - Period
/// Extra Parameters:
/// - Start from First
///
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values
/// Arrays of doubles: 1. row - X values, 2. row - Moving average
/// Array of strings: 1. Period
/// Array of strings: 1. Start from zero
private void MovingAverage(double [][] inputValues, out double [][] outputValues, string [] parameterList, string [] extraParameterList)
{
int length = inputValues.Length;
// Period for moving average
int period;
try
{period = int.Parse( parameterList[0], System.Globalization.CultureInfo.InvariantCulture );}
catch( Exception e )
{
if (e.Message == SR.ExceptionObjectReferenceIsNull)
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing);
else
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing + e.Message);
}
if( period <= 0 )
throw new InvalidOperationException(SR.ExceptionPeriodParameterIsNegative);
// Starting average from the first data point or after period.
bool startFromFirst = bool.Parse( extraParameterList[0]);
// There is no enough series
if( length != 2 )
throw new ArgumentException(SR.ExceptionPriceIndicatorsFormulaRequiresOneArray);
// Different number of x and y values
if( inputValues[0].Length != inputValues[1].Length )
throw new ArgumentException(SR.ExceptionPriceIndicatorsSameXYNumber);
// Not enough values for moving average.
if( inputValues[0].Length < period )
throw new ArgumentException(SR.ExceptionPriceIndicatorsNotEnoughPoints);
outputValues = new double [2][];
if( startFromFirst )
{
// X values
outputValues[0] = new double [inputValues[0].Length];
// Y values
outputValues[1] = new double [inputValues[1].Length];
for( int point = 0; point < inputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point];
// Find sum of Y values
double sum = 0;
int startSum = 0;
// Find the begining of the period
if( point - period + 1 > 0 )
{
startSum = point - period + 1;
}
// Find sum fro real period.
for( int pointSum = startSum; pointSum <= point; pointSum++ )
{
sum += inputValues[1][pointSum];
}
// Find real period if start from first data point.
int realPeriod = period;
if( period > point + 1 )
{
realPeriod = point + 1;
}
outputValues[1][point] = sum / realPeriod;
}
}
else
{
// X values
outputValues[0] = new double [inputValues[0].Length - period + 1];
// Y values
outputValues[1] = new double [inputValues[1].Length - period + 1];
// Find sum of Y values for the period
double sum = 0;
for( int pointSum = 0; pointSum < period; pointSum++ )
{
sum += inputValues[1][pointSum];
}
for( int point = 0; point < outputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point + period - 1];
outputValues[1][point] = sum / period;
// Change Sum
if( point < outputValues[0].Length - 1 )
{
sum -= inputValues[1][point];
sum += inputValues[1][point + period];
}
}
}
}
///
/// An exponential (or exponentially weighted) moving average
/// is calculated by applying a percentage of today’s closing
/// price to yesterday’s moving average value. Exponential
/// moving averages place more weight on recent prices. For
/// example, to calculate a 9% exponential moving average
/// of IBM, you would first take today’s closing price and
/// multiply it by 9%. Next, you would add this product to
/// the value of yesterday’s moving average multiplied by
/// 91% (100% - 9% = 91%).
/// ---------------------------------------------------------
/// Input:
/// - Y values.
/// Output:
/// - Exponential Moving Average.
/// Parameters:
/// - Period
/// Extra Parameters:
/// - Start from First
///
///
/// Array of doubles: Y values
/// Arrays of doubles: Exponential Moving average
/// Period
/// Start from first value
internal void ExponentialMovingAverage(double []inputValues, out double []outputValues, int period, bool startFromFirst)
{
double [][] tempInput = new double [2][];
double [][] tempOutput = new double [2][];
string [] parList = new string [1];
string [] extList = new string [1];
parList[0] = period.ToString(System.Globalization.CultureInfo.InvariantCulture);
extList[0] = startFromFirst.ToString(System.Globalization.CultureInfo.InvariantCulture);
tempInput[0] = new double[inputValues.Length];
tempInput[1] = inputValues;
ExponentialMovingAverage( tempInput, out tempOutput, parList, extList );
outputValues = tempOutput[1];
}
///
/// An exponential (or exponentially weighted) moving average
/// is calculated by applying a percentage of today’s closing
/// price to yesterday’s moving average value. Exponential
/// moving averages place more weight on recent prices. For
/// example, to calculate a 9% exponential moving average
/// of IBM, you would first take today’s closing price and
/// multiply it by 9%. Next, you would add this product to
/// the value of yesterday’s moving average multiplied by
/// 91% (100% - 9% = 91%).
/// ---------------------------------------------------------
/// Input:
/// - Y values.
/// Output:
/// - Exponential Moving Average.
/// Parameters:
/// - Period
/// Extra Parameters:
/// - Start from First
///
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values
/// Arrays of doubles: 1. row - X values, 2. row - Moving average
/// Array of strings: 1. Period
/// Array of strings: 1. Start from zero
private void ExponentialMovingAverage(double [][] inputValues, out double [][] outputValues, string [] parameterList, string [] extraParameterList)
{
int length = inputValues.Length;
// Period for moving average
int period;
try
{period = int.Parse( parameterList[0], System.Globalization.CultureInfo.InvariantCulture );}
catch( Exception e )
{
if (e.Message == SR.ExceptionObjectReferenceIsNull)
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing);
else
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing + e.Message);
}
if( period <= 0 )
throw new InvalidOperationException(SR.ExceptionPeriodParameterIsNegative);
// Formula for converting period to percentage
double exponentialPercentage = 2.0 / ( period + 1.0 );
// Starting average from the first data point or after period.
bool startFromFirst = bool.Parse( extraParameterList[0] );
// There is no enough series
if( length != 2 )
throw new ArgumentException(SR.ExceptionPriceIndicatorsFormulaRequiresOneArray);
// Different number of x and y values
if( inputValues[0].Length != inputValues[1].Length )
throw new ArgumentException(SR.ExceptionPriceIndicatorsSameXYNumber);
// Not enough values for moving average.
if( inputValues[0].Length < period )
throw new ArgumentException(SR.ExceptionPriceIndicatorsNotEnoughPoints);
outputValues = new double [2][];
if( startFromFirst )
{
// X values
outputValues[0] = new double [inputValues[0].Length];
// Y values
outputValues[1] = new double [inputValues[1].Length];
for( int point = 0; point < inputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point];
// Find sum of Y values
double sum = 0;
int startSum = 0;
if( point - period + 1 > 0 )
{
startSum = point - period + 1;
}
for( int pointSum = startSum; pointSum < point; pointSum++ )
{
sum += inputValues[1][pointSum];
}
int realPeriod = period;
if( period > point + 1 )
realPeriod = point + 1;
double movingAvr;
// Find real period if start from first data point.
if( realPeriod <= 1 )
movingAvr = 0;
else
movingAvr = sum / ( realPeriod - 1 );
// Formula for converting period to percentage
exponentialPercentage = 2.0 / ( realPeriod + 1.0 );
// Exponential influence
outputValues[1][point] = movingAvr * (1 - exponentialPercentage ) + inputValues[1][point] * exponentialPercentage;
}
}
else
{
// X values
outputValues[0] = new double [inputValues[0].Length - period + 1];
// Y values
outputValues[1] = new double [inputValues[1].Length - period + 1];
for( int point = 0; point < outputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point + period - 1];
double movingAvr;
// if point is less than period calulate simple moving average
if( point == 0 )
{
// Find sum of Y values
double sum = 0;
for( int pointSum = point; pointSum < point + period; pointSum++ )
{
sum += inputValues[1][pointSum];
}
movingAvr = sum / ( period );
}
// else use previos day exponential moving average
else
movingAvr = outputValues[1][point-1];
// Exponential influence
outputValues[1][point] = movingAvr * (1 - exponentialPercentage ) + inputValues[1][point + period - 1] * exponentialPercentage;
}
}
}
///
/// Triangular moving averages place the majority of the weight
/// on the middle portion of the price series. They are actually
/// double-smoothed simple moving averages. The periods used
/// in the simple moving averages varies depending on if you
/// specify an odd or even number of time periods.
/// ---------------------------------------------------------
/// Input:
/// - Y values.
/// Output:
/// - Moving Average.
/// Parameters:
/// - Period
/// Extra Parameters:
/// - Start from First
///
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values
/// Arrays of doubles: 1. row - X values, 2. row - Moving average
/// Array of strings: 1. Period
/// Array of strings: 1. Start from zero
private void TriangularMovingAverage(double [][] inputValues, out double [][] outputValues, string [] parameterList, string [] extraParameterList)
{
int length = inputValues.Length;
// Period for moving average
int period;
try
{period = int.Parse( parameterList[0], System.Globalization.CultureInfo.InvariantCulture );}
catch( Exception e )
{
if (e.Message == SR.ExceptionObjectReferenceIsNull)
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing);
else
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing + e.Message);
}
if( period <= 0 )
throw new InvalidOperationException(SR.ExceptionPeriodParameterIsNegative);
// Starting average from the first data point or after period.
bool startFromFirst = bool.Parse( extraParameterList[0] );
// There is no enough series
if( length != 2 )
throw new ArgumentException(SR.ExceptionPriceIndicatorsFormulaRequiresOneArray);
// Different number of x and y values
if( inputValues[0].Length != inputValues[1].Length )
throw new ArgumentException(SR.ExceptionPriceIndicatorsSameXYNumber);
// Not enough values for moving average.
if( inputValues[0].Length < period )
throw new ArgumentException(SR.ExceptionPriceIndicatorsNotEnoughPoints);
outputValues = new double [2][];
// Find triangular period
double tempPeriod = ((double)period + 1.0) / 2.0;
tempPeriod = Math.Round(tempPeriod);
double [] tempOut;
double [] tempIn = inputValues[1];
// Call moving averages first time
MovingAverage( tempIn, out tempOut, (int)tempPeriod, startFromFirst );
// Call moving averages second time (Moving average of moving average)
MovingAverage( tempOut, out tempOut, (int)tempPeriod, startFromFirst );
outputValues[1] = tempOut;
// X values
outputValues[0] = new double [outputValues[1].Length];
// Set X values
if( startFromFirst )
outputValues[0] = inputValues[0];
else
{
for( int index = 0; index < outputValues[1].Length; index++ )
outputValues[0][index] = inputValues[0][((int)(tempPeriod)-1) * 2 + index];
}
}
///
/// A weighted moving average is designed to put more weight on
/// recent data and less weight on past data. A weighted moving
/// average is calculated by multiplying each of the previous
/// day’s data by a weight. The following table shows the calculation
/// of a 5-day weighted moving average.
/// ---------------------------------------------------------
/// Input:
/// - Y values.
/// Output:
/// - Moving Average.
/// Parameters:
/// - Period
/// Extra Parameters:
/// - Start from First
///
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values
/// Arrays of doubles: 1. row - X values, 2. row - Moving average
/// Array of strings: 1. Period
/// Array of strings: 1. Start from zero
private void WeightedMovingAverage(double [][] inputValues, out double [][] outputValues, string [] parameterList, string [] extraParameterList)
{
int length = inputValues.Length;
// Period for moving average
int period;
try
{period = int.Parse( parameterList[0], System.Globalization.CultureInfo.InvariantCulture );}
catch( Exception e )
{
if (e.Message == SR.ExceptionObjectReferenceIsNull)
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing);
else
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing + e.Message);
}
if( period <= 0 )
throw new InvalidOperationException(SR.ExceptionPeriodParameterIsNegative);
// Starting average from the first data point or after period.
bool startFromFirst = bool.Parse( extraParameterList[0] );
// There is no enough series
if( length != 2 )
throw new ArgumentException(SR.ExceptionPriceIndicatorsFormulaRequiresOneArray);
// Different number of x and y values
if( inputValues[0].Length != inputValues[1].Length )
throw new ArgumentException(SR.ExceptionPriceIndicatorsSameXYNumber);
// Not enough values for moving average.
if( inputValues[0].Length < period )
throw new ArgumentException(SR.ExceptionPriceIndicatorsNotEnoughPoints);
outputValues = new double [2][];
if( startFromFirst )
{
// X values
outputValues[0] = new double [inputValues[0].Length];
// Y values
outputValues[1] = new double [inputValues[1].Length];
for( int point = 0; point < inputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point];
// Find sum of Y values
double sum = 0;
int startSum = 0;
if( point - period + 1 > 0 )
{
startSum = point - period + 1;
}
int index = 1;
int indexSum = 0;
for( int pointSum = startSum; pointSum <= point; pointSum++ )
{
sum += inputValues[1][pointSum] * index;
indexSum += index;
index++;
}
double movingAvr;
// Avoid division by zero.
if( point == 0 )
movingAvr = inputValues[1][0];
else
movingAvr = sum / indexSum;
// Weighted average
outputValues[1][point] = movingAvr;
}
}
else
{
// X values
outputValues[0] = new double [inputValues[0].Length - period + 1];
// Y values
outputValues[1] = new double [inputValues[1].Length - period + 1];
for( int point = 0; point < outputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point + period - 1];
// Find sum of Y values
double sum = 0;
int index = 1;
int indexSum = 0;
for( int pointSum = point; pointSum < point + period; pointSum++ )
{
sum += inputValues[1][pointSum] * index;
indexSum += index;
index++;
}
double movingAvr = sum / indexSum;
// Weighted average
outputValues[1][point] = movingAvr;
}
}
}
///
/// Bollinger Bands plot trading bands above and below
/// a simple moving average. The standard deviation of
/// closing prices for a period equal to the moving
/// average employed is used to determine the band width.
/// This causes the bands to tighten in quiet markets and
/// loosen in volatile markets. The bands can be used to
/// determine overbought and oversold levels, locate
/// reversal areas, project targets for market moves, and
/// determine appropriate stop levels. The bands are used
/// in conjunction with indicators such as RSI, MovingAverageConvergenceDivergence
/// histogram, CCI and Rate of Change. Divergences between
/// Bollinger bands and other indicators show potential
/// action points.
/// ---------------------------------------------------------
/// Input:
/// - 1 Y value.
/// Output:
/// - 2 Y values (Bollinger Band Hi and Low).
/// Parameters:
/// - period
/// Extra Parameters:
/// - startFromFirst
///
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values
/// Arrays of doubles: 1. row - X values, 2. row - Bollinger Band Up, 3. row - Bollinger Band Down
/// Array of strings: 1. Period
/// Array of strings: 1. Start from zero
private void BollingerBands(double [][] inputValues, out double [][] outputValues, string [] parameterList, string [] extraParameterList)
{
int length = inputValues.Length;
// Period for moving average
int period;
try
{period = int.Parse( parameterList[0], System.Globalization.CultureInfo.InvariantCulture );}
catch( Exception e )
{
if (e.Message == SR.ExceptionObjectReferenceIsNull)
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing);
else
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing + e.Message);
}
if( period <= 0 )
throw new InvalidOperationException(SR.ExceptionPeriodParameterIsNegative);
// Standard deviation
double deviation;
try
{deviation = double.Parse( parameterList[1], System.Globalization.CultureInfo.InvariantCulture );}
catch(System.Exception)
{ throw new InvalidOperationException(SR.ExceptionIndicatorsDeviationMissing); }
// Starting average from the first data point or after period.
bool startFromFirst = bool.Parse( extraParameterList[0] );
// There is no enough series
if( length != 2 )
throw new ArgumentException(SR.ExceptionPriceIndicatorsFormulaRequiresOneArray);
// Different number of x and y values
if( inputValues[0].Length != inputValues[1].Length )
throw new ArgumentException(SR.ExceptionPriceIndicatorsSameXYNumber);
// Not enough values for moving average.
if( inputValues[0].Length < period )
throw new ArgumentException(SR.ExceptionPriceIndicatorsNotEnoughPoints);
outputValues = new double [3][];
if( startFromFirst )
{
// X values
outputValues[0] = new double [inputValues[0].Length];
// Y values
outputValues[1] = new double [inputValues[1].Length];
outputValues[2] = new double [inputValues[1].Length];
// average
double [] average = new double [inputValues[1].Length];
MovingAverage( inputValues[1], out average, period, true );
for( int point = 0; point < outputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point];
// Find sum of Y values
double sum = 0;
int startSum = 0;
// Find the begining of the period
if( point - period + 1 > 0 )
{
startSum = point - period + 1;
}
for( int pointSum = startSum; pointSum <= point; pointSum++ )
{
sum += ((inputValues[1][pointSum] - average[point])*(inputValues[1][pointSum] - average[point]));
}
outputValues[1][point] = average[point] + Math.Sqrt(sum / period) * deviation;
outputValues[2][point] = average[point] - Math.Sqrt(sum / period) * deviation;
}
}
else
{
// X values
outputValues[0] = new double [inputValues[0].Length - period + 1];
// Y values
outputValues[1] = new double [inputValues[1].Length - period + 1];
outputValues[2] = new double [inputValues[1].Length - period + 1];
// average
double [] average = new double [inputValues[1].Length - period + 1];
MovingAverage( inputValues[1], out average, period, false );
for( int point = 0; point < outputValues[0].Length; point++ )
{
// Set X value
outputValues[0][point] = inputValues[0][point + period - 1];
// Find sum of Y values
double sum = 0;
for( int pointSum = point; pointSum < point + period; pointSum++ )
{
sum += ((inputValues[1][pointSum] - average[point])*(inputValues[1][pointSum] - average[point]));
}
outputValues[1][point] = average[point] + Math.Sqrt(sum / period) * deviation;
outputValues[2][point] = average[point] - Math.Sqrt(sum / period) * deviation;
}
}
}
///
/// The Typical Price indicator is simply an average of each
/// day's price. The Median Price and Weighted Close are
/// similar indicators. The Typical Price indicator provides
/// a simple, single-line plot of the day's average price.
/// Some investors use the Typical Price rather than the
/// closing price when creating moving average ----ion
/// systems.
/// ---------------------------------------------------------
/// Input:
/// - 3 Y values ( Close, High, Low ).
/// Output:
/// - 1 Y value Weighted Close Indicator.
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values (Close), 3. row - Y values (High), 4. row - Y values (Low)
/// Arrays of doubles: 1. row - X values, 2. row - Weighted Close
private void TypicalPrice(double [][] inputValues, out double [][] outputValues)
{
int length = inputValues.Length;
// There is no enough series
if( length != 4 )
throw new ArgumentException( SR.ExceptionPriceIndicatorsFormulaRequiresThreeArrays);
// Different number of x and y values
CheckNumOfValues( inputValues, 3 );
outputValues = new double [2][];
outputValues[0] = new double [inputValues[0].Length];
outputValues[1] = new double [inputValues[1].Length];
for( int index = 0; index < inputValues[1].Length; index++ )
{
// Set X values
outputValues[0][index] = inputValues[0][index];
// Set median price
outputValues[1][index] = (inputValues[1][index] + inputValues[2][index] + inputValues[3][index])/3.0;
}
}
///
/// The Median Price indicator is simply the midpoint of each
/// day's price. The Typical Price and Weighted Close are
/// similar indicators. The Median Price indicator provides
/// a simple, single-line chart of the day's "average price."
/// This average price is useful when you want a simpler
/// scaleView of prices.
/// ---------------------------------------------------------
/// Input:
/// - 2 Y values ( High, Low ).
/// Output:
/// - 1 Y value Median Price Indicator.
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values (High), 3. row - Y values (Low)
/// Arrays of doubles: 1. row - X values, 2. row - Median Price
private void MedianPrice(double [][] inputValues, out double [][] outputValues)
{
int length = inputValues.Length;
// There is no enough series
if( length != 3 )
throw new ArgumentException( SR.ExceptionPriceIndicatorsFormulaRequiresTwoArrays);
// Different number of x and y values
CheckNumOfValues( inputValues, 2 );
outputValues = new double [2][];
outputValues[0] = new double [inputValues[0].Length];
outputValues[1] = new double [inputValues[1].Length];
for( int index = 0; index < inputValues[1].Length; index++ )
{
// Set X values
outputValues[0][index] = inputValues[0][index];
// Set median price
outputValues[1][index] = (inputValues[1][index] + inputValues[2][index])/2.0;
}
}
///
/// The Weighted Close indicator is simply an average of each day's
/// price. It gets its name from the fact that extra weight is
/// given to the closing price. The Median Price and Typical Price
/// are similar indicators. When plotting and back-testing moving
/// averages, indicators, trendlines, etc, some investors like
/// the simplicity that a line chart offers. However, line
/// charts that only show the closing price can be misleading
/// since they ignore the high and low price. A Weighted Close
/// chart combines the simplicity of the line chart with the
/// scope of a bar chart, by plotting a single point for each
/// day that includes the high, low, and closing price.
/// ---------------------------------------------------------
/// Input:
/// - 3 Y values ( Close, High, Low ).
/// Output:
/// - 1 Y value Weighted Close Indicator.
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values (Close), 3. row - Y values (High), 4. row - Y values (Low)
/// Arrays of doubles: 1. row - X values, 2. row - Weighted Close
private void WeightedClose(double [][] inputValues, out double [][] outputValues)
{
int length = inputValues.Length;
// There is no enough series
if( length != 4 )
throw new ArgumentException( SR.ExceptionPriceIndicatorsFormulaRequiresThreeArrays);
// Different number of x and y values
CheckNumOfValues( inputValues, 3 );
outputValues = new double [2][];
outputValues[0] = new double [inputValues[0].Length];
outputValues[1] = new double [inputValues[1].Length];
for( int index = 0; index < inputValues[1].Length; index++ )
{
// Set X values
outputValues[0][index] = inputValues[0][index];
// Set median price
outputValues[1][index] = (inputValues[1][index] + inputValues[2][index] + inputValues[3][index] * 2)/4.0;
}
}
///
/// An envelope is comprised of two moving averages. One moving
/// average is shifted upward and the second moving average
/// is shifted downward. Envelopes define the upper and lower
/// boundaries of a security's normal trading range. A sell
/// signal is generated when the security reaches the upper
/// band whereas a buy signal is generated at the lower band.
/// The optimum percentage shift depends on the volatility of
/// the security--the more volatile, the larger the percentage.
/// The logic behind envelopes is that overzealous buyers and
/// sellers push the price to the extremes (i.e., the upper
/// and lower bands), at which point the prices often stabilize
/// by moving to more realistic levels. This is similar to the
/// interpretation of Bollinger Bands.
/// ---------------------------------------------------------
/// Input:
/// - 1 Y value.
/// Output:
/// - 2 Y values (Envelope Hi and Low).
/// Parameters:
/// - period
/// - shift in percentages
/// Extra Parameters:
/// - startFromFirst
///
///
/// Arrays of doubles: 1. row - X values, 2. row - Y values
/// Arrays of doubles: 1. row - X values, 2. row - Envelopes Up, 3. row - Envelopes Down
/// Array of strings: parameters
/// Array of strings: Extra parameters
private void Envelopes(double [][] inputValues, out double [][] outputValues, string [] parameterList, string [] extraParameterList)
{
int length = inputValues.Length;
// Period for moving average
int period;
try
{period = int.Parse( parameterList[0], System.Globalization.CultureInfo.InvariantCulture );}
catch( Exception e )
{
if (e.Message == SR.ExceptionObjectReferenceIsNull)
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing);
else
throw new InvalidOperationException(SR.ExceptionPriceIndicatorsPeriodMissing + e.Message);
}
if( period <= 0 )
throw new InvalidOperationException(SR.ExceptionPeriodParameterIsNegative);
// Shift
double shift;
try
{shift = double.Parse( parameterList[1], System.Globalization.CultureInfo.InvariantCulture );}
catch(System.Exception)
{ throw new InvalidOperationException(SR.ExceptionPriceIndicatorsShiftParameterMissing); }
// There is no enough series
if( length != 2 )
throw new ArgumentException(SR.ExceptionPriceIndicatorsFormulaRequiresOneArray);
// Different number of x and y values
if( inputValues[0].Length != inputValues[1].Length )
throw new ArgumentException(SR.ExceptionPriceIndicatorsSameXYNumber);
double [][] movingAverage;
MovingAverage( inputValues, out movingAverage, parameterList, extraParameterList );
outputValues = new double[3][];
outputValues[0] = new double[movingAverage[0].Length];
outputValues[1] = new double[movingAverage[0].Length];
outputValues[2] = new double[movingAverage[0].Length];
for( int index = 0; index < movingAverage[0].Length; index++ )
{
outputValues[0][index] = movingAverage[0][index];
outputValues[1][index] = movingAverage[1][index] + shift*movingAverage[1][index]/100.0;
outputValues[2][index] = movingAverage[1][index] - shift*movingAverage[1][index]/100.0;
}
}
///
/// Standard Deviation is a statistical measure of volatility.
/// Standard Deviation is typically used as a component of
/// other indicators, rather than as a stand-alone indicator.
/// For example, Bollinger Bands are calculated by adding
/// a security's Standard Deviation to a moving average.
/// High Standard Deviation values occur when the data item
/// being analyzed (e.g., prices or an indicator) is changing
/// dramatically. Similarly, low Standard Deviation values
/// occur when prices are stable.
///
/// Input Y values
/// Output standard deviation
/// Period
/// Start calculation from the first Y value
internal void StandardDeviation(double [] inputValues, out double [] outputValues, int period, bool startFromFirst )
{
double [] movingOut;
// Start calculation from the first Y value
if( startFromFirst )
{
outputValues = new double[inputValues.Length];
double sum;
MovingAverage( inputValues, out movingOut, period, startFromFirst );
int outIndex = 0;
for( int index = 0; index < inputValues.Length; index++ )
{
sum = 0;
int startSum = 0;
// Find the begining of the period
if( index - period + 1 > 0 )
{
startSum = index - period + 1;
}
for( int indexDev = startSum; indexDev <= index; indexDev++ )
{
sum += (inputValues[indexDev] - movingOut[outIndex])*(inputValues[indexDev] - movingOut[outIndex]);
}
outputValues[outIndex] = Math.Sqrt( sum / period );
outIndex++;
}
}
// Do not start calculation from the first Y value
else
{
outputValues = new double[inputValues.Length - period + 1];
double sum;
MovingAverage( inputValues, out movingOut, period, startFromFirst );
int outIndex = 0;
for( int index = period - 1; index < inputValues.Length; index++ )
{
sum = 0;
for( int indexDev = index - period + 1; indexDev <= index; indexDev++ )
{
sum += (inputValues[indexDev] - movingOut[outIndex])*(inputValues[indexDev] - movingOut[outIndex]);
}
outputValues[outIndex] = Math.Sqrt( sum / period );
outIndex++;
}
}
}
#endregion
#region Methods
///
/// Default constructor
///
public PriceIndicators()
{
}
///
/// This methods checks the number of X and Y values and
/// fire exception if the numbers are different.
///
/// Input X and Y values
/// The number of Y values
public void CheckNumOfValues( double [][] inputValues, int numOfYValues )
{
// Different number of x and y values
if( inputValues[0].Length != inputValues[1].Length )
{
throw new ArgumentException(SR.ExceptionPriceIndicatorsSameXYNumber);
}
// Different number of y values
for( int index = 1; index < numOfYValues; index++ )
{
if( inputValues[index].Length != inputValues[index+1].Length )
{
throw new ArgumentException( SR.ExceptionPriceIndicatorsSameYNumber );
}
}
}
///
/// The first method in the module, which converts a formula
/// name to the corresponding private method.
///
/// String which represent a formula name
/// Arrays of doubles - Input values
/// Arrays of doubles - Output values
/// Array of strings - Formula parameters
/// Array of strings - Extra Formula parameters from DataManipulator object
/// Array of strings - Used for Labels. Description for output results.
virtual public void Formula( string formulaName, double [][] inputValues, out double [][] outputValues, string [] parameterList, string [] extraParameterList, out string [][] outLabels )
{
string name;
name = formulaName.ToUpper(System.Globalization.CultureInfo.InvariantCulture);
// Not used for these formulas.
outLabels = null;
try
{
switch( name )
{
case "MOVINGAVERAGE":
MovingAverage( inputValues, out outputValues, parameterList, extraParameterList );
break;
case "EXPONENTIALMOVINGAVERAGE":
ExponentialMovingAverage( inputValues, out outputValues, parameterList, extraParameterList );
break;
case "TRIANGULARMOVINGAVERAGE":
TriangularMovingAverage( inputValues, out outputValues, parameterList, extraParameterList );
break;
case "WEIGHTEDMOVINGAVERAGE":
WeightedMovingAverage( inputValues, out outputValues, parameterList, extraParameterList );
break;
case "BOLLINGERBANDS":
BollingerBands( inputValues, out outputValues, parameterList, extraParameterList );
break;
case "MEDIANPRICE":
MedianPrice( inputValues, out outputValues );
break;
case "TYPICALPRICE":
TypicalPrice( inputValues, out outputValues );
break;
case "WEIGHTEDCLOSE":
WeightedClose( inputValues, out outputValues );
break;
case "ENVELOPES":
Envelopes( inputValues, out outputValues, parameterList, extraParameterList );
break;
default:
outputValues = null;
break;
}
}
catch( IndexOutOfRangeException )
{
throw new InvalidOperationException(SR.ExceptionFormulaInvalidPeriod( name ) );
}
catch( OverflowException )
{
throw new InvalidOperationException( SR.ExceptionFormulaNotEnoughDataPoints( name ) );
}
}
#endregion
}
}