; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=sse -enable-unsafe-fp-math < %s | FileCheck %s --check-prefix=SSE ; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=avx -enable-unsafe-fp-math < %s | FileCheck %s --check-prefix=AVX ; Incremental updates of the instruction depths should be enough for this test ; case. ; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=sse -enable-unsafe-fp-math -machine-combiner-inc-threshold=0 < %s | FileCheck %s --check-prefix=SSE ; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=avx -enable-unsafe-fp-math -machine-combiner-inc-threshold=0 < %s | FileCheck %s --check-prefix=AVX ; Verify that the first two adds are independent regardless of how the inputs are ; commuted. The destination registers are used as source registers for the third add. define float @reassociate_adds1(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_adds1: ; SSE: # %bb.0: ; SSE-NEXT: addss %xmm1, %xmm0 ; SSE-NEXT: addss %xmm3, %xmm2 ; SSE-NEXT: addss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds1: ; AVX: # %bb.0: ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd float %x0, %x1 %t1 = fadd float %t0, %x2 %t2 = fadd float %t1, %x3 ret float %t2 } define float @reassociate_adds2(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_adds2: ; SSE: # %bb.0: ; SSE-NEXT: addss %xmm1, %xmm0 ; SSE-NEXT: addss %xmm3, %xmm2 ; SSE-NEXT: addss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds2: ; AVX: # %bb.0: ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd float %x0, %x1 %t1 = fadd float %x2, %t0 %t2 = fadd float %t1, %x3 ret float %t2 } define float @reassociate_adds3(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_adds3: ; SSE: # %bb.0: ; SSE-NEXT: addss %xmm1, %xmm0 ; SSE-NEXT: addss %xmm3, %xmm2 ; SSE-NEXT: addss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds3: ; AVX: # %bb.0: ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd float %x0, %x1 %t1 = fadd float %t0, %x2 %t2 = fadd float %x3, %t1 ret float %t2 } define float @reassociate_adds4(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_adds4: ; SSE: # %bb.0: ; SSE-NEXT: addss %xmm1, %xmm0 ; SSE-NEXT: addss %xmm3, %xmm2 ; SSE-NEXT: addss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds4: ; AVX: # %bb.0: ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd float %x0, %x1 %t1 = fadd float %x2, %t0 %t2 = fadd float %x3, %t1 ret float %t2 } ; Verify that we reassociate some of these ops. The optimal balanced tree of adds is not ; produced because that would cost more compile time. define float @reassociate_adds5(float %x0, float %x1, float %x2, float %x3, float %x4, float %x5, float %x6, float %x7) { ; SSE-LABEL: reassociate_adds5: ; SSE: # %bb.0: ; SSE-NEXT: addss %xmm1, %xmm0 ; SSE-NEXT: addss %xmm3, %xmm2 ; SSE-NEXT: addss %xmm2, %xmm0 ; SSE-NEXT: addss %xmm5, %xmm4 ; SSE-NEXT: addss %xmm6, %xmm4 ; SSE-NEXT: addss %xmm4, %xmm0 ; SSE-NEXT: addss %xmm7, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds5: ; AVX: # %bb.0: ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm5, %xmm4, %xmm1 ; AVX-NEXT: vaddss %xmm6, %xmm1, %xmm1 ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm7, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd float %x0, %x1 %t1 = fadd float %t0, %x2 %t2 = fadd float %t1, %x3 %t3 = fadd float %t2, %x4 %t4 = fadd float %t3, %x5 %t5 = fadd float %t4, %x6 %t6 = fadd float %t5, %x7 ret float %t6 } ; Verify that we only need two associative operations to reassociate the operands. ; Also, we should reassociate such that the result of the high latency division ; is used by the final 'add' rather than reassociating the %x3 operand with the ; division. The latter reassociation would not improve anything. define float @reassociate_adds6(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_adds6: ; SSE: # %bb.0: ; SSE-NEXT: divss %xmm1, %xmm0 ; SSE-NEXT: addss %xmm3, %xmm2 ; SSE-NEXT: addss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds6: ; AVX: # %bb.0: ; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv float %x0, %x1 %t1 = fadd float %x2, %t0 %t2 = fadd float %x3, %t1 ret float %t2 } ; Verify that SSE and AVX scalar single-precision multiplies are reassociated. define float @reassociate_muls1(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_muls1: ; SSE: # %bb.0: ; SSE-NEXT: divss %xmm1, %xmm0 ; SSE-NEXT: mulss %xmm3, %xmm2 ; SSE-NEXT: mulss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_muls1: ; AVX: # %bb.0: ; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmulss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmulss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv float %x0, %x1 %t1 = fmul float %x2, %t0 %t2 = fmul float %x3, %t1 ret float %t2 } ; Verify that SSE and AVX scalar double-precision adds are reassociated. define double @reassociate_adds_double(double %x0, double %x1, double %x2, double %x3) { ; SSE-LABEL: reassociate_adds_double: ; SSE: # %bb.0: ; SSE-NEXT: divsd %xmm1, %xmm0 ; SSE-NEXT: addsd %xmm3, %xmm2 ; SSE-NEXT: addsd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds_double: ; AVX: # %bb.0: ; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddsd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv double %x0, %x1 %t1 = fadd double %x2, %t0 %t2 = fadd double %x3, %t1 ret double %t2 } ; Verify that SSE and AVX scalar double-precision multiplies are reassociated. define double @reassociate_muls_double(double %x0, double %x1, double %x2, double %x3) { ; SSE-LABEL: reassociate_muls_double: ; SSE: # %bb.0: ; SSE-NEXT: divsd %xmm1, %xmm0 ; SSE-NEXT: mulsd %xmm3, %xmm2 ; SSE-NEXT: mulsd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_muls_double: ; AVX: # %bb.0: ; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmulsd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmulsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv double %x0, %x1 %t1 = fmul double %x2, %t0 %t2 = fmul double %x3, %t1 ret double %t2 } ; Verify that SSE and AVX 128-bit vector single-precision adds are reassociated. define <4 x float> @reassociate_adds_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) { ; SSE-LABEL: reassociate_adds_v4f32: ; SSE: # %bb.0: ; SSE-NEXT: mulps %xmm1, %xmm0 ; SSE-NEXT: addps %xmm3, %xmm2 ; SSE-NEXT: addps %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds_v4f32: ; AVX: # %bb.0: ; AVX-NEXT: vmulps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddps %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fmul <4 x float> %x0, %x1 %t1 = fadd <4 x float> %x2, %t0 %t2 = fadd <4 x float> %x3, %t1 ret <4 x float> %t2 } ; Verify that SSE and AVX 128-bit vector double-precision adds are reassociated. define <2 x double> @reassociate_adds_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) { ; SSE-LABEL: reassociate_adds_v2f64: ; SSE: # %bb.0: ; SSE-NEXT: mulpd %xmm1, %xmm0 ; SSE-NEXT: addpd %xmm3, %xmm2 ; SSE-NEXT: addpd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_adds_v2f64: ; AVX: # %bb.0: ; AVX-NEXT: vmulpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vaddpd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fmul <2 x double> %x0, %x1 %t1 = fadd <2 x double> %x2, %t0 %t2 = fadd <2 x double> %x3, %t1 ret <2 x double> %t2 } ; Verify that SSE and AVX 128-bit vector single-precision multiplies are reassociated. define <4 x float> @reassociate_muls_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) { ; SSE-LABEL: reassociate_muls_v4f32: ; SSE: # %bb.0: ; SSE-NEXT: addps %xmm1, %xmm0 ; SSE-NEXT: mulps %xmm3, %xmm2 ; SSE-NEXT: mulps %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_muls_v4f32: ; AVX: # %bb.0: ; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmulps %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmulps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd <4 x float> %x0, %x1 %t1 = fmul <4 x float> %x2, %t0 %t2 = fmul <4 x float> %x3, %t1 ret <4 x float> %t2 } ; Verify that SSE and AVX 128-bit vector double-precision multiplies are reassociated. define <2 x double> @reassociate_muls_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) { ; SSE-LABEL: reassociate_muls_v2f64: ; SSE: # %bb.0: ; SSE-NEXT: addpd %xmm1, %xmm0 ; SSE-NEXT: mulpd %xmm3, %xmm2 ; SSE-NEXT: mulpd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_muls_v2f64: ; AVX: # %bb.0: ; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmulpd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmulpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd <2 x double> %x0, %x1 %t1 = fmul <2 x double> %x2, %t0 %t2 = fmul <2 x double> %x3, %t1 ret <2 x double> %t2 } ; Verify that AVX 256-bit vector single-precision adds are reassociated. define <8 x float> @reassociate_adds_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) { ; AVX-LABEL: reassociate_adds_v8f32: ; AVX: # %bb.0: ; AVX-NEXT: vmulps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vaddps %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fmul <8 x float> %x0, %x1 %t1 = fadd <8 x float> %x2, %t0 %t2 = fadd <8 x float> %x3, %t1 ret <8 x float> %t2 } ; Verify that AVX 256-bit vector double-precision adds are reassociated. define <4 x double> @reassociate_adds_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) { ; AVX-LABEL: reassociate_adds_v4f64: ; AVX: # %bb.0: ; AVX-NEXT: vmulpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vaddpd %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fmul <4 x double> %x0, %x1 %t1 = fadd <4 x double> %x2, %t0 %t2 = fadd <4 x double> %x3, %t1 ret <4 x double> %t2 } ; Verify that AVX 256-bit vector single-precision multiplies are reassociated. define <8 x float> @reassociate_muls_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) { ; AVX-LABEL: reassociate_muls_v8f32: ; AVX: # %bb.0: ; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vmulps %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vmulps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fadd <8 x float> %x0, %x1 %t1 = fmul <8 x float> %x2, %t0 %t2 = fmul <8 x float> %x3, %t1 ret <8 x float> %t2 } ; Verify that AVX 256-bit vector double-precision multiplies are reassociated. define <4 x double> @reassociate_muls_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) { ; AVX-LABEL: reassociate_muls_v4f64: ; AVX: # %bb.0: ; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vmulpd %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vmulpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fadd <4 x double> %x0, %x1 %t1 = fmul <4 x double> %x2, %t0 %t2 = fmul <4 x double> %x3, %t1 ret <4 x double> %t2 } ; Verify that SSE and AVX scalar single-precision minimum ops are reassociated. define float @reassociate_mins_single(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_mins_single: ; SSE: # %bb.0: ; SSE-NEXT: divss %xmm1, %xmm0 ; SSE-NEXT: minss %xmm3, %xmm2 ; SSE-NEXT: minss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_mins_single: ; AVX: # %bb.0: ; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vminss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vminss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv float %x0, %x1 %cmp1 = fcmp olt float %x2, %t0 %sel1 = select i1 %cmp1, float %x2, float %t0 %cmp2 = fcmp olt float %x3, %sel1 %sel2 = select i1 %cmp2, float %x3, float %sel1 ret float %sel2 } ; Verify that SSE and AVX scalar single-precision maximum ops are reassociated. define float @reassociate_maxs_single(float %x0, float %x1, float %x2, float %x3) { ; SSE-LABEL: reassociate_maxs_single: ; SSE: # %bb.0: ; SSE-NEXT: divss %xmm1, %xmm0 ; SSE-NEXT: maxss %xmm3, %xmm2 ; SSE-NEXT: maxss %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_maxs_single: ; AVX: # %bb.0: ; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmaxss %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmaxss %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv float %x0, %x1 %cmp1 = fcmp ogt float %x2, %t0 %sel1 = select i1 %cmp1, float %x2, float %t0 %cmp2 = fcmp ogt float %x3, %sel1 %sel2 = select i1 %cmp2, float %x3, float %sel1 ret float %sel2 } ; Verify that SSE and AVX scalar double-precision minimum ops are reassociated. define double @reassociate_mins_double(double %x0, double %x1, double %x2, double %x3) { ; SSE-LABEL: reassociate_mins_double: ; SSE: # %bb.0: ; SSE-NEXT: divsd %xmm1, %xmm0 ; SSE-NEXT: minsd %xmm3, %xmm2 ; SSE-NEXT: minsd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_mins_double: ; AVX: # %bb.0: ; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vminsd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vminsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv double %x0, %x1 %cmp1 = fcmp olt double %x2, %t0 %sel1 = select i1 %cmp1, double %x2, double %t0 %cmp2 = fcmp olt double %x3, %sel1 %sel2 = select i1 %cmp2, double %x3, double %sel1 ret double %sel2 } ; Verify that SSE and AVX scalar double-precision maximum ops are reassociated. define double @reassociate_maxs_double(double %x0, double %x1, double %x2, double %x3) { ; SSE-LABEL: reassociate_maxs_double: ; SSE: # %bb.0: ; SSE-NEXT: divsd %xmm1, %xmm0 ; SSE-NEXT: maxsd %xmm3, %xmm2 ; SSE-NEXT: maxsd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_maxs_double: ; AVX: # %bb.0: ; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmaxsd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmaxsd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fdiv double %x0, %x1 %cmp1 = fcmp ogt double %x2, %t0 %sel1 = select i1 %cmp1, double %x2, double %t0 %cmp2 = fcmp ogt double %x3, %sel1 %sel2 = select i1 %cmp2, double %x3, double %sel1 ret double %sel2 } ; Verify that SSE and AVX 128-bit vector single-precision minimum ops are reassociated. define <4 x float> @reassociate_mins_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) { ; SSE-LABEL: reassociate_mins_v4f32: ; SSE: # %bb.0: ; SSE-NEXT: addps %xmm1, %xmm0 ; SSE-NEXT: minps %xmm3, %xmm2 ; SSE-NEXT: minps %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_mins_v4f32: ; AVX: # %bb.0: ; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vminps %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vminps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd <4 x float> %x0, %x1 %cmp1 = fcmp olt <4 x float> %x2, %t0 %sel1 = select <4 x i1> %cmp1, <4 x float> %x2, <4 x float> %t0 %cmp2 = fcmp olt <4 x float> %x3, %sel1 %sel2 = select <4 x i1> %cmp2, <4 x float> %x3, <4 x float> %sel1 ret <4 x float> %sel2 } ; Verify that SSE and AVX 128-bit vector single-precision maximum ops are reassociated. define <4 x float> @reassociate_maxs_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) { ; SSE-LABEL: reassociate_maxs_v4f32: ; SSE: # %bb.0: ; SSE-NEXT: addps %xmm1, %xmm0 ; SSE-NEXT: maxps %xmm3, %xmm2 ; SSE-NEXT: maxps %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_maxs_v4f32: ; AVX: # %bb.0: ; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmaxps %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmaxps %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd <4 x float> %x0, %x1 %cmp1 = fcmp ogt <4 x float> %x2, %t0 %sel1 = select <4 x i1> %cmp1, <4 x float> %x2, <4 x float> %t0 %cmp2 = fcmp ogt <4 x float> %x3, %sel1 %sel2 = select <4 x i1> %cmp2, <4 x float> %x3, <4 x float> %sel1 ret <4 x float> %sel2 } ; Verify that SSE and AVX 128-bit vector double-precision minimum ops are reassociated. define <2 x double> @reassociate_mins_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) { ; SSE-LABEL: reassociate_mins_v2f64: ; SSE: # %bb.0: ; SSE-NEXT: addpd %xmm1, %xmm0 ; SSE-NEXT: minpd %xmm3, %xmm2 ; SSE-NEXT: minpd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_mins_v2f64: ; AVX: # %bb.0: ; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vminpd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vminpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd <2 x double> %x0, %x1 %cmp1 = fcmp olt <2 x double> %x2, %t0 %sel1 = select <2 x i1> %cmp1, <2 x double> %x2, <2 x double> %t0 %cmp2 = fcmp olt <2 x double> %x3, %sel1 %sel2 = select <2 x i1> %cmp2, <2 x double> %x3, <2 x double> %sel1 ret <2 x double> %sel2 } ; Verify that SSE and AVX 128-bit vector double-precision maximum ops are reassociated. define <2 x double> @reassociate_maxs_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) { ; SSE-LABEL: reassociate_maxs_v2f64: ; SSE: # %bb.0: ; SSE-NEXT: addpd %xmm1, %xmm0 ; SSE-NEXT: maxpd %xmm3, %xmm2 ; SSE-NEXT: maxpd %xmm2, %xmm0 ; SSE-NEXT: retq ; ; AVX-LABEL: reassociate_maxs_v2f64: ; AVX: # %bb.0: ; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: vmaxpd %xmm3, %xmm2, %xmm1 ; AVX-NEXT: vmaxpd %xmm1, %xmm0, %xmm0 ; AVX-NEXT: retq %t0 = fadd <2 x double> %x0, %x1 %cmp1 = fcmp ogt <2 x double> %x2, %t0 %sel1 = select <2 x i1> %cmp1, <2 x double> %x2, <2 x double> %t0 %cmp2 = fcmp ogt <2 x double> %x3, %sel1 %sel2 = select <2 x i1> %cmp2, <2 x double> %x3, <2 x double> %sel1 ret <2 x double> %sel2 } ; Verify that AVX 256-bit vector single-precision minimum ops are reassociated. define <8 x float> @reassociate_mins_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) { ; AVX-LABEL: reassociate_mins_v8f32: ; AVX: # %bb.0: ; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vminps %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vminps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fadd <8 x float> %x0, %x1 %cmp1 = fcmp olt <8 x float> %x2, %t0 %sel1 = select <8 x i1> %cmp1, <8 x float> %x2, <8 x float> %t0 %cmp2 = fcmp olt <8 x float> %x3, %sel1 %sel2 = select <8 x i1> %cmp2, <8 x float> %x3, <8 x float> %sel1 ret <8 x float> %sel2 } ; Verify that AVX 256-bit vector single-precision maximum ops are reassociated. define <8 x float> @reassociate_maxs_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) { ; AVX-LABEL: reassociate_maxs_v8f32: ; AVX: # %bb.0: ; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vmaxps %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vmaxps %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fadd <8 x float> %x0, %x1 %cmp1 = fcmp ogt <8 x float> %x2, %t0 %sel1 = select <8 x i1> %cmp1, <8 x float> %x2, <8 x float> %t0 %cmp2 = fcmp ogt <8 x float> %x3, %sel1 %sel2 = select <8 x i1> %cmp2, <8 x float> %x3, <8 x float> %sel1 ret <8 x float> %sel2 } ; Verify that AVX 256-bit vector double-precision minimum ops are reassociated. define <4 x double> @reassociate_mins_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) { ; AVX-LABEL: reassociate_mins_v4f64: ; AVX: # %bb.0: ; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vminpd %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vminpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fadd <4 x double> %x0, %x1 %cmp1 = fcmp olt <4 x double> %x2, %t0 %sel1 = select <4 x i1> %cmp1, <4 x double> %x2, <4 x double> %t0 %cmp2 = fcmp olt <4 x double> %x3, %sel1 %sel2 = select <4 x i1> %cmp2, <4 x double> %x3, <4 x double> %sel1 ret <4 x double> %sel2 } ; Verify that AVX 256-bit vector double-precision maximum ops are reassociated. define <4 x double> @reassociate_maxs_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) { ; AVX-LABEL: reassociate_maxs_v4f64: ; AVX: # %bb.0: ; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: vmaxpd %ymm3, %ymm2, %ymm1 ; AVX-NEXT: vmaxpd %ymm1, %ymm0, %ymm0 ; AVX-NEXT: retq %t0 = fadd <4 x double> %x0, %x1 %cmp1 = fcmp ogt <4 x double> %x2, %t0 %sel1 = select <4 x i1> %cmp1, <4 x double> %x2, <4 x double> %t0 %cmp2 = fcmp ogt <4 x double> %x3, %sel1 %sel2 = select <4 x i1> %cmp2, <4 x double> %x3, <4 x double> %sel1 ret <4 x double> %sel2 } ; PR25016: https://llvm.org/bugs/show_bug.cgi?id=25016 ; Verify that reassociation is not happening needlessly or wrongly. declare double @bar() define double @reassociate_adds_from_calls() { ; AVX-LABEL: reassociate_adds_from_calls: ; AVX: callq bar ; AVX-NEXT: vmovsd %xmm0, 16(%rsp) ; AVX-NEXT: callq bar ; AVX-NEXT: vmovsd %xmm0, 8(%rsp) ; AVX-NEXT: callq bar ; AVX-NEXT: vmovsd %xmm0, (%rsp) ; AVX-NEXT: callq bar ; AVX-NEXT: vmovsd 8(%rsp), %xmm1 ; AVX: vaddsd 16(%rsp), %xmm1, %xmm1 ; AVX-NEXT: vaddsd (%rsp), %xmm0, %xmm0 ; AVX-NEXT: vaddsd %xmm0, %xmm1, %xmm0 %x0 = call double @bar() %x1 = call double @bar() %x2 = call double @bar() %x3 = call double @bar() %t0 = fadd double %x0, %x1 %t1 = fadd double %t0, %x2 %t2 = fadd double %t1, %x3 ret double %t2 } define double @already_reassociated() { ; AVX-LABEL: already_reassociated: ; AVX: callq bar ; AVX-NEXT: vmovsd %xmm0, 16(%rsp) ; AVX-NEXT: callq bar ; AVX-NEXT: vmovsd %xmm0, 8(%rsp) ; AVX-NEXT: callq bar ; AVX-NEXT: vmovsd %xmm0, (%rsp) ; AVX-NEXT: callq bar ; AVX-NEXT: vmovsd 8(%rsp), %xmm1 ; AVX: vaddsd 16(%rsp), %xmm1, %xmm1 ; AVX-NEXT: vaddsd (%rsp), %xmm0, %xmm0 ; AVX-NEXT: vaddsd %xmm0, %xmm1, %xmm0 %x0 = call double @bar() %x1 = call double @bar() %x2 = call double @bar() %x3 = call double @bar() %t0 = fadd double %x0, %x1 %t1 = fadd double %x2, %x3 %t2 = fadd double %t0, %t1 ret double %t2 }