//=- AArch64ConditionOptimizer.cpp - Remove useless comparisons for AArch64 -=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass tries to make consecutive compares of values use same operands to // allow CSE pass to remove duplicated instructions. For this it analyzes // branches and adjusts comparisons with immediate values by converting: // * GE -> GT // * GT -> GE // * LT -> LE // * LE -> LT // and adjusting immediate values appropriately. It basically corrects two // immediate values towards each other to make them equal. // // Consider the following example in C: // // if ((a < 5 && ...) || (a > 5 && ...)) { // ~~~~~ ~~~~~ // ^ ^ // x y // // Here both "x" and "y" expressions compare "a" with "5". When "x" evaluates // to "false", "y" can just check flags set by the first comparison. As a // result of the canonicalization employed by // SelectionDAGBuilder::visitSwitchCase, DAGCombine, and other target-specific // code, assembly ends up in the form that is not CSE friendly: // // ... // cmp w8, #4 // b.gt .LBB0_3 // ... // .LBB0_3: // cmp w8, #6 // b.lt .LBB0_6 // ... // // Same assembly after the pass: // // ... // cmp w8, #5 // b.ge .LBB0_3 // ... // .LBB0_3: // cmp w8, #5 // <-- CSE pass removes this instruction // b.le .LBB0_6 // ... // // Currently only SUBS and ADDS followed by b.?? are supported. // // TODO: maybe handle TBNZ/TBZ the same way as CMP when used instead for "a < 0" // TODO: handle other conditional instructions (e.g. CSET) // TODO: allow second branching to be anything if it doesn't require adjusting // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "aarch64-condopt" STATISTIC(NumConditionsAdjusted, "Number of conditions adjusted"); namespace { class AArch64ConditionOptimizer : public MachineFunctionPass { const TargetInstrInfo *TII; MachineDominatorTree *DomTree; const MachineRegisterInfo *MRI; public: // Stores immediate, compare instruction opcode and branch condition (in this // order) of adjusted comparison. using CmpInfo = std::tuple; static char ID; AArch64ConditionOptimizer() : MachineFunctionPass(ID) { initializeAArch64ConditionOptimizerPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override; MachineInstr *findSuitableCompare(MachineBasicBlock *MBB); CmpInfo adjustCmp(MachineInstr *CmpMI, AArch64CC::CondCode Cmp); void modifyCmp(MachineInstr *CmpMI, const CmpInfo &Info); bool adjustTo(MachineInstr *CmpMI, AArch64CC::CondCode Cmp, MachineInstr *To, int ToImm); bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "AArch64 Condition Optimizer"; } }; } // end anonymous namespace char AArch64ConditionOptimizer::ID = 0; INITIALIZE_PASS_BEGIN(AArch64ConditionOptimizer, "aarch64-condopt", "AArch64 CondOpt Pass", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_END(AArch64ConditionOptimizer, "aarch64-condopt", "AArch64 CondOpt Pass", false, false) FunctionPass *llvm::createAArch64ConditionOptimizerPass() { return new AArch64ConditionOptimizer(); } void AArch64ConditionOptimizer::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } // Finds compare instruction that corresponds to supported types of branching. // Returns the instruction or nullptr on failures or detecting unsupported // instructions. MachineInstr *AArch64ConditionOptimizer::findSuitableCompare( MachineBasicBlock *MBB) { MachineBasicBlock::iterator I = MBB->getFirstTerminator(); if (I == MBB->end()) return nullptr; if (I->getOpcode() != AArch64::Bcc) return nullptr; // Since we may modify cmp of this MBB, make sure NZCV does not live out. for (auto SuccBB : MBB->successors()) if (SuccBB->isLiveIn(AArch64::NZCV)) return nullptr; // Now find the instruction controlling the terminator. for (MachineBasicBlock::iterator B = MBB->begin(); I != B;) { --I; assert(!I->isTerminator() && "Spurious terminator"); // Check if there is any use of NZCV between CMP and Bcc. if (I->readsRegister(AArch64::NZCV)) return nullptr; switch (I->getOpcode()) { // cmp is an alias for subs with a dead destination register. case AArch64::SUBSWri: case AArch64::SUBSXri: // cmn is an alias for adds with a dead destination register. case AArch64::ADDSWri: case AArch64::ADDSXri: { unsigned ShiftAmt = AArch64_AM::getShiftValue(I->getOperand(3).getImm()); if (!I->getOperand(2).isImm()) { DEBUG(dbgs() << "Immediate of cmp is symbolic, " << *I << '\n'); return nullptr; } else if (I->getOperand(2).getImm() << ShiftAmt >= 0xfff) { DEBUG(dbgs() << "Immediate of cmp may be out of range, " << *I << '\n'); return nullptr; } else if (!MRI->use_empty(I->getOperand(0).getReg())) { DEBUG(dbgs() << "Destination of cmp is not dead, " << *I << '\n'); return nullptr; } return &*I; } // Prevent false positive case like: // cmp w19, #0 // cinc w0, w19, gt // ... // fcmp d8, #0.0 // b.gt .LBB0_5 case AArch64::FCMPDri: case AArch64::FCMPSri: case AArch64::FCMPESri: case AArch64::FCMPEDri: case AArch64::SUBSWrr: case AArch64::SUBSXrr: case AArch64::ADDSWrr: case AArch64::ADDSXrr: case AArch64::FCMPSrr: case AArch64::FCMPDrr: case AArch64::FCMPESrr: case AArch64::FCMPEDrr: // Skip comparison instructions without immediate operands. return nullptr; } } DEBUG(dbgs() << "Flags not defined in " << printMBBReference(*MBB) << '\n'); return nullptr; } // Changes opcode adds <-> subs considering register operand width. static int getComplementOpc(int Opc) { switch (Opc) { case AArch64::ADDSWri: return AArch64::SUBSWri; case AArch64::ADDSXri: return AArch64::SUBSXri; case AArch64::SUBSWri: return AArch64::ADDSWri; case AArch64::SUBSXri: return AArch64::ADDSXri; default: llvm_unreachable("Unexpected opcode"); } } // Changes form of comparison inclusive <-> exclusive. static AArch64CC::CondCode getAdjustedCmp(AArch64CC::CondCode Cmp) { switch (Cmp) { case AArch64CC::GT: return AArch64CC::GE; case AArch64CC::GE: return AArch64CC::GT; case AArch64CC::LT: return AArch64CC::LE; case AArch64CC::LE: return AArch64CC::LT; default: llvm_unreachable("Unexpected condition code"); } } // Transforms GT -> GE, GE -> GT, LT -> LE, LE -> LT by updating comparison // operator and condition code. AArch64ConditionOptimizer::CmpInfo AArch64ConditionOptimizer::adjustCmp( MachineInstr *CmpMI, AArch64CC::CondCode Cmp) { unsigned Opc = CmpMI->getOpcode(); // CMN (compare with negative immediate) is an alias to ADDS (as // "operand - negative" == "operand + positive") bool Negative = (Opc == AArch64::ADDSWri || Opc == AArch64::ADDSXri); int Correction = (Cmp == AArch64CC::GT) ? 1 : -1; // Negate Correction value for comparison with negative immediate (CMN). if (Negative) { Correction = -Correction; } const int OldImm = (int)CmpMI->getOperand(2).getImm(); const int NewImm = std::abs(OldImm + Correction); // Handle +0 -> -1 and -0 -> +1 (CMN with 0 immediate) transitions by // adjusting compare instruction opcode. if (OldImm == 0 && ((Negative && Correction == 1) || (!Negative && Correction == -1))) { Opc = getComplementOpc(Opc); } return CmpInfo(NewImm, Opc, getAdjustedCmp(Cmp)); } // Applies changes to comparison instruction suggested by adjustCmp(). void AArch64ConditionOptimizer::modifyCmp(MachineInstr *CmpMI, const CmpInfo &Info) { int Imm; unsigned Opc; AArch64CC::CondCode Cmp; std::tie(Imm, Opc, Cmp) = Info; MachineBasicBlock *const MBB = CmpMI->getParent(); // Change immediate in comparison instruction (ADDS or SUBS). BuildMI(*MBB, CmpMI, CmpMI->getDebugLoc(), TII->get(Opc)) .add(CmpMI->getOperand(0)) .add(CmpMI->getOperand(1)) .addImm(Imm) .add(CmpMI->getOperand(3)); CmpMI->eraseFromParent(); // The fact that this comparison was picked ensures that it's related to the // first terminator instruction. MachineInstr &BrMI = *MBB->getFirstTerminator(); // Change condition in branch instruction. BuildMI(*MBB, BrMI, BrMI.getDebugLoc(), TII->get(AArch64::Bcc)) .addImm(Cmp) .add(BrMI.getOperand(1)); BrMI.eraseFromParent(); MBB->updateTerminator(); ++NumConditionsAdjusted; } // Parse a condition code returned by AnalyzeBranch, and compute the CondCode // corresponding to TBB. // Returns true if parsing was successful, otherwise false is returned. static bool parseCond(ArrayRef Cond, AArch64CC::CondCode &CC) { // A normal br.cond simply has the condition code. if (Cond[0].getImm() != -1) { assert(Cond.size() == 1 && "Unknown Cond array format"); CC = (AArch64CC::CondCode)(int)Cond[0].getImm(); return true; } return false; } // Adjusts one cmp instruction to another one if result of adjustment will allow // CSE. Returns true if compare instruction was changed, otherwise false is // returned. bool AArch64ConditionOptimizer::adjustTo(MachineInstr *CmpMI, AArch64CC::CondCode Cmp, MachineInstr *To, int ToImm) { CmpInfo Info = adjustCmp(CmpMI, Cmp); if (std::get<0>(Info) == ToImm && std::get<1>(Info) == To->getOpcode()) { modifyCmp(CmpMI, Info); return true; } return false; } bool AArch64ConditionOptimizer::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "********** AArch64 Conditional Compares **********\n" << "********** Function: " << MF.getName() << '\n'); if (skipFunction(MF.getFunction())) return false; TII = MF.getSubtarget().getInstrInfo(); DomTree = &getAnalysis(); MRI = &MF.getRegInfo(); bool Changed = false; // Visit blocks in dominator tree pre-order. The pre-order enables multiple // cmp-conversions from the same head block. // Note that updateDomTree() modifies the children of the DomTree node // currently being visited. The df_iterator supports that; it doesn't look at // child_begin() / child_end() until after a node has been visited. for (MachineDomTreeNode *I : depth_first(DomTree)) { MachineBasicBlock *HBB = I->getBlock(); SmallVector HeadCond; MachineBasicBlock *TBB = nullptr, *FBB = nullptr; if (TII->analyzeBranch(*HBB, TBB, FBB, HeadCond)) { continue; } // Equivalence check is to skip loops. if (!TBB || TBB == HBB) { continue; } SmallVector TrueCond; MachineBasicBlock *TBB_TBB = nullptr, *TBB_FBB = nullptr; if (TII->analyzeBranch(*TBB, TBB_TBB, TBB_FBB, TrueCond)) { continue; } MachineInstr *HeadCmpMI = findSuitableCompare(HBB); if (!HeadCmpMI) { continue; } MachineInstr *TrueCmpMI = findSuitableCompare(TBB); if (!TrueCmpMI) { continue; } AArch64CC::CondCode HeadCmp; if (HeadCond.empty() || !parseCond(HeadCond, HeadCmp)) { continue; } AArch64CC::CondCode TrueCmp; if (TrueCond.empty() || !parseCond(TrueCond, TrueCmp)) { continue; } const int HeadImm = (int)HeadCmpMI->getOperand(2).getImm(); const int TrueImm = (int)TrueCmpMI->getOperand(2).getImm(); DEBUG(dbgs() << "Head branch:\n"); DEBUG(dbgs() << "\tcondition: " << AArch64CC::getCondCodeName(HeadCmp) << '\n'); DEBUG(dbgs() << "\timmediate: " << HeadImm << '\n'); DEBUG(dbgs() << "True branch:\n"); DEBUG(dbgs() << "\tcondition: " << AArch64CC::getCondCodeName(TrueCmp) << '\n'); DEBUG(dbgs() << "\timmediate: " << TrueImm << '\n'); if (((HeadCmp == AArch64CC::GT && TrueCmp == AArch64CC::LT) || (HeadCmp == AArch64CC::LT && TrueCmp == AArch64CC::GT)) && std::abs(TrueImm - HeadImm) == 2) { // This branch transforms machine instructions that correspond to // // 1) (a > {TrueImm} && ...) || (a < {HeadImm} && ...) // 2) (a < {TrueImm} && ...) || (a > {HeadImm} && ...) // // into // // 1) (a >= {NewImm} && ...) || (a <= {NewImm} && ...) // 2) (a <= {NewImm} && ...) || (a >= {NewImm} && ...) CmpInfo HeadCmpInfo = adjustCmp(HeadCmpMI, HeadCmp); CmpInfo TrueCmpInfo = adjustCmp(TrueCmpMI, TrueCmp); if (std::get<0>(HeadCmpInfo) == std::get<0>(TrueCmpInfo) && std::get<1>(HeadCmpInfo) == std::get<1>(TrueCmpInfo)) { modifyCmp(HeadCmpMI, HeadCmpInfo); modifyCmp(TrueCmpMI, TrueCmpInfo); Changed = true; } } else if (((HeadCmp == AArch64CC::GT && TrueCmp == AArch64CC::GT) || (HeadCmp == AArch64CC::LT && TrueCmp == AArch64CC::LT)) && std::abs(TrueImm - HeadImm) == 1) { // This branch transforms machine instructions that correspond to // // 1) (a > {TrueImm} && ...) || (a > {HeadImm} && ...) // 2) (a < {TrueImm} && ...) || (a < {HeadImm} && ...) // // into // // 1) (a <= {NewImm} && ...) || (a > {NewImm} && ...) // 2) (a < {NewImm} && ...) || (a >= {NewImm} && ...) // GT -> GE transformation increases immediate value, so picking the // smaller one; LT -> LE decreases immediate value so invert the choice. bool adjustHeadCond = (HeadImm < TrueImm); if (HeadCmp == AArch64CC::LT) { adjustHeadCond = !adjustHeadCond; } if (adjustHeadCond) { Changed |= adjustTo(HeadCmpMI, HeadCmp, TrueCmpMI, TrueImm); } else { Changed |= adjustTo(TrueCmpMI, TrueCmp, HeadCmpMI, HeadImm); } } // Other transformation cases almost never occur due to generation of < or > // comparisons instead of <= and >=. } return Changed; }