//===- HexagonEarlyIfConv.cpp ---------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a Hexagon-specific if-conversion pass that runs on the // SSA form. // In SSA it is not straightforward to represent instructions that condi- // tionally define registers, since a conditionally-defined register may // only be used under the same condition on which the definition was based. // To avoid complications of this nature, this patch will only generate // predicated stores, and speculate other instructions from the "if-conver- // ted" block. // The code will recognize CFG patterns where a block with a conditional // branch "splits" into a "true block" and a "false block". Either of these // could be omitted (in case of a triangle, for example). // If after conversion of the side block(s) the CFG allows it, the resul- // ting blocks may be merged. If the "join" block contained PHI nodes, they // will be replaced with MUX (or MUX-like) instructions to maintain the // semantics of the PHI. // // Example: // // %40 = L2_loadrub_io killed %39, 1 // %41 = S2_tstbit_i killed %40, 0 // J2_jumpt killed %41, <%bb.5>, implicit dead %pc // J2_jump <%bb.4>, implicit dead %pc // Successors according to CFG: %bb.4(62) %bb.5(62) // // %bb.4: derived from LLVM BB %if.then // Predecessors according to CFG: %bb.3 // %11 = A2_addp %6, %10 // S2_storerd_io %32, 16, %11 // Successors according to CFG: %bb.5 // // %bb.5: derived from LLVM BB %if.end // Predecessors according to CFG: %bb.3 %bb.4 // %12 = PHI %6, <%bb.3>, %11, <%bb.4> // %13 = A2_addp %7, %12 // %42 = C2_cmpeqi %9, 10 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc // J2_jump <%bb.6>, implicit dead %pc // Successors according to CFG: %bb.6(4) %bb.3(124) // // would become: // // %40 = L2_loadrub_io killed %39, 1 // %41 = S2_tstbit_i killed %40, 0 // spec-> %11 = A2_addp %6, %10 // pred-> S2_pstorerdf_io %41, %32, 16, %11 // %46 = PS_pselect %41, %6, %11 // %13 = A2_addp %7, %46 // %42 = C2_cmpeqi %9, 10 // J2_jumpf killed %42, <%bb.3>, implicit dead %pc // J2_jump <%bb.6>, implicit dead %pc // Successors according to CFG: %bb.6 %bb.3 #include "Hexagon.h" #include "HexagonInstrInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #define DEBUG_TYPE "hexagon-eif" using namespace llvm; namespace llvm { FunctionPass *createHexagonEarlyIfConversion(); void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry); } // end namespace llvm static cl::opt EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden, cl::init(false), cl::desc("Enable branch probability info")); static cl::opt SizeLimit("eif-limit", cl::init(6), cl::Hidden, cl::desc("Size limit in Hexagon early if-conversion")); static cl::opt SkipExitBranches("eif-no-loop-exit", cl::init(false), cl::Hidden, cl::desc("Do not convert branches that may exit the loop")); namespace { struct PrintMB { PrintMB(const MachineBasicBlock *B) : MB(B) {} const MachineBasicBlock *MB; }; raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) { if (!P.MB) return OS << ""; return OS << '#' << P.MB->getNumber(); } struct FlowPattern { FlowPattern() = default; FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB, MachineBasicBlock *FB, MachineBasicBlock *JB) : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {} MachineBasicBlock *SplitB = nullptr; MachineBasicBlock *TrueB = nullptr; MachineBasicBlock *FalseB = nullptr; MachineBasicBlock *JoinB = nullptr; unsigned PredR = 0; }; struct PrintFP { PrintFP(const FlowPattern &P, const TargetRegisterInfo &T) : FP(P), TRI(T) {} const FlowPattern &FP; const TargetRegisterInfo &TRI; friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P); }; raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) LLVM_ATTRIBUTE_UNUSED; raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) { OS << "{ SplitB:" << PrintMB(P.FP.SplitB) << ", PredR:" << printReg(P.FP.PredR, &P.TRI) << ", TrueB:" << PrintMB(P.FP.TrueB) << ", FalseB:" << PrintMB(P.FP.FalseB) << ", JoinB:" << PrintMB(P.FP.JoinB) << " }"; return OS; } class HexagonEarlyIfConversion : public MachineFunctionPass { public: static char ID; HexagonEarlyIfConversion() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return "Hexagon early if conversion"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; private: using BlockSetType = DenseSet; bool isPreheader(const MachineBasicBlock *B) const; bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, FlowPattern &FP); bool visitBlock(MachineBasicBlock *B, MachineLoop *L); bool visitLoop(MachineLoop *L); bool hasEHLabel(const MachineBasicBlock *B) const; bool hasUncondBranch(const MachineBasicBlock *B) const; bool isValidCandidate(const MachineBasicBlock *B) const; bool usesUndefVReg(const MachineInstr *MI) const; bool isValid(const FlowPattern &FP) const; unsigned countPredicateDefs(const MachineBasicBlock *B) const; unsigned computePhiCost(const MachineBasicBlock *B, const FlowPattern &FP) const; bool isProfitable(const FlowPattern &FP) const; bool isPredicableStore(const MachineInstr *MI) const; bool isSafeToSpeculate(const MachineInstr *MI) const; unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const; void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, MachineInstr *MI, unsigned PredR, bool IfTrue); void predicateBlockNB(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, MachineBasicBlock *FromB, unsigned PredR, bool IfTrue); unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At, const TargetRegisterClass *DRC, unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR); void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP); void convert(const FlowPattern &FP); void removeBlock(MachineBasicBlock *B); void eliminatePhis(MachineBasicBlock *B); void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB); void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB); void simplifyFlowGraph(const FlowPattern &FP); const HexagonInstrInfo *HII = nullptr; const TargetRegisterInfo *TRI = nullptr; MachineFunction *MFN = nullptr; MachineRegisterInfo *MRI = nullptr; MachineDominatorTree *MDT = nullptr; MachineLoopInfo *MLI = nullptr; BlockSetType Deleted; const MachineBranchProbabilityInfo *MBPI; }; } // end anonymous namespace char HexagonEarlyIfConversion::ID = 0; INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if", "Hexagon early if conversion", false, false) bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const { if (B->succ_size() != 1) return false; MachineBasicBlock *SB = *B->succ_begin(); MachineLoop *L = MLI->getLoopFor(SB); return L && SB == L->getHeader() && MDT->dominates(B, SB); } bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, FlowPattern &FP) { DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B) << "\n"); // Interested only in conditional branches, no .new, no new-value, etc. // Check the terminators directly, it's easier than handling all responses // from AnalyzeBranch. MachineBasicBlock *TB = nullptr, *FB = nullptr; MachineBasicBlock::const_iterator T1I = B->getFirstTerminator(); if (T1I == B->end()) return false; unsigned Opc = T1I->getOpcode(); if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf) return false; unsigned PredR = T1I->getOperand(0).getReg(); // Get the layout successor, or 0 if B does not have one. MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B)); MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr; MachineBasicBlock *T1B = T1I->getOperand(1).getMBB(); MachineBasicBlock::const_iterator T2I = std::next(T1I); // The second terminator should be an unconditional branch. assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump); MachineBasicBlock *T2B = (T2I == B->end()) ? NextB : T2I->getOperand(0).getMBB(); if (T1B == T2B) { // XXX merge if T1B == NextB, or convert branch to unconditional. // mark as diamond with both sides equal? return false; } // Record the true/false blocks in such a way that "true" means "if (PredR)", // and "false" means "if (!PredR)". if (Opc == Hexagon::J2_jumpt) TB = T1B, FB = T2B; else TB = T2B, FB = T1B; if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB)) return false; // Detect triangle first. In case of a triangle, one of the blocks TB/FB // can fall through into the other, in other words, it will be executed // in both cases. We only want to predicate the block that is executed // conditionally. unsigned TNP = TB->pred_size(), FNP = FB->pred_size(); unsigned TNS = TB->succ_size(), FNS = FB->succ_size(); // A block is predicable if it has one predecessor (it must be B), and // it has a single successor. In fact, the block has to end either with // an unconditional branch (which can be predicated), or with a fall- // through. // Also, skip blocks that do not belong to the same loop. bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L); bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L); // If requested (via an option), do not consider branches where the // true and false targets do not belong to the same loop. if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB)) return false; // If neither is predicable, there is nothing interesting. if (!TOk && !FOk) return false; MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr; MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr; MachineBasicBlock *JB = nullptr; if (TOk) { if (FOk) { if (TSB == FSB) JB = TSB; // Diamond: "if (P) then TB; else FB;". } else { // TOk && !FOk if (TSB == FB) JB = FB; FB = nullptr; } } else { // !TOk && FOk (at least one must be true by now). if (FSB == TB) JB = TB; TB = nullptr; } // Don't try to predicate loop preheaders. if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) { DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB) << " is a loop preheader. Skipping.\n"); return false; } FP = FlowPattern(B, PredR, TB, FB, JB); DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n"); return true; } // KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that // contains EH_LABEL. bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const { for (auto &I : *B) if (I.isEHLabel()) return true; return false; } // KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize // that a block can never fall-through. bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B) const { MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); while (I != E) { if (I->isBarrier()) return true; ++I; } return false; } bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B) const { if (!B) return true; if (B->isEHPad() || B->hasAddressTaken()) return false; if (B->succ_size() == 0) return false; for (auto &MI : *B) { if (MI.isDebugValue()) continue; if (MI.isConditionalBranch()) return false; unsigned Opc = MI.getOpcode(); bool IsJMP = (Opc == Hexagon::J2_jump); if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI)) return false; // Look for predicate registers defined by this instruction. It's ok // to speculate such an instruction, but the predicate register cannot // be used outside of this block (or else it won't be possible to // update the use of it after predication). PHI uses will be updated // to use a result of a MUX, and a MUX cannot be created for predicate // registers. for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef()) continue; unsigned R = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(R)) continue; switch (MRI->getRegClass(R)->getID()) { case Hexagon::PredRegsRegClassID: case Hexagon::HvxQRRegClassID: break; default: continue; } for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U) if (U->getParent()->isPHI()) return false; } } return true; } bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const { for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg() || !MO.isUse()) continue; unsigned R = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(R)) continue; const MachineInstr *DefI = MRI->getVRegDef(R); // "Undefined" virtual registers are actually defined via IMPLICIT_DEF. assert(DefI && "Expecting a reaching def in MRI"); if (DefI->isImplicitDef()) return true; } return false; } bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const { if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition return false; if (FP.TrueB && !isValidCandidate(FP.TrueB)) return false; if (FP.FalseB && !isValidCandidate(FP.FalseB)) return false; // Check the PHIs in the join block. If any of them use a register // that is defined as IMPLICIT_DEF, do not convert this. This can // legitimately happen if one side of the split never executes, but // the compiler is unable to prove it. That side may then seem to // provide an "undef" value to the join block, however it will never // execute at run-time. If we convert this case, the "undef" will // be used in a MUX instruction, and that may seem like actually // using an undefined value to other optimizations. This could lead // to trouble further down the optimization stream, cause assertions // to fail, etc. if (FP.JoinB) { const MachineBasicBlock &B = *FP.JoinB; for (auto &MI : B) { if (!MI.isPHI()) break; if (usesUndefVReg(&MI)) return false; unsigned DefR = MI.getOperand(0).getReg(); const TargetRegisterClass *RC = MRI->getRegClass(DefR); if (RC == &Hexagon::PredRegsRegClass) return false; } } return true; } unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B, const FlowPattern &FP) const { if (B->pred_size() < 2) return 0; unsigned Cost = 0; for (const MachineInstr &MI : *B) { if (!MI.isPHI()) break; // If both incoming blocks are one of the TrueB/FalseB/SplitB, then // a MUX may be needed. Otherwise the PHI will need to be updated at // no extra cost. // Find the interesting PHI operands for further checks. SmallVector Inc; for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB(); if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB) Inc.push_back(i); } assert(Inc.size() <= 2); if (Inc.size() < 2) continue; const MachineOperand &RA = MI.getOperand(1); const MachineOperand &RB = MI.getOperand(3); assert(RA.isReg() && RB.isReg()); // Must have a MUX if the phi uses a subregister. if (RA.getSubReg() != 0 || RB.getSubReg() != 0) { Cost++; continue; } const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg()); const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg()); if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3)) Cost++; } return Cost; } unsigned HexagonEarlyIfConversion::countPredicateDefs( const MachineBasicBlock *B) const { unsigned PredDefs = 0; for (auto &MI : *B) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef()) continue; unsigned R = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(R)) continue; if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass) PredDefs++; } } return PredDefs; } bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const { if (FP.TrueB && FP.FalseB) { // Do not IfCovert if the branch is one sided. if (MBPI) { BranchProbability Prob(9, 10); if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob) return false; if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob) return false; } // If both sides are predicable, convert them if they join, and the // join block has no other predecessors. MachineBasicBlock *TSB = *FP.TrueB->succ_begin(); MachineBasicBlock *FSB = *FP.FalseB->succ_begin(); if (TSB != FSB) return false; if (TSB->pred_size() != 2) return false; } // Calculate the total size of the predicated blocks. // Assume instruction counts without branches to be the approximation of // the code size. If the predicated blocks are smaller than a packet size, // approximate the spare room in the packet that could be filled with the // predicated/speculated instructions. auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) { if (!B) return 0u; unsigned T = std::count_if(B->begin(), B->getFirstTerminator(), [](const MachineInstr &MI) { return !MI.isMetaInstruction(); }); if (T < HEXAGON_PACKET_SIZE) Spare += HEXAGON_PACKET_SIZE-T; return T; }; unsigned Spare = 0; unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare); DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: " << TotalIn << ", spare room: " << Spare << "\n"); if (TotalIn >= SizeLimit+Spare) return false; // Count the number of PHI nodes that will need to be updated (converted // to MUX). Those can be later converted to predicated instructions, so // they aren't always adding extra cost. // KLUDGE: Also, count the number of predicate register definitions in // each block. The scheduler may increase the pressure of these and cause // expensive spills (e.g. bitmnp01). unsigned TotalPh = 0; unsigned PredDefs = countPredicateDefs(FP.SplitB); if (FP.JoinB) { TotalPh = computePhiCost(FP.JoinB, FP); PredDefs += countPredicateDefs(FP.JoinB); } else { if (FP.TrueB && FP.TrueB->succ_size() > 0) { MachineBasicBlock *SB = *FP.TrueB->succ_begin(); TotalPh += computePhiCost(SB, FP); PredDefs += countPredicateDefs(SB); } if (FP.FalseB && FP.FalseB->succ_size() > 0) { MachineBasicBlock *SB = *FP.FalseB->succ_begin(); TotalPh += computePhiCost(SB, FP); PredDefs += countPredicateDefs(SB); } } DEBUG(dbgs() << "Total number of extra muxes from converted phis: " << TotalPh << "\n"); if (TotalIn+TotalPh >= SizeLimit+Spare) return false; DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n"); if (PredDefs > 4) return false; return true; } bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B, MachineLoop *L) { bool Changed = false; // Visit all dominated blocks from the same loop first, then process B. MachineDomTreeNode *N = MDT->getNode(B); using GTN = GraphTraits; // We will change CFG/DT during this traversal, so take precautions to // avoid problems related to invalidated iterators. In fact, processing // a child C of B cannot cause another child to be removed, but it can // cause a new child to be added (which was a child of C before C itself // was removed. This new child C, however, would have been processed // prior to processing B, so there is no need to process it again. // Simply keep a list of children of B, and traverse that list. using DTNodeVectType = SmallVector; DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { MachineBasicBlock *SB = (*I)->getBlock(); if (!Deleted.count(SB)) Changed |= visitBlock(SB, L); } // When walking down the dominator tree, we want to traverse through // blocks from nested (other) loops, because they can dominate blocks // that are in L. Skip the non-L blocks only after the tree traversal. if (MLI->getLoopFor(B) != L) return Changed; FlowPattern FP; if (!matchFlowPattern(B, L, FP)) return Changed; if (!isValid(FP)) { DEBUG(dbgs() << "Conversion is not valid\n"); return Changed; } if (!isProfitable(FP)) { DEBUG(dbgs() << "Conversion is not profitable\n"); return Changed; } convert(FP); simplifyFlowGraph(FP); return true; } bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) { MachineBasicBlock *HB = L ? L->getHeader() : nullptr; DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB) : dbgs() << "Visiting function") << "\n"); bool Changed = false; if (L) { for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) Changed |= visitLoop(*I); } MachineBasicBlock *EntryB = GraphTraits::getEntryNode(MFN); Changed |= visitBlock(L ? HB : EntryB, L); return Changed; } bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI) const { // HexagonInstrInfo::isPredicable will consider these stores are non- // -predicable if the offset would become constant-extended after // predication. unsigned Opc = MI->getOpcode(); switch (Opc) { case Hexagon::S2_storerb_io: case Hexagon::S2_storerbnew_io: case Hexagon::S2_storerh_io: case Hexagon::S2_storerhnew_io: case Hexagon::S2_storeri_io: case Hexagon::S2_storerinew_io: case Hexagon::S2_storerd_io: case Hexagon::S4_storeirb_io: case Hexagon::S4_storeirh_io: case Hexagon::S4_storeiri_io: return true; } // TargetInstrInfo::isPredicable takes a non-const pointer. return MI->mayStore() && HII->isPredicable(const_cast(*MI)); } bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI) const { if (MI->mayLoad() || MI->mayStore()) return false; if (MI->isCall() || MI->isBarrier() || MI->isBranch()) return false; if (MI->hasUnmodeledSideEffects()) return false; return true; } unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc, bool IfTrue) const { return HII->getCondOpcode(Opc, !IfTrue); } void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, MachineInstr *MI, unsigned PredR, bool IfTrue) { DebugLoc DL; if (At != ToB->end()) DL = At->getDebugLoc(); else if (!ToB->empty()) DL = ToB->back().getDebugLoc(); unsigned Opc = MI->getOpcode(); if (isPredicableStore(MI)) { unsigned COpc = getCondStoreOpcode(Opc, IfTrue); assert(COpc); MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc)); MachineInstr::mop_iterator MOI = MI->operands_begin(); if (HII->isPostIncrement(*MI)) { MIB.add(*MOI); ++MOI; } MIB.addReg(PredR); for (const MachineOperand &MO : make_range(MOI, MI->operands_end())) MIB.add(MO); // Set memory references. MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); MIB.setMemRefs(MMOBegin, MMOEnd); MI->eraseFromParent(); return; } if (Opc == Hexagon::J2_jump) { MachineBasicBlock *TB = MI->getOperand(0).getMBB(); const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt : Hexagon::J2_jumpf); BuildMI(*ToB, At, DL, D) .addReg(PredR) .addMBB(TB); MI->eraseFromParent(); return; } // Print the offending instruction unconditionally as we are about to // abort. dbgs() << *MI; llvm_unreachable("Unexpected instruction"); } // Predicate/speculate non-branch instructions from FromB into block ToB. // Leave the branches alone, they will be handled later. Btw, at this point // FromB should have at most one branch, and it should be unconditional. void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, MachineBasicBlock *FromB, unsigned PredR, bool IfTrue) { DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n"); MachineBasicBlock::iterator End = FromB->getFirstTerminator(); MachineBasicBlock::iterator I, NextI; for (I = FromB->begin(); I != End; I = NextI) { assert(!I->isPHI()); NextI = std::next(I); if (isSafeToSpeculate(&*I)) ToB->splice(At, FromB, I); else predicateInstr(ToB, At, &*I, PredR, IfTrue); } } unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At, const TargetRegisterClass *DRC, unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) { unsigned Opc = 0; switch (DRC->getID()) { case Hexagon::IntRegsRegClassID: Opc = Hexagon::C2_mux; break; case Hexagon::DoubleRegsRegClassID: Opc = Hexagon::PS_pselect; break; case Hexagon::HvxVRRegClassID: Opc = Hexagon::PS_vselect; break; case Hexagon::HvxWRRegClassID: Opc = Hexagon::PS_wselect; break; default: llvm_unreachable("unexpected register type"); } const MCInstrDesc &D = HII->get(Opc); DebugLoc DL = B->findBranchDebugLoc(); unsigned MuxR = MRI->createVirtualRegister(DRC); BuildMI(*B, At, DL, D, MuxR) .addReg(PredR) .addReg(TR, 0, TSR) .addReg(FR, 0, FSR); return MuxR; } void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP) { // Visit all PHI nodes in the WhereB block and generate MUX instructions // in the split block. Update the PHI nodes with the values of the MUX. auto NonPHI = WhereB->getFirstNonPHI(); for (auto I = WhereB->begin(); I != NonPHI; ++I) { MachineInstr *PN = &*I; // Registers and subregisters corresponding to TrueB, FalseB and SplitB. unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0; for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1); if (BO.getMBB() == FP.SplitB) SR = RO.getReg(), SSR = RO.getSubReg(); else if (BO.getMBB() == FP.TrueB) TR = RO.getReg(), TSR = RO.getSubReg(); else if (BO.getMBB() == FP.FalseB) FR = RO.getReg(), FSR = RO.getSubReg(); else continue; PN->RemoveOperand(i+1); PN->RemoveOperand(i); } if (TR == 0) TR = SR, TSR = SSR; else if (FR == 0) FR = SR, FSR = SSR; assert(TR || FR); unsigned MuxR = 0, MuxSR = 0; if (TR && FR) { unsigned DR = PN->getOperand(0).getReg(); const TargetRegisterClass *RC = MRI->getRegClass(DR); MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC, FP.PredR, TR, TSR, FR, FSR); } else if (TR) { MuxR = TR; MuxSR = TSR; } else { MuxR = FR; MuxSR = FSR; } PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false, false, false, MuxSR)); PN->addOperand(MachineOperand::CreateMBB(FP.SplitB)); } } void HexagonEarlyIfConversion::convert(const FlowPattern &FP) { MachineBasicBlock *TSB = nullptr, *FSB = nullptr; MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator(); assert(OldTI != FP.SplitB->end()); DebugLoc DL = OldTI->getDebugLoc(); if (FP.TrueB) { TSB = *FP.TrueB->succ_begin(); predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true); } if (FP.FalseB) { FSB = *FP.FalseB->succ_begin(); MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator(); predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false); } // Regenerate new terminators in the split block and update the successors. // First, remember any information that may be needed later and remove the // existing terminators/successors from the split block. MachineBasicBlock *SSB = nullptr; FP.SplitB->erase(OldTI, FP.SplitB->end()); while (FP.SplitB->succ_size() > 0) { MachineBasicBlock *T = *FP.SplitB->succ_begin(); // It's possible that the split block had a successor that is not a pre- // dicated block. This could only happen if there was only one block to // be predicated. Example: // split_b: // if (p) jump true_b // jump unrelated2_b // unrelated1_b: // ... // unrelated2_b: ; can have other predecessors, so it's not "false_b" // jump other_b // true_b: ; only reachable from split_b, can be predicated // ... // // Find this successor (SSB) if it exists. if (T != FP.TrueB && T != FP.FalseB) { assert(!SSB); SSB = T; } FP.SplitB->removeSuccessor(FP.SplitB->succ_begin()); } // Insert new branches and update the successors of the split block. This // may create unconditional branches to the layout successor, etc., but // that will be cleaned up later. For now, make sure that correct code is // generated. if (FP.JoinB) { assert(!SSB || SSB == FP.JoinB); BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) .addMBB(FP.JoinB); FP.SplitB->addSuccessor(FP.JoinB); } else { bool HasBranch = false; if (TSB) { BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt)) .addReg(FP.PredR) .addMBB(TSB); FP.SplitB->addSuccessor(TSB); HasBranch = true; } if (FSB) { const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump) : HII->get(Hexagon::J2_jumpf); MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D); if (!HasBranch) MIB.addReg(FP.PredR); MIB.addMBB(FSB); FP.SplitB->addSuccessor(FSB); } if (SSB) { // This cannot happen if both TSB and FSB are set. [TF]SB are the // successor blocks of the TrueB and FalseB (or null of the TrueB // or FalseB block is null). SSB is the potential successor block // of the SplitB that is neither TrueB nor FalseB. BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump)) .addMBB(SSB); FP.SplitB->addSuccessor(SSB); } } // What is left to do is to update the PHI nodes that could have entries // referring to predicated blocks. if (FP.JoinB) { updatePhiNodes(FP.JoinB, FP); } else { if (TSB) updatePhiNodes(TSB, FP); if (FSB) updatePhiNodes(FSB, FP); // Nothing to update in SSB, since SSB's predecessors haven't changed. } } void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) { DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n"); // Transfer the immediate dominator information from B to its descendants. MachineDomTreeNode *N = MDT->getNode(B); MachineDomTreeNode *IDN = N->getIDom(); if (IDN) { MachineBasicBlock *IDB = IDN->getBlock(); using GTN = GraphTraits; using DTNodeVectType = SmallVector; DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { MachineBasicBlock *SB = (*I)->getBlock(); MDT->changeImmediateDominator(SB, IDB); } } while (B->succ_size() > 0) B->removeSuccessor(B->succ_begin()); for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I) (*I)->removeSuccessor(B, true); Deleted.insert(B); MDT->eraseNode(B); MFN->erase(B->getIterator()); } void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) { DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n"); MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI(); for (I = B->begin(); I != NonPHI; I = NextI) { NextI = std::next(I); MachineInstr *PN = &*I; assert(PN->getNumOperands() == 3 && "Invalid phi node"); MachineOperand &UO = PN->getOperand(1); unsigned UseR = UO.getReg(), UseSR = UO.getSubReg(); unsigned DefR = PN->getOperand(0).getReg(); unsigned NewR = UseR; if (UseSR) { // MRI.replaceVregUsesWith does not allow to update the subregister, // so instead of doing the use-iteration here, create a copy into a // "non-subregistered" register. const DebugLoc &DL = PN->getDebugLoc(); const TargetRegisterClass *RC = MRI->getRegClass(DefR); NewR = MRI->createVirtualRegister(RC); NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR) .addReg(UseR, 0, UseSR); } MRI->replaceRegWith(DefR, NewR); B->erase(I); } } void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB) { for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) { MachineBasicBlock *SB = *I; MachineBasicBlock::iterator P, N = SB->getFirstNonPHI(); for (P = SB->begin(); P != N; ++P) { MachineInstr &PN = *P; for (MachineOperand &MO : PN.operands()) if (MO.isMBB() && MO.getMBB() == OldB) MO.setMBB(NewB); } } } void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB) { DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and " << PrintMB(SuccB) << "\n"); bool TermOk = hasUncondBranch(SuccB); eliminatePhis(SuccB); HII->removeBranch(*PredB); PredB->removeSuccessor(SuccB); PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end()); MachineBasicBlock::succ_iterator I, E = SuccB->succ_end(); for (I = SuccB->succ_begin(); I != E; ++I) PredB->addSuccessor(*I); PredB->normalizeSuccProbs(); replacePhiEdges(SuccB, PredB); removeBlock(SuccB); if (!TermOk) PredB->updateTerminator(); } void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) { if (FP.TrueB) removeBlock(FP.TrueB); if (FP.FalseB) removeBlock(FP.FalseB); FP.SplitB->updateTerminator(); if (FP.SplitB->succ_size() != 1) return; MachineBasicBlock *SB = *FP.SplitB->succ_begin(); if (SB->pred_size() != 1) return; // By now, the split block has only one successor (SB), and SB has only // one predecessor. We can try to merge them. We will need to update ter- // minators in FP.Split+SB, and that requires working AnalyzeBranch, which // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends // with an unconditional branch, we won't need to touch the terminators. if (!hasEHLabel(SB) || hasUncondBranch(SB)) mergeBlocks(FP.SplitB, SB); } bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; auto &ST = MF.getSubtarget(); HII = ST.getInstrInfo(); TRI = ST.getRegisterInfo(); MFN = &MF; MRI = &MF.getRegInfo(); MDT = &getAnalysis(); MLI = &getAnalysis(); MBPI = EnableHexagonBP ? &getAnalysis() : nullptr; Deleted.clear(); bool Changed = false; for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) Changed |= visitLoop(*I); Changed |= visitLoop(nullptr); return Changed; } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// FunctionPass *llvm::createHexagonEarlyIfConversion() { return new HexagonEarlyIfConversion(); }