/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1998-1999 by Silicon Graphics. All rights reserved. * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "private/gc_priv.h" #include #ifdef GC_USE_ENTIRE_HEAP int GC_use_entire_heap = TRUE; #else int GC_use_entire_heap = FALSE; #endif /* * Free heap blocks are kept on one of several free lists, * depending on the size of the block. Each free list is doubly linked. * Adjacent free blocks are coalesced. */ # define MAX_BLACK_LIST_ALLOC (2*HBLKSIZE) /* largest block we will allocate starting on a black */ /* listed block. Must be >= HBLKSIZE. */ # define UNIQUE_THRESHOLD 32 /* Sizes up to this many HBLKs each have their own free list */ # define HUGE_THRESHOLD 256 /* Sizes of at least this many heap blocks are mapped to a */ /* single free list. */ # define FL_COMPRESSION 8 /* In between sizes map this many distinct sizes to a single */ /* bin. */ # define N_HBLK_FLS ((HUGE_THRESHOLD - UNIQUE_THRESHOLD) / FL_COMPRESSION \ + UNIQUE_THRESHOLD) #ifndef GC_GCJ_SUPPORT STATIC #endif struct hblk * GC_hblkfreelist[N_HBLK_FLS+1] = { 0 }; /* List of completely empty heap blocks */ /* Linked through hb_next field of */ /* header structure associated with */ /* block. Remains externally visible */ /* as used by GNU GCJ currently. */ #ifndef GC_GCJ_SUPPORT STATIC #endif word GC_free_bytes[N_HBLK_FLS+1] = { 0 }; /* Number of free bytes on each list. Remains visible to GCJ. */ /* Return the largest n such that the number of free bytes on lists */ /* n .. N_HBLK_FLS is greater or equal to GC_max_large_allocd_bytes */ /* minus GC_large_allocd_bytes. If there is no such n, return 0. */ GC_INLINE int GC_enough_large_bytes_left(void) { int n; word bytes = GC_large_allocd_bytes; GC_ASSERT(GC_max_large_allocd_bytes <= GC_heapsize); for (n = N_HBLK_FLS; n >= 0; --n) { bytes += GC_free_bytes[n]; if (bytes >= GC_max_large_allocd_bytes) return n; } return 0; } /* Map a number of blocks to the appropriate large block free list index. */ STATIC int GC_hblk_fl_from_blocks(word blocks_needed) { if (blocks_needed <= UNIQUE_THRESHOLD) return (int)blocks_needed; if (blocks_needed >= HUGE_THRESHOLD) return N_HBLK_FLS; return (int)(blocks_needed - UNIQUE_THRESHOLD)/FL_COMPRESSION + UNIQUE_THRESHOLD; } # define PHDR(hhdr) HDR((hhdr) -> hb_prev) # define NHDR(hhdr) HDR((hhdr) -> hb_next) # ifdef USE_MUNMAP # define IS_MAPPED(hhdr) (((hhdr) -> hb_flags & WAS_UNMAPPED) == 0) # else # define IS_MAPPED(hhdr) TRUE # endif /* !USE_MUNMAP */ #if !defined(NO_DEBUGGING) || defined(GC_ASSERTIONS) /* Should return the same value as GC_large_free_bytes. */ GC_INNER word GC_compute_large_free_bytes(void) { word total_free = 0; unsigned i; for (i = 0; i <= N_HBLK_FLS; ++i) { struct hblk * h; hdr * hhdr; for (h = GC_hblkfreelist[i]; h != 0; h = hhdr->hb_next) { hhdr = HDR(h); total_free += hhdr->hb_sz; } } return total_free; } #endif /* !NO_DEBUGGING || GC_ASSERTIONS */ # if !defined(NO_DEBUGGING) void GC_print_hblkfreelist(void) { unsigned i; word total; for (i = 0; i <= N_HBLK_FLS; ++i) { struct hblk * h = GC_hblkfreelist[i]; if (0 != h) GC_printf("Free list %u (total size %lu):\n", i, (unsigned long)GC_free_bytes[i]); while (h != 0) { hdr * hhdr = HDR(h); GC_printf("\t%p size %lu %s black listed\n", (void *)h, (unsigned long) hhdr -> hb_sz, GC_is_black_listed(h, HBLKSIZE) != 0 ? "start" : GC_is_black_listed(h, hhdr -> hb_sz) != 0 ? "partially" : "not"); h = hhdr -> hb_next; } } GC_printf("GC_large_free_bytes: %lu\n", (unsigned long)GC_large_free_bytes); if ((total = GC_compute_large_free_bytes()) != GC_large_free_bytes) GC_err_printf("GC_large_free_bytes INCONSISTENT!! Should be: %lu\n", (unsigned long)total); } /* Return the free list index on which the block described by the header */ /* appears, or -1 if it appears nowhere. */ static int free_list_index_of(hdr *wanted) { int i; for (i = 0; i <= N_HBLK_FLS; ++i) { struct hblk * h; hdr * hhdr; for (h = GC_hblkfreelist[i]; h != 0; h = hhdr -> hb_next) { hhdr = HDR(h); if (hhdr == wanted) return i; } } return -1; } GC_API void GC_CALL GC_dump_regions(void) { unsigned i; for (i = 0; i < GC_n_heap_sects; ++i) { ptr_t start = GC_heap_sects[i].hs_start; size_t bytes = GC_heap_sects[i].hs_bytes; ptr_t end = start + bytes; ptr_t p; /* Merge in contiguous sections. */ while (i+1 < GC_n_heap_sects && GC_heap_sects[i+1].hs_start == end) { ++i; end = GC_heap_sects[i].hs_start + GC_heap_sects[i].hs_bytes; } GC_printf("***Section from %p to %p\n", (void *)start, (void *)end); for (p = start; (word)p < (word)end; ) { hdr *hhdr = HDR(p); if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) { GC_printf("\t%p Missing header!!(%p)\n", (void *)p, (void *)hhdr); p += HBLKSIZE; continue; } if (HBLK_IS_FREE(hhdr)) { int correct_index = GC_hblk_fl_from_blocks( divHBLKSZ(hhdr -> hb_sz)); int actual_index; GC_printf("\t%p\tfree block of size 0x%lx bytes%s\n", (void *)p, (unsigned long)(hhdr -> hb_sz), IS_MAPPED(hhdr) ? "" : " (unmapped)"); actual_index = free_list_index_of(hhdr); if (-1 == actual_index) { GC_printf("\t\tBlock not on free list %d!!\n", correct_index); } else if (correct_index != actual_index) { GC_printf("\t\tBlock on list %d, should be on %d!!\n", actual_index, correct_index); } p += hhdr -> hb_sz; } else { GC_printf("\t%p\tused for blocks of size 0x%lx bytes\n", (void *)p, (unsigned long)(hhdr -> hb_sz)); p += HBLKSIZE * OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz); } } } } # endif /* NO_DEBUGGING */ /* Initialize hdr for a block containing the indicated size and */ /* kind of objects. */ /* Return FALSE on failure. */ static GC_bool setup_header(hdr * hhdr, struct hblk *block, size_t byte_sz, int kind, unsigned flags) { word descr; # ifdef MARK_BIT_PER_GRANULE if (byte_sz > MAXOBJBYTES) flags |= LARGE_BLOCK; # endif # ifdef ENABLE_DISCLAIM if (GC_obj_kinds[kind].ok_disclaim_proc) flags |= HAS_DISCLAIM; if (GC_obj_kinds[kind].ok_mark_unconditionally) flags |= MARK_UNCONDITIONALLY; # endif /* Set size, kind and mark proc fields */ hhdr -> hb_sz = byte_sz; hhdr -> hb_obj_kind = (unsigned char)kind; hhdr -> hb_flags = (unsigned char)flags; hhdr -> hb_block = block; descr = GC_obj_kinds[kind].ok_descriptor; if (GC_obj_kinds[kind].ok_relocate_descr) descr += byte_sz; hhdr -> hb_descr = descr; # ifdef MARK_BIT_PER_OBJ /* Set hb_inv_sz as portably as possible. */ /* We set it to the smallest value such that sz * inv_sz > 2**32 */ /* This may be more precision than necessary. */ if (byte_sz > MAXOBJBYTES) { hhdr -> hb_inv_sz = LARGE_INV_SZ; } else { word inv_sz; # if CPP_WORDSZ == 64 inv_sz = ((word)1 << 32)/byte_sz; if (((inv_sz*byte_sz) >> 32) == 0) ++inv_sz; # else /* 32 bit words */ GC_ASSERT(byte_sz >= 4); inv_sz = ((unsigned)1 << 31)/byte_sz; inv_sz *= 2; while (inv_sz*byte_sz > byte_sz) ++inv_sz; # endif hhdr -> hb_inv_sz = inv_sz; } # endif # ifdef MARK_BIT_PER_GRANULE { size_t granules = BYTES_TO_GRANULES(byte_sz); if (EXPECT(!GC_add_map_entry(granules), FALSE)) { /* Make it look like a valid block. */ hhdr -> hb_sz = HBLKSIZE; hhdr -> hb_descr = 0; hhdr -> hb_flags |= LARGE_BLOCK; hhdr -> hb_map = 0; return FALSE; } hhdr -> hb_map = GC_obj_map[(hhdr -> hb_flags & LARGE_BLOCK) != 0 ? 0 : granules]; } # endif /* MARK_BIT_PER_GRANULE */ /* Clear mark bits */ GC_clear_hdr_marks(hhdr); hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no; return(TRUE); } /* Remove hhdr from the free list (it is assumed to specified by index). */ STATIC void GC_remove_from_fl_at(hdr *hhdr, int index) { GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0); if (hhdr -> hb_prev == 0) { GC_ASSERT(HDR(GC_hblkfreelist[index]) == hhdr); GC_hblkfreelist[index] = hhdr -> hb_next; } else { hdr *phdr; GET_HDR(hhdr -> hb_prev, phdr); phdr -> hb_next = hhdr -> hb_next; } /* We always need index to maintain free counts. */ GC_ASSERT(GC_free_bytes[index] >= hhdr -> hb_sz); GC_free_bytes[index] -= hhdr -> hb_sz; if (0 != hhdr -> hb_next) { hdr * nhdr; GC_ASSERT(!IS_FORWARDING_ADDR_OR_NIL(NHDR(hhdr))); GET_HDR(hhdr -> hb_next, nhdr); nhdr -> hb_prev = hhdr -> hb_prev; } } /* Remove hhdr from the appropriate free list (we assume it is on the */ /* size-appropriate free list). */ GC_INLINE void GC_remove_from_fl(hdr *hhdr) { GC_remove_from_fl_at(hhdr, GC_hblk_fl_from_blocks(divHBLKSZ(hhdr->hb_sz))); } /* Return a pointer to the free block ending just before h, if any. */ STATIC struct hblk * GC_free_block_ending_at(struct hblk *h) { struct hblk * p = h - 1; hdr * phdr; GET_HDR(p, phdr); while (0 != phdr && IS_FORWARDING_ADDR_OR_NIL(phdr)) { p = FORWARDED_ADDR(p,phdr); phdr = HDR(p); } if (0 != phdr) { if(HBLK_IS_FREE(phdr)) { return p; } else { return 0; } } p = GC_prev_block(h - 1); if (0 != p) { phdr = HDR(p); if (HBLK_IS_FREE(phdr) && (ptr_t)p + phdr -> hb_sz == (ptr_t)h) { return p; } } return 0; } /* Add hhdr to the appropriate free list. */ /* We maintain individual free lists sorted by address. */ STATIC void GC_add_to_fl(struct hblk *h, hdr *hhdr) { int index = GC_hblk_fl_from_blocks(divHBLKSZ(hhdr -> hb_sz)); struct hblk *second = GC_hblkfreelist[index]; # if defined(GC_ASSERTIONS) && !defined(USE_MUNMAP) struct hblk *next = (struct hblk *)((word)h + hhdr -> hb_sz); hdr * nexthdr = HDR(next); struct hblk *prev = GC_free_block_ending_at(h); hdr * prevhdr = HDR(prev); GC_ASSERT(nexthdr == 0 || !HBLK_IS_FREE(nexthdr) || (GC_heapsize & SIGNB) != 0); /* In the last case, blocks may be too large to merge. */ GC_ASSERT(prev == 0 || !HBLK_IS_FREE(prevhdr) || (GC_heapsize & SIGNB) != 0); # endif GC_ASSERT(((hhdr -> hb_sz) & (HBLKSIZE-1)) == 0); GC_hblkfreelist[index] = h; GC_free_bytes[index] += hhdr -> hb_sz; GC_ASSERT(GC_free_bytes[index] <= GC_large_free_bytes); hhdr -> hb_next = second; hhdr -> hb_prev = 0; if (0 != second) { hdr * second_hdr; GET_HDR(second, second_hdr); second_hdr -> hb_prev = h; } hhdr -> hb_flags |= FREE_BLK; } #ifdef USE_MUNMAP # ifndef MUNMAP_THRESHOLD # define MUNMAP_THRESHOLD 6 # endif GC_INNER int GC_unmap_threshold = MUNMAP_THRESHOLD; /* Unmap blocks that haven't been recently touched. This is the only way */ /* way blocks are ever unmapped. */ GC_INNER void GC_unmap_old(void) { word sz; unsigned short last_rec, threshold; int i; /* NOTE: Xbox One (DURANGO) may not need to be this aggressive, but the default * is likely too lax under heavy allocation pressure. The platform does not * have a virtual paging system, so it does not have a large virtual address * space that a standard x64 platform has. */ #if defined(SN_TARGET_PS3) || defined(SN_TARGET_PSP2) || defined(SN_TARGET_ORBIS) || defined(_XBOX_ONE) # define UNMAP_THRESHOLD 2 #else # define UNMAP_THRESHOLD 6 #endif for (i = 0; i <= N_HBLK_FLS; ++i) { struct hblk * h; hdr * hhdr; for (h = GC_hblkfreelist[i]; 0 != h; h = hhdr -> hb_next) { hhdr = HDR(h); if (!IS_MAPPED(hhdr)) continue; threshold = (unsigned short)(GC_gc_no - UNMAP_THRESHOLD); last_rec = hhdr -> hb_last_reclaimed; if ((last_rec > GC_gc_no || last_rec < threshold) && threshold < GC_gc_no /* not recently wrapped */) { sz = hhdr -> hb_sz; GC_unmap((ptr_t)h, sz); hhdr -> hb_flags |= WAS_UNMAPPED; } } } } # ifdef MPROTECT_VDB GC_INNER GC_bool GC_has_unmapped_memory(void) { int i; for (i = 0; i <= N_HBLK_FLS; ++i) { struct hblk * h; hdr * hhdr; for (h = GC_hblkfreelist[i]; h != NULL; h = hhdr -> hb_next) { hhdr = HDR(h); if (!IS_MAPPED(hhdr)) return TRUE; } } return FALSE; } # endif /* MPROTECT_VDB */ /* Merge all unmapped blocks that are adjacent to other free */ /* blocks. This may involve remapping, since all blocks are either */ /* fully mapped or fully unmapped. */ GC_INNER void GC_merge_unmapped(void) { int i; for (i = 0; i <= N_HBLK_FLS; ++i) { struct hblk *h = GC_hblkfreelist[i]; while (h != 0) { struct hblk *next; hdr *hhdr, *nexthdr; word size, nextsize; GET_HDR(h, hhdr); size = hhdr->hb_sz; next = (struct hblk *)((word)h + size); GET_HDR(next, nexthdr); /* Coalesce with successor, if possible */ if (0 != nexthdr && HBLK_IS_FREE(nexthdr) && (signed_word) (size + (nextsize = nexthdr->hb_sz)) > 0 /* no pot. overflow */) { /* Note that we usually try to avoid adjacent free blocks */ /* that are either both mapped or both unmapped. But that */ /* isn't guaranteed to hold since we remap blocks when we */ /* split them, and don't merge at that point. It may also */ /* not hold if the merged block would be too big. */ if (IS_MAPPED(hhdr) && !IS_MAPPED(nexthdr)) { /* make both consistent, so that we can merge */ if (size > nextsize) { GC_remap((ptr_t)next, nextsize); } else { GC_unmap((ptr_t)h, size); GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nextsize); hhdr -> hb_flags |= WAS_UNMAPPED; } } else if (IS_MAPPED(nexthdr) && !IS_MAPPED(hhdr)) { if (size > nextsize) { GC_unmap((ptr_t)next, nextsize); GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nextsize); } else { GC_remap((ptr_t)h, size); hhdr -> hb_flags &= ~WAS_UNMAPPED; hhdr -> hb_last_reclaimed = nexthdr -> hb_last_reclaimed; } } else if (!IS_MAPPED(hhdr) && !IS_MAPPED(nexthdr)) { /* Unmap any gap in the middle */ GC_unmap_gap((ptr_t)h, size, (ptr_t)next, nextsize); } /* If they are both unmapped, we merge, but leave unmapped. */ GC_remove_from_fl_at(hhdr, i); GC_remove_from_fl(nexthdr); hhdr -> hb_sz += nexthdr -> hb_sz; GC_remove_header(next); GC_add_to_fl(h, hhdr); /* Start over at beginning of list */ h = GC_hblkfreelist[i]; } else /* not mergable with successor */ { h = hhdr -> hb_next; } } /* while (h != 0) ... */ } /* for ... */ } #endif /* USE_MUNMAP */ /* * Return a pointer to a block starting at h of length bytes. * Memory for the block is mapped. * Remove the block from its free list, and return the remainder (if any) * to its appropriate free list. * May fail by returning 0. * The header for the returned block must be set up by the caller. * If the return value is not 0, then hhdr is the header for it. */ STATIC struct hblk * GC_get_first_part(struct hblk *h, hdr *hhdr, size_t bytes, int index) { word total_size = hhdr -> hb_sz; struct hblk * rest; hdr * rest_hdr; GC_ASSERT((total_size & (HBLKSIZE-1)) == 0); GC_remove_from_fl_at(hhdr, index); if (total_size == bytes) return h; rest = (struct hblk *)((word)h + bytes); rest_hdr = GC_install_header(rest); if (0 == rest_hdr) { /* FIXME: This is likely to be very bad news ... */ WARN("Header allocation failed: dropping block\n", 0); return(0); } rest_hdr -> hb_sz = total_size - bytes; rest_hdr -> hb_flags = 0; # ifdef GC_ASSERTIONS /* Mark h not free, to avoid assertion about adjacent free blocks. */ hhdr -> hb_flags &= ~FREE_BLK; # endif GC_add_to_fl(rest, rest_hdr); return h; } /* * H is a free block. N points at an address inside it. * A new header for n has already been set up. Fix up h's header * to reflect the fact that it is being split, move it to the * appropriate free list. * N replaces h in the original free list. * * Nhdr is not completely filled in, since it is about to allocated. * It may in fact end up on the wrong free list for its size. * That's not a disaster, since n is about to be allocated * by our caller. * (Hence adding it to a free list is silly. But this path is hopefully * rare enough that it doesn't matter. The code is cleaner this way.) */ STATIC void GC_split_block(struct hblk *h, hdr *hhdr, struct hblk *n, hdr *nhdr, int index /* Index of free list */) { word total_size = hhdr -> hb_sz; word h_size = (word)n - (word)h; struct hblk *prev = hhdr -> hb_prev; struct hblk *next = hhdr -> hb_next; /* Replace h with n on its freelist */ nhdr -> hb_prev = prev; nhdr -> hb_next = next; nhdr -> hb_sz = total_size - h_size; nhdr -> hb_flags = 0; if (0 != prev) { HDR(prev) -> hb_next = n; } else { GC_hblkfreelist[index] = n; } if (0 != next) { HDR(next) -> hb_prev = n; } GC_ASSERT(GC_free_bytes[index] > h_size); GC_free_bytes[index] -= h_size; # ifdef USE_MUNMAP hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no; # endif hhdr -> hb_sz = h_size; GC_add_to_fl(h, hhdr); nhdr -> hb_flags |= FREE_BLK; } STATIC struct hblk * GC_allochblk_nth(size_t sz /* bytes */, int kind, unsigned flags, int n, int may_split); #define AVOID_SPLIT_REMAPPED 2 /* * Allocate (and return pointer to) a heap block * for objects of size sz bytes, searching the nth free list. * * NOTE: We set obj_map field in header correctly. * Caller is responsible for building an object freelist in block. * * The client is responsible for clearing the block, if necessary. */ GC_INNER struct hblk * GC_allochblk(size_t sz, int kind, unsigned flags/* IGNORE_OFF_PAGE or 0 */) { word blocks; int start_list; struct hblk *result; int may_split; int split_limit; /* Highest index of free list whose blocks we */ /* split. */ GC_ASSERT((sz & (GRANULE_BYTES - 1)) == 0); blocks = OBJ_SZ_TO_BLOCKS_CHECKED(sz); if ((signed_word)(blocks * HBLKSIZE) < 0) { return 0; } start_list = GC_hblk_fl_from_blocks(blocks); /* Try for an exact match first. */ result = GC_allochblk_nth(sz, kind, flags, start_list, FALSE); if (0 != result) return result; may_split = TRUE; if (GC_use_entire_heap || GC_dont_gc || USED_HEAP_SIZE < GC_requested_heapsize || GC_incremental || !GC_should_collect()) { /* Should use more of the heap, even if it requires splitting. */ split_limit = N_HBLK_FLS; } else if (GC_finalizer_bytes_freed > (GC_heapsize >> 4)) { /* If we are deallocating lots of memory from */ /* finalizers, fail and collect sooner rather */ /* than later. */ split_limit = 0; } else { /* If we have enough large blocks left to cover any */ /* previous request for large blocks, we go ahead */ /* and split. Assuming a steady state, that should */ /* be safe. It means that we can use the full */ /* heap if we allocate only small objects. */ split_limit = GC_enough_large_bytes_left(); # ifdef USE_MUNMAP if (split_limit > 0) may_split = AVOID_SPLIT_REMAPPED; # endif } if (start_list < UNIQUE_THRESHOLD) { /* No reason to try start_list again, since all blocks are exact */ /* matches. */ ++start_list; } for (; start_list <= split_limit; ++start_list) { result = GC_allochblk_nth(sz, kind, flags, start_list, may_split); if (0 != result) break; } return result; } STATIC long GC_large_alloc_warn_suppressed = 0; /* Number of warnings suppressed so far. */ /* The same, but with search restricted to nth free list. Flags is */ /* IGNORE_OFF_PAGE or zero. sz is in bytes. The may_split flag */ /* indicates whether it is OK to split larger blocks (if set to */ /* AVOID_SPLIT_REMAPPED then memory remapping followed by splitting */ /* should be generally avoided). */ STATIC struct hblk * GC_allochblk_nth(size_t sz, int kind, unsigned flags, int n, int may_split) { struct hblk *hbp; hdr * hhdr; /* Header corr. to hbp */ struct hblk *thishbp; hdr * thishdr; /* Header corr. to thishbp */ signed_word size_needed = HBLKSIZE * OBJ_SZ_TO_BLOCKS_CHECKED(sz); /* number of bytes in requested objects */ /* search for a big enough block in free list */ for (hbp = GC_hblkfreelist[n];; hbp = hhdr -> hb_next) { signed_word size_avail; /* bytes available in this block */ if (NULL == hbp) return NULL; GET_HDR(hbp, hhdr); /* set hhdr value */ size_avail = (signed_word)hhdr->hb_sz; if (size_avail < size_needed) continue; if (size_avail != size_needed) { if (!may_split) continue; /* If the next heap block is obviously better, go on. */ /* This prevents us from disassembling a single large */ /* block to get tiny blocks. */ thishbp = hhdr -> hb_next; if (thishbp != 0) { signed_word next_size; GET_HDR(thishbp, thishdr); next_size = (signed_word)(thishdr -> hb_sz); if (next_size < size_avail && next_size >= size_needed && !GC_is_black_listed(thishbp, (word)size_needed)) { continue; } } } if (!IS_UNCOLLECTABLE(kind) && (kind != PTRFREE || size_needed > (signed_word)MAX_BLACK_LIST_ALLOC)) { struct hblk * lasthbp = hbp; ptr_t search_end = (ptr_t)hbp + size_avail - size_needed; signed_word orig_avail = size_avail; signed_word eff_size_needed = (flags & IGNORE_OFF_PAGE) != 0 ? (signed_word)HBLKSIZE : size_needed; while ((word)lasthbp <= (word)search_end && (thishbp = GC_is_black_listed(lasthbp, (word)eff_size_needed)) != 0) { lasthbp = thishbp; } size_avail -= (ptr_t)lasthbp - (ptr_t)hbp; thishbp = lasthbp; if (size_avail >= size_needed) { if (thishbp != hbp) { # ifdef USE_MUNMAP /* Avoid remapping followed by splitting. */ if (may_split == AVOID_SPLIT_REMAPPED && !IS_MAPPED(hhdr)) continue; # endif thishdr = GC_install_header(thishbp); if (0 != thishdr) { /* Make sure it's mapped before we mangle it. */ # ifdef USE_MUNMAP if (!IS_MAPPED(hhdr)) { GC_remap((ptr_t)hbp, (size_t)hhdr->hb_sz); hhdr -> hb_flags &= ~WAS_UNMAPPED; } # endif /* Split the block at thishbp */ GC_split_block(hbp, hhdr, thishbp, thishdr, n); /* Advance to thishbp */ hbp = thishbp; hhdr = thishdr; /* We must now allocate thishbp, since it may */ /* be on the wrong free list. */ } } } else if (size_needed > (signed_word)BL_LIMIT && orig_avail - size_needed > (signed_word)BL_LIMIT) { /* Punt, since anything else risks unreasonable heap growth. */ if (++GC_large_alloc_warn_suppressed >= GC_large_alloc_warn_interval) { WARN("Repeated allocation of very large block " "(appr. size %" WARN_PRIdPTR "):\n" "\tMay lead to memory leak and poor performance\n", size_needed); GC_large_alloc_warn_suppressed = 0; } size_avail = orig_avail; } else if (size_avail == 0 && size_needed == HBLKSIZE && IS_MAPPED(hhdr)) { if (!GC_find_leak) { static unsigned count = 0; /* The block is completely blacklisted. We need */ /* to drop some such blocks, since otherwise we spend */ /* all our time traversing them if pointer-free */ /* blocks are unpopular. */ /* A dropped block will be reconsidered at next GC. */ if ((++count & 3) == 0) { /* Allocate and drop the block in small chunks, to */ /* maximize the chance that we will recover some */ /* later. */ word total_size = hhdr -> hb_sz; struct hblk * limit = hbp + divHBLKSZ(total_size); struct hblk * h; struct hblk * prev = hhdr -> hb_prev; GC_large_free_bytes -= total_size; GC_bytes_dropped += total_size; GC_remove_from_fl_at(hhdr, n); for (h = hbp; (word)h < (word)limit; h++) { if (h != hbp) { hhdr = GC_install_header(h); } if (NULL != hhdr) { (void)setup_header(hhdr, h, HBLKSIZE, PTRFREE, 0); /* Can't fail. */ if (GC_debugging_started) { BZERO(h, HBLKSIZE); } } } /* Restore hbp to point at free block */ hbp = prev; if (0 == hbp) { return GC_allochblk_nth(sz, kind, flags, n, may_split); } hhdr = HDR(hbp); } } } } if( size_avail >= size_needed ) { # ifdef USE_MUNMAP if (!IS_MAPPED(hhdr)) { GC_remap((ptr_t)hbp, (size_t)hhdr->hb_sz); hhdr -> hb_flags &= ~WAS_UNMAPPED; /* Note: This may leave adjacent, mapped free blocks. */ } # endif /* hbp may be on the wrong freelist; the parameter n */ /* is important. */ hbp = GC_get_first_part(hbp, hhdr, size_needed, n); break; } } if (0 == hbp) return 0; /* Add it to map of valid blocks */ if (!GC_install_counts(hbp, (word)size_needed)) return(0); /* This leaks memory under very rare conditions. */ /* Set up header */ if (!setup_header(hhdr, hbp, sz, kind, flags)) { GC_remove_counts(hbp, (word)size_needed); return(0); /* ditto */ } # ifndef GC_DISABLE_INCREMENTAL /* Notify virtual dirty bit implementation that we are about to */ /* write. Ensure that pointer-free objects are not protected */ /* if it is avoidable. This also ensures that newly allocated */ /* blocks are treated as dirty. Necessary since we don't */ /* protect free blocks. */ GC_ASSERT((size_needed & (HBLKSIZE-1)) == 0); GC_remove_protection(hbp, divHBLKSZ(size_needed), (hhdr -> hb_descr == 0) /* pointer-free */); # endif /* We just successfully allocated a block. Restart count of */ /* consecutive failures. */ GC_fail_count = 0; GC_large_free_bytes -= size_needed; GC_ASSERT(IS_MAPPED(hhdr)); return( hbp ); } /* * Free a heap block. * * Coalesce the block with its neighbors if possible. * * All mark words are assumed to be cleared. */ GC_INNER void GC_freehblk(struct hblk *hbp) { struct hblk *next, *prev; hdr *hhdr, *prevhdr, *nexthdr; word size; GET_HDR(hbp, hhdr); size = HBLKSIZE * OBJ_SZ_TO_BLOCKS(hhdr->hb_sz); if ((signed_word)size <= 0) ABORT("Deallocating excessively large block. Too large an allocation?"); /* Probably possible if we try to allocate more than half the address */ /* space at once. If we don't catch it here, strange things happen */ /* later. */ GC_remove_counts(hbp, size); hhdr->hb_sz = size; # ifdef USE_MUNMAP hhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no; # endif /* Check for duplicate deallocation in the easy case */ if (HBLK_IS_FREE(hhdr)) { ABORT_ARG1("Duplicate large block deallocation", " of %p", (void *)hbp); } GC_ASSERT(IS_MAPPED(hhdr)); hhdr -> hb_flags |= FREE_BLK; next = (struct hblk *)((ptr_t)hbp + size); GET_HDR(next, nexthdr); prev = GC_free_block_ending_at(hbp); /* Coalesce with successor, if possible */ if(0 != nexthdr && HBLK_IS_FREE(nexthdr) && IS_MAPPED(nexthdr) && (signed_word)(hhdr -> hb_sz + nexthdr -> hb_sz) > 0 /* no overflow */) { GC_remove_from_fl(nexthdr); hhdr -> hb_sz += nexthdr -> hb_sz; GC_remove_header(next); } /* Coalesce with predecessor, if possible. */ if (0 != prev) { prevhdr = HDR(prev); if (IS_MAPPED(prevhdr) && (signed_word)(hhdr -> hb_sz + prevhdr -> hb_sz) > 0) { GC_remove_from_fl(prevhdr); prevhdr -> hb_sz += hhdr -> hb_sz; # ifdef USE_MUNMAP prevhdr -> hb_last_reclaimed = (unsigned short)GC_gc_no; # endif GC_remove_header(hbp); hbp = prev; hhdr = prevhdr; } } /* FIXME: It is not clear we really always want to do these merges */ /* with USE_MUNMAP, since it updates ages and hence prevents */ /* unmapping. */ GC_large_free_bytes += size; GC_add_to_fl(hbp, hhdr); }