//===- DWARFVerifier.cpp --------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "SyntaxHighlighting.h" #include "llvm/DebugInfo/DWARF/DWARFVerifier.h" #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFExpression.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; using namespace dwarf; using namespace object; using namespace syntax; DWARFVerifier::DieRangeInfo::address_range_iterator DWARFVerifier::DieRangeInfo::insert(const DWARFAddressRange &R) { auto Begin = Ranges.begin(); auto End = Ranges.end(); auto Pos = std::lower_bound(Begin, End, R); if (Pos != End) { if (Pos->intersects(R)) return Pos; if (Pos != Begin) { auto Iter = Pos - 1; if (Iter->intersects(R)) return Iter; } } Ranges.insert(Pos, R); return Ranges.end(); } DWARFVerifier::DieRangeInfo::die_range_info_iterator DWARFVerifier::DieRangeInfo::insert(const DieRangeInfo &RI) { auto End = Children.end(); auto Iter = Children.begin(); while (Iter != End) { if (Iter->intersects(RI)) return Iter; ++Iter; } Children.insert(RI); return Children.end(); } bool DWARFVerifier::DieRangeInfo::contains(const DieRangeInfo &RHS) const { // Both list of ranges are sorted so we can make this fast. if (Ranges.empty() || RHS.Ranges.empty()) return false; // Since the ranges are sorted we can advance where we start searching with // this object's ranges as we traverse RHS.Ranges. auto End = Ranges.end(); auto Iter = findRange(RHS.Ranges.front()); // Now linearly walk the ranges in this object and see if they contain each // ranges from RHS.Ranges. for (const auto &R : RHS.Ranges) { while (Iter != End) { if (Iter->contains(R)) break; ++Iter; } if (Iter == End) return false; } return true; } bool DWARFVerifier::DieRangeInfo::intersects(const DieRangeInfo &RHS) const { if (Ranges.empty() || RHS.Ranges.empty()) return false; auto End = Ranges.end(); auto Iter = findRange(RHS.Ranges.front()); for (const auto &R : RHS.Ranges) { if(Iter == End) return false; if (R.HighPC <= Iter->LowPC) continue; while (Iter != End) { if (Iter->intersects(R)) return true; ++Iter; } } return false; } bool DWARFVerifier::verifyUnitHeader(const DWARFDataExtractor DebugInfoData, uint32_t *Offset, unsigned UnitIndex, uint8_t &UnitType, bool &isUnitDWARF64) { uint32_t AbbrOffset, Length; uint8_t AddrSize = 0; uint16_t Version; bool Success = true; bool ValidLength = false; bool ValidVersion = false; bool ValidAddrSize = false; bool ValidType = true; bool ValidAbbrevOffset = true; uint32_t OffsetStart = *Offset; Length = DebugInfoData.getU32(Offset); if (Length == UINT32_MAX) { isUnitDWARF64 = true; OS << format( "Unit[%d] is in 64-bit DWARF format; cannot verify from this point.\n", UnitIndex); return false; } Version = DebugInfoData.getU16(Offset); if (Version >= 5) { UnitType = DebugInfoData.getU8(Offset); AddrSize = DebugInfoData.getU8(Offset); AbbrOffset = DebugInfoData.getU32(Offset); ValidType = dwarf::isUnitType(UnitType); } else { UnitType = 0; AbbrOffset = DebugInfoData.getU32(Offset); AddrSize = DebugInfoData.getU8(Offset); } if (!DCtx.getDebugAbbrev()->getAbbreviationDeclarationSet(AbbrOffset)) ValidAbbrevOffset = false; ValidLength = DebugInfoData.isValidOffset(OffsetStart + Length + 3); ValidVersion = DWARFContext::isSupportedVersion(Version); ValidAddrSize = AddrSize == 4 || AddrSize == 8; if (!ValidLength || !ValidVersion || !ValidAddrSize || !ValidAbbrevOffset || !ValidType) { Success = false; error() << format("Units[%d] - start offset: 0x%08x \n", UnitIndex, OffsetStart); if (!ValidLength) note() << "The length for this unit is too " "large for the .debug_info provided.\n"; if (!ValidVersion) note() << "The 16 bit unit header version is not valid.\n"; if (!ValidType) note() << "The unit type encoding is not valid.\n"; if (!ValidAbbrevOffset) note() << "The offset into the .debug_abbrev section is " "not valid.\n"; if (!ValidAddrSize) note() << "The address size is unsupported.\n"; } *Offset = OffsetStart + Length + 4; return Success; } bool DWARFVerifier::verifyUnitContents(DWARFUnit Unit, uint8_t UnitType) { uint32_t NumUnitErrors = 0; unsigned NumDies = Unit.getNumDIEs(); for (unsigned I = 0; I < NumDies; ++I) { auto Die = Unit.getDIEAtIndex(I); if (Die.getTag() == DW_TAG_null) continue; for (auto AttrValue : Die.attributes()) { NumUnitErrors += verifyDebugInfoAttribute(Die, AttrValue); NumUnitErrors += verifyDebugInfoForm(Die, AttrValue); } } DWARFDie Die = Unit.getUnitDIE(/* ExtractUnitDIEOnly = */ false); if (!Die) { error() << "Compilation unit without DIE.\n"; NumUnitErrors++; return NumUnitErrors == 0; } if (!dwarf::isUnitType(Die.getTag())) { error() << "Compilation unit root DIE is not a unit DIE: " << dwarf::TagString(Die.getTag()) << ".\n"; NumUnitErrors++; } if (UnitType != 0 && !DWARFUnit::isMatchingUnitTypeAndTag(UnitType, Die.getTag())) { error() << "Compilation unit type (" << dwarf::UnitTypeString(UnitType) << ") and root DIE (" << dwarf::TagString(Die.getTag()) << ") do not match.\n"; NumUnitErrors++; } DieRangeInfo RI; NumUnitErrors += verifyDieRanges(Die, RI); return NumUnitErrors == 0; } unsigned DWARFVerifier::verifyAbbrevSection(const DWARFDebugAbbrev *Abbrev) { unsigned NumErrors = 0; if (Abbrev) { const DWARFAbbreviationDeclarationSet *AbbrDecls = Abbrev->getAbbreviationDeclarationSet(0); for (auto AbbrDecl : *AbbrDecls) { SmallDenseSet AttributeSet; for (auto Attribute : AbbrDecl.attributes()) { auto Result = AttributeSet.insert(Attribute.Attr); if (!Result.second) { error() << "Abbreviation declaration contains multiple " << AttributeString(Attribute.Attr) << " attributes.\n"; AbbrDecl.dump(OS); ++NumErrors; } } } } return NumErrors; } bool DWARFVerifier::handleDebugAbbrev() { OS << "Verifying .debug_abbrev...\n"; const DWARFObject &DObj = DCtx.getDWARFObj(); bool noDebugAbbrev = DObj.getAbbrevSection().empty(); bool noDebugAbbrevDWO = DObj.getAbbrevDWOSection().empty(); if (noDebugAbbrev && noDebugAbbrevDWO) { return true; } unsigned NumErrors = 0; if (!noDebugAbbrev) NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrev()); if (!noDebugAbbrevDWO) NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrevDWO()); return NumErrors == 0; } bool DWARFVerifier::handleDebugInfo() { OS << "Verifying .debug_info Unit Header Chain...\n"; const DWARFObject &DObj = DCtx.getDWARFObj(); DWARFDataExtractor DebugInfoData(DObj, DObj.getInfoSection(), DCtx.isLittleEndian(), 0); uint32_t NumDebugInfoErrors = 0; uint32_t OffsetStart = 0, Offset = 0, UnitIdx = 0; uint8_t UnitType = 0; bool isUnitDWARF64 = false; bool isHeaderChainValid = true; bool hasDIE = DebugInfoData.isValidOffset(Offset); DWARFUnitSection TUSection{}; DWARFUnitSection CUSection{}; while (hasDIE) { OffsetStart = Offset; if (!verifyUnitHeader(DebugInfoData, &Offset, UnitIdx, UnitType, isUnitDWARF64)) { isHeaderChainValid = false; if (isUnitDWARF64) break; } else { std::unique_ptr Unit; switch (UnitType) { case dwarf::DW_UT_type: case dwarf::DW_UT_split_type: { Unit.reset(new DWARFTypeUnit( DCtx, DObj.getInfoSection(), DCtx.getDebugAbbrev(), &DObj.getRangeSection(), DObj.getStringSection(), DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(), DObj.getLineSection(), DCtx.isLittleEndian(), false, TUSection, nullptr)); break; } case dwarf::DW_UT_skeleton: case dwarf::DW_UT_split_compile: case dwarf::DW_UT_compile: case dwarf::DW_UT_partial: // UnitType = 0 means that we are // verifying a compile unit in DWARF v4. case 0: { Unit.reset(new DWARFCompileUnit( DCtx, DObj.getInfoSection(), DCtx.getDebugAbbrev(), &DObj.getRangeSection(), DObj.getStringSection(), DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(), DObj.getLineSection(), DCtx.isLittleEndian(), false, CUSection, nullptr)); break; } default: { llvm_unreachable("Invalid UnitType."); } } Unit->extract(DebugInfoData, &OffsetStart); if (!verifyUnitContents(*Unit, UnitType)) ++NumDebugInfoErrors; } hasDIE = DebugInfoData.isValidOffset(Offset); ++UnitIdx; } if (UnitIdx == 0 && !hasDIE) { warn() << ".debug_info is empty.\n"; isHeaderChainValid = true; } NumDebugInfoErrors += verifyDebugInfoReferences(); return (isHeaderChainValid && NumDebugInfoErrors == 0); } unsigned DWARFVerifier::verifyDieRanges(const DWARFDie &Die, DieRangeInfo &ParentRI) { unsigned NumErrors = 0; if (!Die.isValid()) return NumErrors; DWARFAddressRangesVector Ranges = Die.getAddressRanges(); // Build RI for this DIE and check that ranges within this DIE do not // overlap. DieRangeInfo RI(Die); for (auto Range : Ranges) { if (!Range.valid()) { ++NumErrors; error() << "Invalid address range " << Range << "\n"; continue; } // Verify that ranges don't intersect. const auto IntersectingRange = RI.insert(Range); if (IntersectingRange != RI.Ranges.end()) { ++NumErrors; error() << "DIE has overlapping address ranges: " << Range << " and " << *IntersectingRange << "\n"; break; } } // Verify that children don't intersect. const auto IntersectingChild = ParentRI.insert(RI); if (IntersectingChild != ParentRI.Children.end()) { ++NumErrors; error() << "DIEs have overlapping address ranges:"; Die.dump(OS, 0); IntersectingChild->Die.dump(OS, 0); OS << "\n"; } // Verify that ranges are contained within their parent. bool ShouldBeContained = !Ranges.empty() && !ParentRI.Ranges.empty() && !(Die.getTag() == DW_TAG_subprogram && ParentRI.Die.getTag() == DW_TAG_subprogram); if (ShouldBeContained && !ParentRI.contains(RI)) { ++NumErrors; error() << "DIE address ranges are not " "contained in its parent's ranges:"; Die.dump(OS, 0); ParentRI.Die.dump(OS, 0); OS << "\n"; } // Recursively check children. for (DWARFDie Child : Die) NumErrors += verifyDieRanges(Child, RI); return NumErrors; } unsigned DWARFVerifier::verifyDebugInfoAttribute(const DWARFDie &Die, DWARFAttribute &AttrValue) { unsigned NumErrors = 0; auto ReportError = [&](const Twine &TitleMsg) { ++NumErrors; error() << TitleMsg << '\n'; Die.dump(OS, 0, DumpOpts); OS << "\n"; }; const DWARFObject &DObj = DCtx.getDWARFObj(); const auto Attr = AttrValue.Attr; switch (Attr) { case DW_AT_ranges: // Make sure the offset in the DW_AT_ranges attribute is valid. if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { if (*SectionOffset >= DObj.getRangeSection().Data.size()) ReportError("DW_AT_ranges offset is beyond .debug_ranges bounds:"); break; } ReportError("DIE has invalid DW_AT_ranges encoding:"); break; case DW_AT_stmt_list: // Make sure the offset in the DW_AT_stmt_list attribute is valid. if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { if (*SectionOffset >= DObj.getLineSection().Data.size()) ReportError("DW_AT_stmt_list offset is beyond .debug_line bounds: " + llvm::formatv("{0:x8}", *SectionOffset)); break; } ReportError("DIE has invalid DW_AT_stmt_list encoding:"); break; case DW_AT_location: { Optional> Expr = AttrValue.Value.getAsBlock(); if (!Expr) { ReportError("DIE has invalid DW_AT_location encoding:"); break; } DWARFUnit *U = Die.getDwarfUnit(); DataExtractor Data( StringRef(reinterpret_cast(Expr->data()), Expr->size()), DCtx.isLittleEndian(), 0); DWARFExpression Expression(Data, U->getVersion(), U->getAddressByteSize()); bool Error = llvm::any_of(Expression, [](DWARFExpression::Operation &Op) { return Op.isError(); }); if (Error) ReportError("DIE contains invalid DWARF expression:"); break; } default: break; } return NumErrors; } unsigned DWARFVerifier::verifyDebugInfoForm(const DWARFDie &Die, DWARFAttribute &AttrValue) { const DWARFObject &DObj = DCtx.getDWARFObj(); unsigned NumErrors = 0; const auto Form = AttrValue.Value.getForm(); switch (Form) { case DW_FORM_ref1: case DW_FORM_ref2: case DW_FORM_ref4: case DW_FORM_ref8: case DW_FORM_ref_udata: { // Verify all CU relative references are valid CU offsets. Optional RefVal = AttrValue.Value.getAsReference(); assert(RefVal); if (RefVal) { auto DieCU = Die.getDwarfUnit(); auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset(); auto CUOffset = AttrValue.Value.getRawUValue(); if (CUOffset >= CUSize) { ++NumErrors; error() << FormEncodingString(Form) << " CU offset " << format("0x%08" PRIx64, CUOffset) << " is invalid (must be less than CU size of " << format("0x%08" PRIx32, CUSize) << "):\n"; Die.dump(OS, 0, DumpOpts); OS << "\n"; } else { // Valid reference, but we will verify it points to an actual // DIE later. ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset()); } } break; } case DW_FORM_ref_addr: { // Verify all absolute DIE references have valid offsets in the // .debug_info section. Optional RefVal = AttrValue.Value.getAsReference(); assert(RefVal); if (RefVal) { if (*RefVal >= DObj.getInfoSection().Data.size()) { ++NumErrors; error() << "DW_FORM_ref_addr offset beyond .debug_info " "bounds:\n"; Die.dump(OS, 0, DumpOpts); OS << "\n"; } else { // Valid reference, but we will verify it points to an actual // DIE later. ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset()); } } break; } case DW_FORM_strp: { auto SecOffset = AttrValue.Value.getAsSectionOffset(); assert(SecOffset); // DW_FORM_strp is a section offset. if (SecOffset && *SecOffset >= DObj.getStringSection().size()) { ++NumErrors; error() << "DW_FORM_strp offset beyond .debug_str bounds:\n"; Die.dump(OS, 0, DumpOpts); OS << "\n"; } break; } default: break; } return NumErrors; } unsigned DWARFVerifier::verifyDebugInfoReferences() { // Take all references and make sure they point to an actual DIE by // getting the DIE by offset and emitting an error OS << "Verifying .debug_info references...\n"; unsigned NumErrors = 0; for (auto Pair : ReferenceToDIEOffsets) { auto Die = DCtx.getDIEForOffset(Pair.first); if (Die) continue; ++NumErrors; error() << "invalid DIE reference " << format("0x%08" PRIx64, Pair.first) << ". Offset is in between DIEs:\n"; for (auto Offset : Pair.second) { auto ReferencingDie = DCtx.getDIEForOffset(Offset); ReferencingDie.dump(OS, 0, DumpOpts); OS << "\n"; } OS << "\n"; } return NumErrors; } void DWARFVerifier::verifyDebugLineStmtOffsets() { std::map StmtListToDie; for (const auto &CU : DCtx.compile_units()) { auto Die = CU->getUnitDIE(); // Get the attribute value as a section offset. No need to produce an // error here if the encoding isn't correct because we validate this in // the .debug_info verifier. auto StmtSectionOffset = toSectionOffset(Die.find(DW_AT_stmt_list)); if (!StmtSectionOffset) continue; const uint32_t LineTableOffset = *StmtSectionOffset; auto LineTable = DCtx.getLineTableForUnit(CU.get()); if (LineTableOffset < DCtx.getDWARFObj().getLineSection().Data.size()) { if (!LineTable) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx32, LineTableOffset) << "] was not able to be parsed for CU:\n"; Die.dump(OS, 0, DumpOpts); OS << '\n'; continue; } } else { // Make sure we don't get a valid line table back if the offset is wrong. assert(LineTable == nullptr); // Skip this line table as it isn't valid. No need to create an error // here because we validate this in the .debug_info verifier. continue; } auto Iter = StmtListToDie.find(LineTableOffset); if (Iter != StmtListToDie.end()) { ++NumDebugLineErrors; error() << "two compile unit DIEs, " << format("0x%08" PRIx32, Iter->second.getOffset()) << " and " << format("0x%08" PRIx32, Die.getOffset()) << ", have the same DW_AT_stmt_list section offset:\n"; Iter->second.dump(OS, 0, DumpOpts); Die.dump(OS, 0, DumpOpts); OS << '\n'; // Already verified this line table before, no need to do it again. continue; } StmtListToDie[LineTableOffset] = Die; } } void DWARFVerifier::verifyDebugLineRows() { for (const auto &CU : DCtx.compile_units()) { auto Die = CU->getUnitDIE(); auto LineTable = DCtx.getLineTableForUnit(CU.get()); // If there is no line table we will have created an error in the // .debug_info verifier or in verifyDebugLineStmtOffsets(). if (!LineTable) continue; // Verify prologue. uint32_t MaxFileIndex = LineTable->Prologue.FileNames.size(); uint32_t MaxDirIndex = LineTable->Prologue.IncludeDirectories.size(); uint32_t FileIndex = 1; StringMap FullPathMap; for (const auto &FileName : LineTable->Prologue.FileNames) { // Verify directory index. if (FileName.DirIdx > MaxDirIndex) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "].prologue.file_names[" << FileIndex << "].dir_idx contains an invalid index: " << FileName.DirIdx << "\n"; } // Check file paths for duplicates. std::string FullPath; const bool HasFullPath = LineTable->getFileNameByIndex( FileIndex, CU->getCompilationDir(), DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FullPath); assert(HasFullPath && "Invalid index?"); (void)HasFullPath; auto It = FullPathMap.find(FullPath); if (It == FullPathMap.end()) FullPathMap[FullPath] = FileIndex; else if (It->second != FileIndex) { warn() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "].prologue.file_names[" << FileIndex << "] is a duplicate of file_names[" << It->second << "]\n"; } FileIndex++; } // Verify rows. uint64_t PrevAddress = 0; uint32_t RowIndex = 0; for (const auto &Row : LineTable->Rows) { // Verify row address. if (Row.Address < PrevAddress) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "] row[" << RowIndex << "] decreases in address from previous row:\n"; DWARFDebugLine::Row::dumpTableHeader(OS); if (RowIndex > 0) LineTable->Rows[RowIndex - 1].dump(OS); Row.dump(OS); OS << '\n'; } // Verify file index. if (Row.File > MaxFileIndex) { ++NumDebugLineErrors; error() << ".debug_line[" << format("0x%08" PRIx64, *toSectionOffset(Die.find(DW_AT_stmt_list))) << "][" << RowIndex << "] has invalid file index " << Row.File << " (valid values are [1," << MaxFileIndex << "]):\n"; DWARFDebugLine::Row::dumpTableHeader(OS); Row.dump(OS); OS << '\n'; } if (Row.EndSequence) PrevAddress = 0; else PrevAddress = Row.Address; ++RowIndex; } } } bool DWARFVerifier::handleDebugLine() { NumDebugLineErrors = 0; OS << "Verifying .debug_line...\n"; verifyDebugLineStmtOffsets(); verifyDebugLineRows(); return NumDebugLineErrors == 0; } unsigned DWARFVerifier::verifyAccelTable(const DWARFSection *AccelSection, DataExtractor *StrData, const char *SectionName) { unsigned NumErrors = 0; DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), *AccelSection, DCtx.isLittleEndian(), 0); DWARFAcceleratorTable AccelTable(AccelSectionData, *StrData); OS << "Verifying " << SectionName << "...\n"; // Verify that the fixed part of the header is not too short. if (!AccelSectionData.isValidOffset(AccelTable.getSizeHdr())) { error() << "Section is too small to fit a section header.\n"; return 1; } // Verify that the section is not too short. if (Error E = AccelTable.extract()) { error() << toString(std::move(E)) << '\n'; return 1; } // Verify that all buckets have a valid hash index or are empty. uint32_t NumBuckets = AccelTable.getNumBuckets(); uint32_t NumHashes = AccelTable.getNumHashes(); uint32_t BucketsOffset = AccelTable.getSizeHdr() + AccelTable.getHeaderDataLength(); uint32_t HashesBase = BucketsOffset + NumBuckets * 4; uint32_t OffsetsBase = HashesBase + NumHashes * 4; for (uint32_t BucketIdx = 0; BucketIdx < NumBuckets; ++BucketIdx) { uint32_t HashIdx = AccelSectionData.getU32(&BucketsOffset); if (HashIdx >= NumHashes && HashIdx != UINT32_MAX) { error() << format("Bucket[%d] has invalid hash index: %u.\n", BucketIdx, HashIdx); ++NumErrors; } } uint32_t NumAtoms = AccelTable.getAtomsDesc().size(); if (NumAtoms == 0) { error() << "No atoms: failed to read HashData.\n"; return 1; } if (!AccelTable.validateForms()) { error() << "Unsupported form: failed to read HashData.\n"; return 1; } for (uint32_t HashIdx = 0; HashIdx < NumHashes; ++HashIdx) { uint32_t HashOffset = HashesBase + 4 * HashIdx; uint32_t DataOffset = OffsetsBase + 4 * HashIdx; uint32_t Hash = AccelSectionData.getU32(&HashOffset); uint32_t HashDataOffset = AccelSectionData.getU32(&DataOffset); if (!AccelSectionData.isValidOffsetForDataOfSize(HashDataOffset, sizeof(uint64_t))) { error() << format("Hash[%d] has invalid HashData offset: 0x%08x.\n", HashIdx, HashDataOffset); ++NumErrors; } uint32_t StrpOffset; uint32_t StringOffset; uint32_t StringCount = 0; unsigned Offset; unsigned Tag; while ((StrpOffset = AccelSectionData.getU32(&HashDataOffset)) != 0) { const uint32_t NumHashDataObjects = AccelSectionData.getU32(&HashDataOffset); for (uint32_t HashDataIdx = 0; HashDataIdx < NumHashDataObjects; ++HashDataIdx) { std::tie(Offset, Tag) = AccelTable.readAtoms(HashDataOffset); auto Die = DCtx.getDIEForOffset(Offset); if (!Die) { const uint32_t BucketIdx = NumBuckets ? (Hash % NumBuckets) : UINT32_MAX; StringOffset = StrpOffset; const char *Name = StrData->getCStr(&StringOffset); if (!Name) Name = ""; error() << format( "%s Bucket[%d] Hash[%d] = 0x%08x " "Str[%u] = 0x%08x " "DIE[%d] = 0x%08x is not a valid DIE offset for \"%s\".\n", SectionName, BucketIdx, HashIdx, Hash, StringCount, StrpOffset, HashDataIdx, Offset, Name); ++NumErrors; continue; } if ((Tag != dwarf::DW_TAG_null) && (Die.getTag() != Tag)) { error() << "Tag " << dwarf::TagString(Tag) << " in accelerator table does not match Tag " << dwarf::TagString(Die.getTag()) << " of DIE[" << HashDataIdx << "].\n"; ++NumErrors; } } ++StringCount; } } return NumErrors; } bool DWARFVerifier::handleAccelTables() { const DWARFObject &D = DCtx.getDWARFObj(); DataExtractor StrData(D.getStringSection(), DCtx.isLittleEndian(), 0); unsigned NumErrors = 0; if (!D.getAppleNamesSection().Data.empty()) NumErrors += verifyAccelTable(&D.getAppleNamesSection(), &StrData, ".apple_names"); if (!D.getAppleTypesSection().Data.empty()) NumErrors += verifyAccelTable(&D.getAppleTypesSection(), &StrData, ".apple_types"); if (!D.getAppleNamespacesSection().Data.empty()) NumErrors += verifyAccelTable(&D.getAppleNamespacesSection(), &StrData, ".apple_namespaces"); if (!D.getAppleObjCSection().Data.empty()) NumErrors += verifyAccelTable(&D.getAppleObjCSection(), &StrData, ".apple_objc"); return NumErrors == 0; } raw_ostream &DWARFVerifier::error() const { return WithColor(OS, syntax::Error).get() << "error: "; } raw_ostream &DWARFVerifier::warn() const { return WithColor(OS, syntax::Warning).get() << "warning: "; } raw_ostream &DWARFVerifier::note() const { return WithColor(OS, syntax::Note).get() << "note: "; }