/* ****************************************************************************
*
* Copyright (c) Microsoft Corporation.
*
* This source code is subject to terms and conditions of the Microsoft Public License. A
* copy of the license can be found in the License.html file at the root of this distribution. If
* you cannot locate the Microsoft Public License, please send an email to
* dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound
* by the terms of the Microsoft Public License.
*
* You must not remove this notice, or any other, from this software.
*
*
* ***************************************************************************/
using System; using Microsoft;
#if !SILVERLIGHT // ComObject
using System.Collections.Generic;
using System.Diagnostics;
using System.Reflection;
using System.Runtime.InteropServices;
#if CODEPLEX_40
namespace System.Dynamic {
#else
namespace Microsoft.Scripting {
#endif
///
/// If a managed user type (as opposed to a primitive type or a COM object) is passed as an argument to a COM call, we need
/// to determine the VarEnum type we will marshal it as. We have the following options:
/// 1. Raise an exception. Languages with their own version of primitive types would not be able to call
/// COM methods using the language's types (for eg. strings in IronRuby are not System.String). An explicit
/// cast would be needed.
/// 2. We could marshal it as VT_DISPATCH. Then COM code will be able to access all the APIs in a late-bound manner,
/// but old COM components will probably malfunction if they expect a primitive type.
/// 3. We could guess which primitive type is the closest match. This will make COM components be as easily
/// accessible as .NET methods.
/// 4. We could use the type library to check what the expected type is. However, the type library may not be available.
///
/// VarEnumSelector implements option # 3
///
internal class VarEnumSelector {
private readonly VariantBuilder[] _variantBuilders;
private static readonly Dictionary _ComToManagedPrimitiveTypes = CreateComToManagedPrimitiveTypes();
private static readonly IList> _ComPrimitiveTypeFamilies = CreateComPrimitiveTypeFamilies();
internal VarEnumSelector(Type[] explicitArgTypes) {
_variantBuilders = new VariantBuilder[explicitArgTypes.Length];
for (int i = 0; i < explicitArgTypes.Length; i++) {
_variantBuilders[i] = GetVariantBuilder(explicitArgTypes[i]);
}
}
internal VariantBuilder[] VariantBuilders {
get {
return _variantBuilders;
}
}
///
/// Gets the managed type that an object needs to be coverted to in order for it to be able
/// to be represented as a Variant.
///
/// In general, there is a many-to-many mapping between Type and VarEnum. However, this method
/// returns a simple mapping that is needed for the current implementation. The reason for the
/// many-to-many relation is:
/// 1. Int32 maps to VT_I4 as well as VT_ERROR, and Decimal maps to VT_DECIMAL and VT_CY. However,
/// this changes if you throw the wrapper types into the mix.
/// 2. There is no Type to represent COM types. __ComObject is a private type, and Object is too
/// general.
///
internal static Type GetManagedMarshalType(VarEnum varEnum) {
Debug.Assert((varEnum & VarEnum.VT_BYREF) == 0);
if (varEnum == VarEnum.VT_CY) {
return typeof(CurrencyWrapper);
}
if (Variant.IsPrimitiveType(varEnum)) {
return _ComToManagedPrimitiveTypes[varEnum];
}
switch (varEnum) {
case VarEnum.VT_EMPTY:
case VarEnum.VT_NULL:
case VarEnum.VT_UNKNOWN:
case VarEnum.VT_DISPATCH:
case VarEnum.VT_VARIANT:
return typeof(Object);
case VarEnum.VT_ERROR:
return typeof(ErrorWrapper);
default:
throw Error.UnexpectedVarEnum(varEnum);
}
}
private static Dictionary CreateComToManagedPrimitiveTypes() {
Dictionary dict = new Dictionary();
#region Generated ComToManagedPrimitiveTypes
// *** BEGIN GENERATED CODE ***
// generated by function: gen_ComToManagedPrimitiveTypes from: generate_comdispatch.py
dict[VarEnum.VT_I1] = typeof(SByte);
dict[VarEnum.VT_I2] = typeof(Int16);
dict[VarEnum.VT_I4] = typeof(Int32);
dict[VarEnum.VT_I8] = typeof(Int64);
dict[VarEnum.VT_UI1] = typeof(Byte);
dict[VarEnum.VT_UI2] = typeof(UInt16);
dict[VarEnum.VT_UI4] = typeof(UInt32);
dict[VarEnum.VT_UI8] = typeof(UInt64);
dict[VarEnum.VT_INT] = typeof(IntPtr);
dict[VarEnum.VT_UINT] = typeof(UIntPtr);
dict[VarEnum.VT_BOOL] = typeof(Boolean);
dict[VarEnum.VT_R4] = typeof(Single);
dict[VarEnum.VT_R8] = typeof(Double);
dict[VarEnum.VT_DECIMAL] = typeof(Decimal);
dict[VarEnum.VT_DATE] = typeof(DateTime);
dict[VarEnum.VT_BSTR] = typeof(String);
// *** END GENERATED CODE ***
#endregion
dict[VarEnum.VT_CY] = typeof(CurrencyWrapper);
dict[VarEnum.VT_ERROR] = typeof(ErrorWrapper);
return dict;
}
#region Primitive COM types
///
/// Creates a family of COM types such that within each family, there is a completely non-lossy
/// conversion from a type to an earlier type in the family.
///
private static IList> CreateComPrimitiveTypeFamilies() {
VarEnum[][] typeFamilies = new VarEnum[][] {
new VarEnum[] { VarEnum.VT_I8, VarEnum.VT_I4, VarEnum.VT_I2, VarEnum.VT_I1 },
new VarEnum[] { VarEnum.VT_UI8, VarEnum.VT_UI4, VarEnum.VT_UI2, VarEnum.VT_UI1 },
new VarEnum[] { VarEnum.VT_INT },
new VarEnum[] { VarEnum.VT_UINT },
new VarEnum[] { VarEnum.VT_BOOL },
new VarEnum[] { VarEnum.VT_DATE },
new VarEnum[] { VarEnum.VT_R8, VarEnum.VT_R4 },
new VarEnum[] { VarEnum.VT_DECIMAL },
new VarEnum[] { VarEnum.VT_BSTR },
// wrappers
new VarEnum[] { VarEnum.VT_CY },
new VarEnum[] { VarEnum.VT_ERROR },
};
return typeFamilies;
}
///
/// Get the (one representative type for each) primitive type families that the argument can be converted to
///
private static List GetConversionsToComPrimitiveTypeFamilies(Type argumentType) {
List compatibleComTypes = new List();
foreach (IList typeFamily in _ComPrimitiveTypeFamilies) {
foreach (VarEnum candidateType in typeFamily) {
Type candidateManagedType = _ComToManagedPrimitiveTypes[candidateType];
if (TypeUtils.IsImplicitlyConvertible(argumentType, candidateManagedType, true)) {
compatibleComTypes.Add(candidateType);
// Move on to the next type family. We need atmost one type from each family
break;
}
}
}
return compatibleComTypes;
}
///
/// If there is more than one type family that the argument can be converted to, we will throw a
/// AmbiguousMatchException instead of randomly picking a winner.
///
private static void CheckForAmbiguousMatch(Type argumentType, List compatibleComTypes) {
if (compatibleComTypes.Count <= 1) {
return;
}
String typeNames = "";
for (int i = 0; i < compatibleComTypes.Count; i++) {
string typeName = _ComToManagedPrimitiveTypes[compatibleComTypes[i]].Name;
if (i == (compatibleComTypes.Count - 1)) {
typeNames += " and ";
} else if (i != 0) {
typeNames += ", ";
}
typeNames += typeName;
}
throw Error.AmbiguousConversion(argumentType.Name, typeNames);
}
private static bool TryGetPrimitiveComType(Type argumentType, out VarEnum primitiveVarEnum) {
#region Generated Managed To COM Primitive Type Map
// *** BEGIN GENERATED CODE ***
// generated by function: gen_ManagedToComPrimitiveTypes from: generate_comdispatch.py
switch (Type.GetTypeCode(argumentType)) {
case TypeCode.Boolean:
primitiveVarEnum = VarEnum.VT_BOOL;
return true;
case TypeCode.Char:
primitiveVarEnum = VarEnum.VT_UI2;
return true;
case TypeCode.SByte:
primitiveVarEnum = VarEnum.VT_I1;
return true;
case TypeCode.Byte:
primitiveVarEnum = VarEnum.VT_UI1;
return true;
case TypeCode.Int16:
primitiveVarEnum = VarEnum.VT_I2;
return true;
case TypeCode.UInt16:
primitiveVarEnum = VarEnum.VT_UI2;
return true;
case TypeCode.Int32:
primitiveVarEnum = VarEnum.VT_I4;
return true;
case TypeCode.UInt32:
primitiveVarEnum = VarEnum.VT_UI4;
return true;
case TypeCode.Int64:
primitiveVarEnum = VarEnum.VT_I8;
return true;
case TypeCode.UInt64:
primitiveVarEnum = VarEnum.VT_UI8;
return true;
case TypeCode.Single:
primitiveVarEnum = VarEnum.VT_R4;
return true;
case TypeCode.Double:
primitiveVarEnum = VarEnum.VT_R8;
return true;
case TypeCode.Decimal:
primitiveVarEnum = VarEnum.VT_DECIMAL;
return true;
case TypeCode.DateTime:
primitiveVarEnum = VarEnum.VT_DATE;
return true;
case TypeCode.String:
primitiveVarEnum = VarEnum.VT_BSTR;
return true;
}
if (argumentType == typeof(CurrencyWrapper)) {
primitiveVarEnum = VarEnum.VT_CY;
return true;
}
if (argumentType == typeof(ErrorWrapper)) {
primitiveVarEnum = VarEnum.VT_ERROR;
return true;
}
if (argumentType == typeof(IntPtr)) {
primitiveVarEnum = VarEnum.VT_INT;
return true;
}
if (argumentType == typeof(UIntPtr)) {
primitiveVarEnum = VarEnum.VT_UINT;
return true;
}
// *** END GENERATED CODE ***
#endregion
primitiveVarEnum = VarEnum.VT_VOID; // error
return false;
}
///
/// Is there a unique primitive type that has the best conversion for the argument
///
private static bool TryGetPrimitiveComTypeViaConversion(Type argumentType, out VarEnum primitiveVarEnum) {
// Look for a unique type family that the argument can be converted to.
List compatibleComTypes = GetConversionsToComPrimitiveTypeFamilies(argumentType);
CheckForAmbiguousMatch(argumentType, compatibleComTypes);
if (compatibleComTypes.Count == 1) {
primitiveVarEnum = compatibleComTypes[0];
return true;
}
primitiveVarEnum = VarEnum.VT_VOID; // error
return false;
}
#endregion
// Type.InvokeMember tries to marshal objects as VT_DISPATCH, and falls back to VT_UNKNOWN
// VT_RECORD here just indicates that we have user defined type.
// We will try VT_DISPATCH and then call GetNativeVariantForObject.
const VarEnum VT_DEFAULT = VarEnum.VT_RECORD;
private VarEnum GetComType(ref Type argumentType) {
if (argumentType == typeof(Missing)) {
//actual variant type will be VT_ERROR | E_PARAMNOTFOUND
return VarEnum.VT_RECORD;
}
if (argumentType.IsArray) {
//actual variant type will be VT_ARRAY | VT_
return VarEnum.VT_ARRAY;
}
if (argumentType == typeof(UnknownWrapper)) {
return VarEnum.VT_UNKNOWN;
} else if (argumentType == typeof(DispatchWrapper)) {
return VarEnum.VT_DISPATCH;
} else if (argumentType == typeof(VariantWrapper)) {
return VarEnum.VT_VARIANT;
} else if (argumentType == typeof(BStrWrapper)) {
return VarEnum.VT_BSTR;
} else if (argumentType == typeof(ErrorWrapper)) {
return VarEnum.VT_ERROR;
} else if (argumentType == typeof(CurrencyWrapper)) {
return VarEnum.VT_CY;
}
// Many languages require an explicit cast for an enum to be used as the underlying type.
// However, we want to allow this conversion for COM without requiring an explicit cast
// so that enums from interop assemblies can be used as arguments.
if (argumentType.IsEnum) {
argumentType = Enum.GetUnderlyingType(argumentType);
return GetComType(ref argumentType);
}
// COM cannot express valuetype nulls so we will convert to underlying type
// it will throw if there is no value
if (TypeUtils.IsNullableType(argumentType)) {
argumentType = TypeUtils.GetNonNullableType(argumentType);
return GetComType(ref argumentType);
}
//generic types cannot be exposed to COM so they do not implement COM interfaces.
if (argumentType.IsGenericType) {
return VarEnum.VT_UNKNOWN;
}
VarEnum primitiveVarEnum;
if (TryGetPrimitiveComType(argumentType, out primitiveVarEnum)) {
return primitiveVarEnum;
}
// We could not find a way to marshal the type as a specific COM type
return VT_DEFAULT;
}
///
/// Get the COM Variant type that argument should be marshaled as for a call to COM
///
private VariantBuilder GetVariantBuilder(Type argumentType) {
//argumentType is coming from MarshalType, null means the dynamic object holds
//a null value and not byref
if (argumentType == null) {
return new VariantBuilder(VarEnum.VT_EMPTY, new NullArgBuilder());
}
if (argumentType == typeof(DBNull)) {
return new VariantBuilder(VarEnum.VT_NULL, new NullArgBuilder());
}
ArgBuilder argBuilder;
if (argumentType.IsByRef) {
Type elementType = argumentType.GetElementType();
VarEnum elementVarEnum;
if (elementType == typeof(object) || elementType == typeof(DBNull)) {
//no meaningful value to pass ByRef.
//perhaps the calee will replace it with something.
//need to pass as a variant reference
elementVarEnum = VarEnum.VT_VARIANT;
} else {
elementVarEnum = GetComType(ref elementType);
}
argBuilder = GetSimpleArgBuilder(elementType, elementVarEnum);
return new VariantBuilder(elementVarEnum | VarEnum.VT_BYREF, argBuilder);
}
VarEnum varEnum = GetComType(ref argumentType);
argBuilder = GetByValArgBuilder(argumentType, ref varEnum);
return new VariantBuilder(varEnum, argBuilder);
}
// This helper is called when we are looking for a ByVal marhsalling
// In a ByVal case we can take into account conversions or IConvertible if all other
// attempts to find marshalling type failed
private static ArgBuilder GetByValArgBuilder(Type elementType, ref VarEnum elementVarEnum) {
// if VT indicates that marshalling type is unknown
if (elementVarEnum == VT_DEFAULT) {
//trying to find a conversion.
VarEnum convertibleTo;
if (TryGetPrimitiveComTypeViaConversion(elementType, out convertibleTo)) {
elementVarEnum = convertibleTo;
Type marshalType = GetManagedMarshalType(elementVarEnum);
return new ConversionArgBuilder(elementType, GetSimpleArgBuilder(marshalType, elementVarEnum));
}
//checking for IConvertible.
if (typeof(IConvertible).IsAssignableFrom(elementType)) {
return new ConvertibleArgBuilder();
}
}
return GetSimpleArgBuilder(elementType, elementVarEnum);
}
// This helper can produce a builder for types that are directly supported by Variant.
private static SimpleArgBuilder GetSimpleArgBuilder(Type elementType, VarEnum elementVarEnum) {
SimpleArgBuilder argBuilder;
switch (elementVarEnum) {
case VarEnum.VT_BSTR:
argBuilder = new StringArgBuilder(elementType);
break;
case VarEnum.VT_BOOL:
argBuilder = new BoolArgBuilder(elementType);
break;
case VarEnum.VT_DATE:
argBuilder = new DateTimeArgBuilder(elementType);
break;
case VarEnum.VT_CY:
argBuilder = new CurrencyArgBuilder(elementType);
break;
case VarEnum.VT_DISPATCH:
argBuilder = new DispatchArgBuilder(elementType);
break;
case VarEnum.VT_UNKNOWN:
argBuilder = new UnknownArgBuilder(elementType);
break;
case VarEnum.VT_VARIANT:
case VarEnum.VT_ARRAY:
case VarEnum.VT_RECORD:
argBuilder = new VariantArgBuilder(elementType);
break;
case VarEnum.VT_ERROR:
argBuilder = new ErrorArgBuilder(elementType);
break;
default:
var marshalType = GetManagedMarshalType(elementVarEnum);
if (elementType == marshalType) {
argBuilder = new SimpleArgBuilder(elementType);
} else {
argBuilder = new ConvertArgBuilder(elementType, marshalType);
}
break;
}
return argBuilder;
}
}
}
#endif