; RUN: opt < %s -instcombine -S | FileCheck %s ;CHECK: @and_consts ;CHECK: and i32 %k, 12 ;CHECK: icmp ne i32 %0, 12 ;CHECK: ret define i1 @and_consts(i32 %k, i32 %c1, i32 %c2) { bb: %tmp1 = and i32 4, %k %tmp2 = icmp eq i32 %tmp1, 0 %tmp5 = and i32 8, %k %tmp6 = icmp eq i32 %tmp5, 0 %or = or i1 %tmp2, %tmp6 ret i1 %or } ;CHECK: @foo1_and ;CHECK: shl i32 1, %c1 ;CHECK-NEXT: lshr i32 -2147483648, %c2 ;CHECK-NEXT: or i32 ;CHECK-NEXT: and i32 ;CHECK-NEXT: icmp ne i32 %1, %0 ;CHECK: ret define i1 @foo1_and(i32 %k, i32 %c1, i32 %c2) { bb: %tmp = shl i32 1, %c1 %tmp4 = lshr i32 -2147483648, %c2 %tmp1 = and i32 %tmp, %k %tmp2 = icmp eq i32 %tmp1, 0 %tmp5 = and i32 %tmp4, %k %tmp6 = icmp eq i32 %tmp5, 0 %or = or i1 %tmp2, %tmp6 ret i1 %or } ; Same as above but with operands commuted one of the ands, but not the other. define i1 @foo1_and_commuted(i32 %k, i32 %c1, i32 %c2) { ; CHECK-LABEL: @foo1_and_commuted( ; CHECK-NEXT: [[K2:%.*]] = mul i32 [[K:%.*]], [[K]] ; CHECK-NEXT: [[TMP:%.*]] = shl i32 1, [[C1:%.*]] ; CHECK-NEXT: [[TMP4:%.*]] = lshr i32 -2147483648, [[C2:%.*]] ; CHECK-NEXT: [[TMP0:%.*]] = or i32 [[TMP]], [[TMP4]] ; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[K2]], [[TMP0]] ; CHECK-NEXT: [[TMP2:%.*]] = icmp ne i32 [[TMP1]], [[TMP0]] ; CHECK-NEXT: ret i1 [[TMP2]] ; %k2 = mul i32 %k, %k ; to trick the complexity sorting %tmp = shl i32 1, %c1 %tmp4 = lshr i32 -2147483648, %c2 %tmp1 = and i32 %k2, %tmp %tmp2 = icmp eq i32 %tmp1, 0 %tmp5 = and i32 %tmp4, %k2 %tmp6 = icmp eq i32 %tmp5, 0 %or = or i1 %tmp2, %tmp6 ret i1 %or } define i1 @or_consts(i32 %k, i32 %c1, i32 %c2) { ; CHECK-LABEL: @or_consts( ; CHECK-NEXT: [[TMP1:%.*]] = and i32 [[K:%.*]], 12 ; CHECK-NEXT: [[TMP2:%.*]] = icmp eq i32 [[TMP1]], 12 ; CHECK-NEXT: ret i1 [[TMP2]] ; %tmp1 = and i32 4, %k %tmp2 = icmp ne i32 %tmp1, 0 %tmp5 = and i32 8, %k %tmp6 = icmp ne i32 %tmp5, 0 %or = and i1 %tmp2, %tmp6 ret i1 %or } define i1 @foo1_or(i32 %k, i32 %c1, i32 %c2) { ; CHECK-LABEL: @foo1_or( ; CHECK-NEXT: [[TMP:%.*]] = shl i32 1, [[C1:%.*]] ; CHECK-NEXT: [[TMP4:%.*]] = lshr i32 -2147483648, [[C2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = or i32 [[TMP]], [[TMP4]] ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[TMP1]], [[K:%.*]] ; CHECK-NEXT: [[TMP3:%.*]] = icmp eq i32 [[TMP2]], [[TMP1]] ; CHECK-NEXT: ret i1 [[TMP3]] ; %tmp = shl i32 1, %c1 %tmp4 = lshr i32 -2147483648, %c2 %tmp1 = and i32 %tmp, %k %tmp2 = icmp ne i32 %tmp1, 0 %tmp5 = and i32 %tmp4, %k %tmp6 = icmp ne i32 %tmp5, 0 %or = and i1 %tmp2, %tmp6 ret i1 %or } ; Same as above but with operands commuted one of the ors, but not the other. define i1 @foo1_or_commuted(i32 %k, i32 %c1, i32 %c2) { ; CHECK-LABEL: @foo1_or_commuted( ; CHECK-NEXT: [[K2:%.*]] = mul i32 [[K:%.*]], [[K]] ; CHECK-NEXT: [[TMP:%.*]] = shl i32 1, [[C1:%.*]] ; CHECK-NEXT: [[TMP4:%.*]] = lshr i32 -2147483648, [[C2:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = or i32 [[TMP]], [[TMP4]] ; CHECK-NEXT: [[TMP2:%.*]] = and i32 [[K2]], [[TMP1]] ; CHECK-NEXT: [[TMP3:%.*]] = icmp eq i32 [[TMP2]], [[TMP1]] ; CHECK-NEXT: ret i1 [[TMP3]] ; %k2 = mul i32 %k, %k ; to trick the complexity sorting %tmp = shl i32 1, %c1 %tmp4 = lshr i32 -2147483648, %c2 %tmp1 = and i32 %k2, %tmp %tmp2 = icmp ne i32 %tmp1, 0 %tmp5 = and i32 %tmp4, %k2 %tmp6 = icmp ne i32 %tmp5, 0 %or = and i1 %tmp2, %tmp6 ret i1 %or }