; RUN: opt < %s -inline -inline-threshold=20 -S | FileCheck %s ; RUN: opt < %s -passes='cgscc(inline)' -inline-threshold=20 -S | FileCheck %s define internal i32 @callee1(i32 %A, i32 %B) { %C = sdiv i32 %A, %B ret i32 %C } define i32 @caller1() { ; CHECK-LABEL: define i32 @caller1( ; CHECK-NEXT: ret i32 3 %X = call i32 @callee1( i32 10, i32 3 ) ret i32 %X } define i32 @caller2() { ; Check that we can constant-prop through instructions after inlining callee21 ; to get constants in the inlined callsite to callee22. ; FIXME: Currently, the threshold is fixed at 20 because we don't perform ; *recursive* cost analysis to realize that the nested call site will definitely ; inline and be cheap. We should eventually do that and lower the threshold here ; to 1. ; ; CHECK-LABEL: @caller2( ; CHECK-NOT: call void @callee2 ; CHECK: ret %x = call i32 @callee21(i32 42, i32 48) ret i32 %x } define i32 @callee21(i32 %x, i32 %y) { %sub = sub i32 %y, %x %result = call i32 @callee22(i32 %sub) ret i32 %result } declare i8* @getptr() define i32 @callee22(i32 %x) { %icmp = icmp ugt i32 %x, 42 br i1 %icmp, label %bb.true, label %bb.false bb.true: ; This block musn't be counted in the inline cost. %x1 = add i32 %x, 1 %x2 = add i32 %x1, 1 %x3 = add i32 %x2, 1 %x4 = add i32 %x3, 1 %x5 = add i32 %x4, 1 %x6 = add i32 %x5, 1 %x7 = add i32 %x6, 1 %x8 = add i32 %x7, 1 ret i32 %x8 bb.false: ret i32 %x } define i32 @caller3() { ; Check that even if the expensive path is hidden behind several basic blocks, ; it doesn't count toward the inline cost when constant-prop proves those paths ; dead. ; ; CHECK-LABEL: @caller3( ; CHECK-NOT: call ; CHECK: ret i32 6 entry: %x = call i32 @callee3(i32 42, i32 48) ret i32 %x } define i32 @callee3(i32 %x, i32 %y) { %sub = sub i32 %y, %x %icmp = icmp ugt i32 %sub, 42 br i1 %icmp, label %bb.true, label %bb.false bb.true: %icmp2 = icmp ult i32 %sub, 64 br i1 %icmp2, label %bb.true.true, label %bb.true.false bb.true.true: ; This block musn't be counted in the inline cost. %x1 = add i32 %x, 1 %x2 = add i32 %x1, 1 %x3 = add i32 %x2, 1 %x4 = add i32 %x3, 1 %x5 = add i32 %x4, 1 %x6 = add i32 %x5, 1 %x7 = add i32 %x6, 1 %x8 = add i32 %x7, 1 br label %bb.merge bb.true.false: ; This block musn't be counted in the inline cost. %y1 = add i32 %y, 1 %y2 = add i32 %y1, 1 %y3 = add i32 %y2, 1 %y4 = add i32 %y3, 1 %y5 = add i32 %y4, 1 %y6 = add i32 %y5, 1 %y7 = add i32 %y6, 1 %y8 = add i32 %y7, 1 br label %bb.merge bb.merge: %result = phi i32 [ %x8, %bb.true.true ], [ %y8, %bb.true.false ] ret i32 %result bb.false: ret i32 %sub } declare {i8, i1} @llvm.uadd.with.overflow.i8(i8 %a, i8 %b) define i8 @caller4(i8 %z) { ; Check that we can constant fold through intrinsics such as the ; overflow-detecting arithmetic instrinsics. These are particularly important ; as they are used heavily in standard library code and generic C++ code where ; the arguments are oftent constant but complete generality is required. ; ; CHECK-LABEL: @caller4( ; CHECK-NOT: call ; CHECK: ret i8 -1 entry: %x = call i8 @callee4(i8 254, i8 14, i8 %z) ret i8 %x } define i8 @callee4(i8 %x, i8 %y, i8 %z) { %uadd = call {i8, i1} @llvm.uadd.with.overflow.i8(i8 %x, i8 %y) %o = extractvalue {i8, i1} %uadd, 1 br i1 %o, label %bb.true, label %bb.false bb.true: ret i8 -1 bb.false: ; This block musn't be counted in the inline cost. %z1 = add i8 %z, 1 %z2 = add i8 %z1, 1 %z3 = add i8 %z2, 1 %z4 = add i8 %z3, 1 %z5 = add i8 %z4, 1 %z6 = add i8 %z5, 1 %z7 = add i8 %z6, 1 %z8 = add i8 %z7, 1 ret i8 %z8 } define i64 @caller5(i64 %y) { ; Check that we can round trip constants through various kinds of casts etc w/o ; losing track of the constant prop in the inline cost analysis. ; ; CHECK-LABEL: @caller5( ; CHECK-NOT: call ; CHECK: ret i64 -1 entry: %x = call i64 @callee5(i64 42, i64 %y) ret i64 %x } define i64 @callee5(i64 %x, i64 %y) { %inttoptr = inttoptr i64 %x to i8* %bitcast = bitcast i8* %inttoptr to i32* %ptrtoint = ptrtoint i32* %bitcast to i64 %trunc = trunc i64 %ptrtoint to i32 %zext = zext i32 %trunc to i64 %cmp = icmp eq i64 %zext, 42 br i1 %cmp, label %bb.true, label %bb.false bb.true: ret i64 -1 bb.false: ; This block musn't be counted in the inline cost. %y1 = add i64 %y, 1 %y2 = add i64 %y1, 1 %y3 = add i64 %y2, 1 %y4 = add i64 %y3, 1 %y5 = add i64 %y4, 1 %y6 = add i64 %y5, 1 %y7 = add i64 %y6, 1 %y8 = add i64 %y7, 1 ret i64 %y8 } define float @caller6() { ; Check that we can constant-prop through fcmp instructions ; ; CHECK-LABEL: @caller6( ; CHECK-NOT: call ; CHECK: ret %x = call float @callee6(float 42.0) ret float %x } define float @callee6(float %x) { %icmp = fcmp ugt float %x, 42.0 br i1 %icmp, label %bb.true, label %bb.false bb.true: ; This block musn't be counted in the inline cost. %x1 = fadd float %x, 1.0 %x2 = fadd float %x1, 1.0 %x3 = fadd float %x2, 1.0 %x4 = fadd float %x3, 1.0 %x5 = fadd float %x4, 1.0 %x6 = fadd float %x5, 1.0 %x7 = fadd float %x6, 1.0 %x8 = fadd float %x7, 1.0 ret float %x8 bb.false: ret float %x } define i32 @PR13412.main() { ; This is a somewhat complicated three layer subprogram that was reported to ; compute the wrong value for a branch due to assuming that an argument ; mid-inline couldn't be equal to another pointer. ; ; After inlining, the branch should point directly to the exit block, not to ; the intermediate block. ; CHECK: @PR13412.main ; CHECK: br i1 true, label %[[TRUE_DEST:.*]], label %[[FALSE_DEST:.*]] ; CHECK: [[FALSE_DEST]]: ; CHECK-NEXT: call void @PR13412.fail() ; CHECK: [[TRUE_DEST]]: ; CHECK-NEXT: ret i32 0 entry: %i1 = alloca i64 store i64 0, i64* %i1 %arraydecay = bitcast i64* %i1 to i32* %call = call i1 @PR13412.first(i32* %arraydecay, i32* %arraydecay) br i1 %call, label %cond.end, label %cond.false cond.false: call void @PR13412.fail() br label %cond.end cond.end: ret i32 0 } define internal i1 @PR13412.first(i32* %a, i32* %b) { entry: %call = call i32* @PR13412.second(i32* %a, i32* %b) %cmp = icmp eq i32* %call, %b ret i1 %cmp } declare void @PR13412.fail() define internal i32* @PR13412.second(i32* %a, i32* %b) { entry: %sub.ptr.lhs.cast = ptrtoint i32* %b to i64 %sub.ptr.rhs.cast = ptrtoint i32* %a to i64 %sub.ptr.sub = sub i64 %sub.ptr.lhs.cast, %sub.ptr.rhs.cast %sub.ptr.div = ashr exact i64 %sub.ptr.sub, 2 %cmp = icmp ugt i64 %sub.ptr.div, 1 br i1 %cmp, label %if.then, label %if.end3 if.then: %0 = load i32, i32* %a %1 = load i32, i32* %b %cmp1 = icmp eq i32 %0, %1 br i1 %cmp1, label %return, label %if.end3 if.end3: br label %return return: %retval.0 = phi i32* [ %b, %if.end3 ], [ %a, %if.then ] ret i32* %retval.0 } declare i32 @PR28802.external(i32 returned %p1) define internal i32 @PR28802.callee() { entry: br label %cont cont: %0 = phi i32 [ 0, %entry ] %call = call i32 @PR28802.external(i32 %0) ret i32 %call } define i32 @PR28802() { entry: %call = call i32 @PR28802.callee() ret i32 %call } ; CHECK-LABEL: define i32 @PR28802( ; CHECK: %[[call:.*]] = call i32 @PR28802.external(i32 0) ; CHECK: ret i32 %[[call]] define internal i32 @PR28848.callee(i32 %p2, i1 %c) { entry: br i1 %c, label %cond.end, label %cond.true cond.true: br label %cond.end cond.end: %cond = phi i32 [ 0, %cond.true ], [ %p2, %entry ] %or = or i32 %cond, %p2 ret i32 %or } define i32 @PR28848() { entry: %call = call i32 @PR28848.callee(i32 0, i1 false) ret i32 %call } ; CHECK-LABEL: define i32 @PR28848( ; CHECK: ret i32 0 define internal void @callee7(i16 %param1, i16 %param2) { entry: br label %bb bb: %phi = phi i16 [ %param2, %entry ] %add = add i16 %phi, %param1 ret void } declare i16 @caller7.external(i16 returned) define void @caller7() { bb1: %call = call i16 @caller7.external(i16 1) call void @callee7(i16 0, i16 %call) ret void } ; CHECK-LABEL: define void @caller7( ; CHECK: %call = call i16 @caller7.external(i16 1) ; CHECK-NEXT: ret void