//===-- FunctionLoweringInfo.cpp ------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements routines for translating functions from LLVM IR into // Machine IR. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetFrameLowering.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" #include using namespace llvm; #define DEBUG_TYPE "function-lowering-info" /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by /// PHI nodes or outside of the basic block that defines it, or used by a /// switch or atomic instruction, which may expand to multiple basic blocks. static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { if (I->use_empty()) return false; if (isa(I)) return true; const BasicBlock *BB = I->getParent(); for (const User *U : I->users()) if (cast(U)->getParent() != BB || isa(U)) return true; return false; } static ISD::NodeType getPreferredExtendForValue(const Value *V) { // For the users of the source value being used for compare instruction, if // the number of signed predicate is greater than unsigned predicate, we // prefer to use SIGN_EXTEND. // // With this optimization, we would be able to reduce some redundant sign or // zero extension instruction, and eventually more machine CSE opportunities // can be exposed. ISD::NodeType ExtendKind = ISD::ANY_EXTEND; unsigned NumOfSigned = 0, NumOfUnsigned = 0; for (const User *U : V->users()) { if (const auto *CI = dyn_cast(U)) { NumOfSigned += CI->isSigned(); NumOfUnsigned += CI->isUnsigned(); } } if (NumOfSigned > NumOfUnsigned) ExtendKind = ISD::SIGN_EXTEND; return ExtendKind; } void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, SelectionDAG *DAG) { Fn = &fn; MF = &mf; TLI = MF->getSubtarget().getTargetLowering(); RegInfo = &MF->getRegInfo(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); unsigned StackAlign = TFI->getStackAlignment(); // Check whether the function can return without sret-demotion. SmallVector Outs; GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, mf.getDataLayout()); CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF, Fn->isVarArg(), Outs, Fn->getContext()); // If this personality uses funclets, we need to do a bit more work. DenseMap> CatchObjects; EHPersonality Personality = classifyEHPersonality( Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); if (isFuncletEHPersonality(Personality)) { // Calculate state numbers if we haven't already. WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); if (Personality == EHPersonality::MSVC_CXX) calculateWinCXXEHStateNumbers(&fn, EHInfo); else if (isAsynchronousEHPersonality(Personality)) calculateSEHStateNumbers(&fn, EHInfo); else if (Personality == EHPersonality::CoreCLR) calculateClrEHStateNumbers(&fn, EHInfo); // Map all BB references in the WinEH data to MBBs. for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { for (WinEHHandlerType &H : TBME.HandlerArray) { if (const AllocaInst *AI = H.CatchObj.Alloca) CatchObjects.insert({AI, {}}).first->second.push_back( &H.CatchObj.FrameIndex); else H.CatchObj.FrameIndex = INT_MAX; } } } // Initialize the mapping of values to registers. This is only set up for // instruction values that are used outside of the block that defines // them. for (const BasicBlock &BB : *Fn) { for (const Instruction &I : BB) { if (const AllocaInst *AI = dyn_cast(&I)) { Type *Ty = AI->getAllocatedType(); unsigned Align = std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty), AI->getAlignment()); // Static allocas can be folded into the initial stack frame // adjustment. For targets that don't realign the stack, don't // do this if there is an extra alignment requirement. if (AI->isStaticAlloca() && (TFI->isStackRealignable() || (Align <= StackAlign))) { const ConstantInt *CUI = cast(AI->getArraySize()); uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty); TySize *= CUI->getZExtValue(); // Get total allocated size. if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. int FrameIndex = INT_MAX; auto Iter = CatchObjects.find(AI); if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { FrameIndex = MF->getFrameInfo().CreateFixedObject( TySize, 0, /*Immutable=*/false, /*isAliased=*/true); MF->getFrameInfo().setObjectAlignment(FrameIndex, Align); } else { FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI); } StaticAllocaMap[AI] = FrameIndex; // Update the catch handler information. if (Iter != CatchObjects.end()) { for (int *CatchObjPtr : Iter->second) *CatchObjPtr = FrameIndex; } // // The mono exception handling code needs to location of the 'this' pointer // to handle stack traces containing generic shared methods. // To implement this, it saves the this pointer to an alloca which is marked with // the 'mono.this' custom metadata. We save the stack slot used by this alloca // in MachineFunction, so the dwarf exception info emission code can use it to // compute the reg+offset for it, and save it into the LSDA. // if (AI->getMetadata("mono.this")) MF->setMonoThisSlot(StaticAllocaMap[AI]); } else { // FIXME: Overaligned static allocas should be grouped into // a single dynamic allocation instead of using a separate // stack allocation for each one. if (Align <= StackAlign) Align = 0; // Inform the Frame Information that we have variable-sized objects. MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI); } } // Look for inline asm that clobbers the SP register. if (isa(I) || isa(I)) { ImmutableCallSite CS(&I); if (isa(CS.getCalledValue())) { unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); std::vector Ops = TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS); for (TargetLowering::AsmOperandInfo &Op : Ops) { if (Op.Type == InlineAsm::isClobber) { // Clobbers don't have SDValue operands, hence SDValue(). TLI->ComputeConstraintToUse(Op, SDValue(), DAG); std::pair PhysReg = TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, Op.ConstraintVT); if (PhysReg.first == SP) MF->getFrameInfo().setHasOpaqueSPAdjustment(true); } } } } // Look for calls to the @llvm.va_start intrinsic. We can omit some // prologue boilerplate for variadic functions that don't examine their // arguments. if (const auto *II = dyn_cast(&I)) { if (II->getIntrinsicID() == Intrinsic::vastart) MF->getFrameInfo().setHasVAStart(true); } // If we have a musttail call in a variadic function, we need to ensure we // forward implicit register parameters. if (const auto *CI = dyn_cast(&I)) { if (CI->isMustTailCall() && Fn->isVarArg()) MF->getFrameInfo().setHasMustTailInVarArgFunc(true); } // Mark values used outside their block as exported, by allocating // a virtual register for them. if (isUsedOutsideOfDefiningBlock(&I)) if (!isa(I) || !StaticAllocaMap.count(cast(&I))) InitializeRegForValue(&I); // Decide the preferred extend type for a value. PreferredExtendType[&I] = getPreferredExtendForValue(&I); } } // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This // also creates the initial PHI MachineInstrs, though none of the input // operands are populated. for (const BasicBlock &BB : *Fn) { // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks // are really data, and no instructions can live here. if (BB.isEHPad()) { const Instruction *PadInst = BB.getFirstNonPHI(); // If this is a non-landingpad EH pad, mark this function as using // funclets. // FIXME: SEH catchpads do not create funclets, so we could avoid setting // this in such cases in order to improve frame layout. if (!isa(PadInst)) { MF->setHasEHFunclets(true); MF->getFrameInfo().setHasOpaqueSPAdjustment(true); } if (isa(PadInst)) { assert(&*BB.begin() == PadInst && "WinEHPrepare failed to remove PHIs from imaginary BBs"); continue; } if (isa(PadInst)) assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); } MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); MBBMap[&BB] = MBB; MF->push_back(MBB); // Transfer the address-taken flag. This is necessary because there could // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only // the first one should be marked. if (BB.hasAddressTaken()) MBB->setHasAddressTaken(); // Mark landing pad blocks. if (BB.isEHPad()) MBB->setIsEHPad(); // Create Machine PHI nodes for LLVM PHI nodes, lowering them as // appropriate. for (const PHINode &PN : BB.phis()) { if (PN.use_empty()) continue; // Skip empty types if (PN.getType()->isEmptyTy()) continue; DebugLoc DL = PN.getDebugLoc(); unsigned PHIReg = ValueMap[&PN]; assert(PHIReg && "PHI node does not have an assigned virtual register!"); SmallVector ValueVTs; ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); for (EVT VT : ValueVTs) { unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); for (unsigned i = 0; i != NumRegisters; ++i) BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); PHIReg += NumRegisters; } } } if (!isFuncletEHPersonality(Personality)) return; WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); // Map all BB references in the WinEH data to MBBs. for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { for (WinEHHandlerType &H : TBME.HandlerArray) { if (H.Handler) H.Handler = MBBMap[H.Handler.get()]; } } for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) if (UME.Cleanup) UME.Cleanup = MBBMap[UME.Cleanup.get()]; for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { const BasicBlock *BB = UME.Handler.get(); UME.Handler = MBBMap[BB]; } for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { const BasicBlock *BB = CME.Handler.get(); CME.Handler = MBBMap[BB]; } } /// clear - Clear out all the function-specific state. This returns this /// FunctionLoweringInfo to an empty state, ready to be used for a /// different function. void FunctionLoweringInfo::clear() { MBBMap.clear(); ValueMap.clear(); StaticAllocaMap.clear(); LiveOutRegInfo.clear(); VisitedBBs.clear(); ArgDbgValues.clear(); ByValArgFrameIndexMap.clear(); RegFixups.clear(); StatepointStackSlots.clear(); StatepointSpillMaps.clear(); PreferredExtendType.clear(); } /// CreateReg - Allocate a single virtual register for the given type. unsigned FunctionLoweringInfo::CreateReg(MVT VT) { return RegInfo->createVirtualRegister( MF->getSubtarget().getTargetLowering()->getRegClassFor(VT)); } /// CreateRegs - Allocate the appropriate number of virtual registers of /// the correctly promoted or expanded types. Assign these registers /// consecutive vreg numbers and return the first assigned number. /// /// In the case that the given value has struct or array type, this function /// will assign registers for each member or element. /// unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); SmallVector ValueVTs; ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); unsigned FirstReg = 0; for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { EVT ValueVT = ValueVTs[Value]; MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); for (unsigned i = 0; i != NumRegs; ++i) { unsigned R = CreateReg(RegisterVT); if (!FirstReg) FirstReg = R; } } return FirstReg; } /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If /// the register's LiveOutInfo is for a smaller bit width, it is extended to /// the larger bit width by zero extension. The bit width must be no smaller /// than the LiveOutInfo's existing bit width. const FunctionLoweringInfo::LiveOutInfo * FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { if (!LiveOutRegInfo.inBounds(Reg)) return nullptr; LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; if (!LOI->IsValid) return nullptr; if (BitWidth > LOI->Known.getBitWidth()) { LOI->NumSignBits = 1; LOI->Known = LOI->Known.zextOrTrunc(BitWidth); } return LOI; } /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination /// register based on the LiveOutInfo of its operands. void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { Type *Ty = PN->getType(); if (!Ty->isIntegerTy() || Ty->isVectorTy()) return; SmallVector ValueVTs; ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); assert(ValueVTs.size() == 1 && "PHIs with non-vector integer types should have a single VT."); EVT IntVT = ValueVTs[0]; if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) return; IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); unsigned BitWidth = IntVT.getSizeInBits(); unsigned DestReg = ValueMap[PN]; if (!TargetRegisterInfo::isVirtualRegister(DestReg)) return; LiveOutRegInfo.grow(DestReg); LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; Value *V = PN->getIncomingValue(0); if (isa(V) || isa(V)) { DestLOI.NumSignBits = 1; DestLOI.Known = KnownBits(BitWidth); return; } if (ConstantInt *CI = dyn_cast(V)) { APInt Val = CI->getValue().zextOrTrunc(BitWidth); DestLOI.NumSignBits = Val.getNumSignBits(); DestLOI.Known.Zero = ~Val; DestLOI.Known.One = Val; } else { assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" "CopyToReg node was created."); unsigned SrcReg = ValueMap[V]; if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { DestLOI.IsValid = false; return; } const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); if (!SrcLOI) { DestLOI.IsValid = false; return; } DestLOI = *SrcLOI; } assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && DestLOI.Known.One.getBitWidth() == BitWidth && "Masks should have the same bit width as the type."); for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = PN->getIncomingValue(i); if (isa(V) || isa(V)) { DestLOI.NumSignBits = 1; DestLOI.Known = KnownBits(BitWidth); return; } if (ConstantInt *CI = dyn_cast(V)) { APInt Val = CI->getValue().zextOrTrunc(BitWidth); DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); DestLOI.Known.Zero &= ~Val; DestLOI.Known.One &= Val; continue; } assert(ValueMap.count(V) && "V should have been placed in ValueMap when " "its CopyToReg node was created."); unsigned SrcReg = ValueMap[V]; if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { DestLOI.IsValid = false; return; } const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); if (!SrcLOI) { DestLOI.IsValid = false; return; } DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); DestLOI.Known.Zero &= SrcLOI->Known.Zero; DestLOI.Known.One &= SrcLOI->Known.One; } } /// setArgumentFrameIndex - Record frame index for the byval /// argument. This overrides previous frame index entry for this argument, /// if any. void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, int FI) { ByValArgFrameIndexMap[A] = FI; } /// getArgumentFrameIndex - Get frame index for the byval argument. /// If the argument does not have any assigned frame index then 0 is /// returned. int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { auto I = ByValArgFrameIndexMap.find(A); if (I != ByValArgFrameIndexMap.end()) return I->second; DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); return INT_MAX; } unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg( const Value *CPI, const TargetRegisterClass *RC) { MachineRegisterInfo &MRI = MF->getRegInfo(); auto I = CatchPadExceptionPointers.insert({CPI, 0}); unsigned &VReg = I.first->second; if (I.second) VReg = MRI.createVirtualRegister(RC); assert(VReg && "null vreg in exception pointer table!"); return VReg; } unsigned FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB, const Value *Val) { auto Key = std::make_pair(MBB, Val); auto It = SwiftErrorVRegDefMap.find(Key); // If this is the first use of this swifterror value in this basic block, // create a new virtual register. // After we processed all basic blocks we will satisfy this "upwards exposed // use" by inserting a copy or phi at the beginning of this block. if (It == SwiftErrorVRegDefMap.end()) { auto &DL = MF->getDataLayout(); const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); auto VReg = MF->getRegInfo().createVirtualRegister(RC); SwiftErrorVRegDefMap[Key] = VReg; SwiftErrorVRegUpwardsUse[Key] = VReg; return VReg; } else return It->second; } void FunctionLoweringInfo::setCurrentSwiftErrorVReg( const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) { SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg; } std::pair FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) { auto Key = PointerIntPair(I, true); auto It = SwiftErrorVRegDefUses.find(Key); if (It == SwiftErrorVRegDefUses.end()) { auto &DL = MF->getDataLayout(); const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); unsigned VReg = MF->getRegInfo().createVirtualRegister(RC); SwiftErrorVRegDefUses[Key] = VReg; return std::make_pair(VReg, true); } return std::make_pair(It->second, false); } std::pair FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) { auto Key = PointerIntPair(I, false); auto It = SwiftErrorVRegDefUses.find(Key); if (It == SwiftErrorVRegDefUses.end()) { unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val); SwiftErrorVRegDefUses[Key] = VReg; return std::make_pair(VReg, true); } return std::make_pair(It->second, false); }