#define MINIMAL_STDERR_OUTPUT #include "llvm/Analysis/Passes.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/ObjectCache.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Command-line options //===----------------------------------------------------------------------===// cl::opt InputIR("input-IR", cl::desc("Specify the name of an IR file to load for function definitions"), cl::value_desc("input IR file name")); cl::opt UseObjectCache("use-object-cache", cl::desc("Enable use of the MCJIT object caching"), cl::init(false)); //===----------------------------------------------------------------------===// // Lexer //===----------------------------------------------------------------------===// // The lexer returns tokens [0-255] if it is an unknown character, otherwise one // of these for known things. enum Token { tok_eof = -1, // commands tok_def = -2, tok_extern = -3, // primary tok_identifier = -4, tok_number = -5, // control tok_if = -6, tok_then = -7, tok_else = -8, tok_for = -9, tok_in = -10, // operators tok_binary = -11, tok_unary = -12, // var definition tok_var = -13 }; static std::string IdentifierStr; // Filled in if tok_identifier static double NumVal; // Filled in if tok_number /// gettok - Return the next token from standard input. static int gettok() { static int LastChar = ' '; // Skip any whitespace. while (isspace(LastChar)) LastChar = getchar(); if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* IdentifierStr = LastChar; while (isalnum((LastChar = getchar()))) IdentifierStr += LastChar; if (IdentifierStr == "def") return tok_def; if (IdentifierStr == "extern") return tok_extern; if (IdentifierStr == "if") return tok_if; if (IdentifierStr == "then") return tok_then; if (IdentifierStr == "else") return tok_else; if (IdentifierStr == "for") return tok_for; if (IdentifierStr == "in") return tok_in; if (IdentifierStr == "binary") return tok_binary; if (IdentifierStr == "unary") return tok_unary; if (IdentifierStr == "var") return tok_var; return tok_identifier; } if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ std::string NumStr; do { NumStr += LastChar; LastChar = getchar(); } while (isdigit(LastChar) || LastChar == '.'); NumVal = strtod(NumStr.c_str(), 0); return tok_number; } if (LastChar == '#') { // Comment until end of line. do LastChar = getchar(); while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); if (LastChar != EOF) return gettok(); } // Check for end of file. Don't eat the EOF. if (LastChar == EOF) return tok_eof; // Otherwise, just return the character as its ascii value. int ThisChar = LastChar; LastChar = getchar(); return ThisChar; } //===----------------------------------------------------------------------===// // Abstract Syntax Tree (aka Parse Tree) //===----------------------------------------------------------------------===// /// ExprAST - Base class for all expression nodes. class ExprAST { public: virtual ~ExprAST() {} virtual Value *Codegen() = 0; }; /// NumberExprAST - Expression class for numeric literals like "1.0". class NumberExprAST : public ExprAST { double Val; public: NumberExprAST(double val) : Val(val) {} virtual Value *Codegen(); }; /// VariableExprAST - Expression class for referencing a variable, like "a". class VariableExprAST : public ExprAST { std::string Name; public: VariableExprAST(const std::string &name) : Name(name) {} const std::string &getName() const { return Name; } virtual Value *Codegen(); }; /// UnaryExprAST - Expression class for a unary operator. class UnaryExprAST : public ExprAST { char Opcode; ExprAST *Operand; public: UnaryExprAST(char opcode, ExprAST *operand) : Opcode(opcode), Operand(operand) {} virtual Value *Codegen(); }; /// BinaryExprAST - Expression class for a binary operator. class BinaryExprAST : public ExprAST { char Op; ExprAST *LHS, *RHS; public: BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) : Op(op), LHS(lhs), RHS(rhs) {} virtual Value *Codegen(); }; /// CallExprAST - Expression class for function calls. class CallExprAST : public ExprAST { std::string Callee; std::vector Args; public: CallExprAST(const std::string &callee, std::vector &args) : Callee(callee), Args(args) {} virtual Value *Codegen(); }; /// IfExprAST - Expression class for if/then/else. class IfExprAST : public ExprAST { ExprAST *Cond, *Then, *Else; public: IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) : Cond(cond), Then(then), Else(_else) {} virtual Value *Codegen(); }; /// ForExprAST - Expression class for for/in. class ForExprAST : public ExprAST { std::string VarName; ExprAST *Start, *End, *Step, *Body; public: ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, ExprAST *step, ExprAST *body) : VarName(varname), Start(start), End(end), Step(step), Body(body) {} virtual Value *Codegen(); }; /// VarExprAST - Expression class for var/in class VarExprAST : public ExprAST { std::vector > VarNames; ExprAST *Body; public: VarExprAST(const std::vector > &varnames, ExprAST *body) : VarNames(varnames), Body(body) {} virtual Value *Codegen(); }; /// PrototypeAST - This class represents the "prototype" for a function, /// which captures its argument names as well as if it is an operator. class PrototypeAST { std::string Name; std::vector Args; bool isOperator; unsigned Precedence; // Precedence if a binary op. public: PrototypeAST(const std::string &name, const std::vector &args, bool isoperator = false, unsigned prec = 0) : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} bool isUnaryOp() const { return isOperator && Args.size() == 1; } bool isBinaryOp() const { return isOperator && Args.size() == 2; } char getOperatorName() const { assert(isUnaryOp() || isBinaryOp()); return Name[Name.size()-1]; } unsigned getBinaryPrecedence() const { return Precedence; } Function *Codegen(); void CreateArgumentAllocas(Function *F); }; /// FunctionAST - This class represents a function definition itself. class FunctionAST { PrototypeAST *Proto; ExprAST *Body; public: FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {} Function *Codegen(); }; //===----------------------------------------------------------------------===// // Parser //===----------------------------------------------------------------------===// /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current /// token the parser is looking at. getNextToken reads another token from the /// lexer and updates CurTok with its results. static int CurTok; static int getNextToken() { return CurTok = gettok(); } /// BinopPrecedence - This holds the precedence for each binary operator that is /// defined. static std::map BinopPrecedence; /// GetTokPrecedence - Get the precedence of the pending binary operator token. static int GetTokPrecedence() { if (!isascii(CurTok)) return -1; // Make sure it's a declared binop. int TokPrec = BinopPrecedence[CurTok]; if (TokPrec <= 0) return -1; return TokPrec; } /// Error* - These are little helper functions for error handling. ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } static ExprAST *ParseExpression(); /// identifierexpr /// ::= identifier /// ::= identifier '(' expression* ')' static ExprAST *ParseIdentifierExpr() { std::string IdName = IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '(') // Simple variable ref. return new VariableExprAST(IdName); // Call. getNextToken(); // eat ( std::vector Args; if (CurTok != ')') { while (1) { ExprAST *Arg = ParseExpression(); if (!Arg) return 0; Args.push_back(Arg); if (CurTok == ')') break; if (CurTok != ',') return Error("Expected ')' or ',' in argument list"); getNextToken(); } } // Eat the ')'. getNextToken(); return new CallExprAST(IdName, Args); } /// numberexpr ::= number static ExprAST *ParseNumberExpr() { ExprAST *Result = new NumberExprAST(NumVal); getNextToken(); // consume the number return Result; } /// parenexpr ::= '(' expression ')' static ExprAST *ParseParenExpr() { getNextToken(); // eat (. ExprAST *V = ParseExpression(); if (!V) return 0; if (CurTok != ')') return Error("expected ')'"); getNextToken(); // eat ). return V; } /// ifexpr ::= 'if' expression 'then' expression 'else' expression static ExprAST *ParseIfExpr() { getNextToken(); // eat the if. // condition. ExprAST *Cond = ParseExpression(); if (!Cond) return 0; if (CurTok != tok_then) return Error("expected then"); getNextToken(); // eat the then ExprAST *Then = ParseExpression(); if (Then == 0) return 0; if (CurTok != tok_else) return Error("expected else"); getNextToken(); ExprAST *Else = ParseExpression(); if (!Else) return 0; return new IfExprAST(Cond, Then, Else); } /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression static ExprAST *ParseForExpr() { getNextToken(); // eat the for. if (CurTok != tok_identifier) return Error("expected identifier after for"); std::string IdName = IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '=') return Error("expected '=' after for"); getNextToken(); // eat '='. ExprAST *Start = ParseExpression(); if (Start == 0) return 0; if (CurTok != ',') return Error("expected ',' after for start value"); getNextToken(); ExprAST *End = ParseExpression(); if (End == 0) return 0; // The step value is optional. ExprAST *Step = 0; if (CurTok == ',') { getNextToken(); Step = ParseExpression(); if (Step == 0) return 0; } if (CurTok != tok_in) return Error("expected 'in' after for"); getNextToken(); // eat 'in'. ExprAST *Body = ParseExpression(); if (Body == 0) return 0; return new ForExprAST(IdName, Start, End, Step, Body); } /// varexpr ::= 'var' identifier ('=' expression)? // (',' identifier ('=' expression)?)* 'in' expression static ExprAST *ParseVarExpr() { getNextToken(); // eat the var. std::vector > VarNames; // At least one variable name is required. if (CurTok != tok_identifier) return Error("expected identifier after var"); while (1) { std::string Name = IdentifierStr; getNextToken(); // eat identifier. // Read the optional initializer. ExprAST *Init = 0; if (CurTok == '=') { getNextToken(); // eat the '='. Init = ParseExpression(); if (Init == 0) return 0; } VarNames.push_back(std::make_pair(Name, Init)); // End of var list, exit loop. if (CurTok != ',') break; getNextToken(); // eat the ','. if (CurTok != tok_identifier) return Error("expected identifier list after var"); } // At this point, we have to have 'in'. if (CurTok != tok_in) return Error("expected 'in' keyword after 'var'"); getNextToken(); // eat 'in'. ExprAST *Body = ParseExpression(); if (Body == 0) return 0; return new VarExprAST(VarNames, Body); } /// primary /// ::= identifierexpr /// ::= numberexpr /// ::= parenexpr /// ::= ifexpr /// ::= forexpr /// ::= varexpr static ExprAST *ParsePrimary() { switch (CurTok) { default: return Error("unknown token when expecting an expression"); case tok_identifier: return ParseIdentifierExpr(); case tok_number: return ParseNumberExpr(); case '(': return ParseParenExpr(); case tok_if: return ParseIfExpr(); case tok_for: return ParseForExpr(); case tok_var: return ParseVarExpr(); } } /// unary /// ::= primary /// ::= '!' unary static ExprAST *ParseUnary() { // If the current token is not an operator, it must be a primary expr. if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') return ParsePrimary(); // If this is a unary operator, read it. int Opc = CurTok; getNextToken(); if (ExprAST *Operand = ParseUnary()) return new UnaryExprAST(Opc, Operand); return 0; } /// binoprhs /// ::= ('+' unary)* static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { // If this is a binop, find its precedence. while (1) { int TokPrec = GetTokPrecedence(); // If this is a binop that binds at least as tightly as the current binop, // consume it, otherwise we are done. if (TokPrec < ExprPrec) return LHS; // Okay, we know this is a binop. int BinOp = CurTok; getNextToken(); // eat binop // Parse the unary expression after the binary operator. ExprAST *RHS = ParseUnary(); if (!RHS) return 0; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. int NextPrec = GetTokPrecedence(); if (TokPrec < NextPrec) { RHS = ParseBinOpRHS(TokPrec+1, RHS); if (RHS == 0) return 0; } // Merge LHS/RHS. LHS = new BinaryExprAST(BinOp, LHS, RHS); } } /// expression /// ::= unary binoprhs /// static ExprAST *ParseExpression() { ExprAST *LHS = ParseUnary(); if (!LHS) return 0; return ParseBinOpRHS(0, LHS); } /// prototype /// ::= id '(' id* ')' /// ::= binary LETTER number? (id, id) /// ::= unary LETTER (id) static PrototypeAST *ParsePrototype() { std::string FnName; unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. unsigned BinaryPrecedence = 30; switch (CurTok) { default: return ErrorP("Expected function name in prototype"); case tok_identifier: FnName = IdentifierStr; Kind = 0; getNextToken(); break; case tok_unary: getNextToken(); if (!isascii(CurTok)) return ErrorP("Expected unary operator"); FnName = "unary"; FnName += (char)CurTok; Kind = 1; getNextToken(); break; case tok_binary: getNextToken(); if (!isascii(CurTok)) return ErrorP("Expected binary operator"); FnName = "binary"; FnName += (char)CurTok; Kind = 2; getNextToken(); // Read the precedence if present. if (CurTok == tok_number) { if (NumVal < 1 || NumVal > 100) return ErrorP("Invalid precedecnce: must be 1..100"); BinaryPrecedence = (unsigned)NumVal; getNextToken(); } break; } if (CurTok != '(') return ErrorP("Expected '(' in prototype"); std::vector ArgNames; while (getNextToken() == tok_identifier) ArgNames.push_back(IdentifierStr); if (CurTok != ')') return ErrorP("Expected ')' in prototype"); // success. getNextToken(); // eat ')'. // Verify right number of names for operator. if (Kind && ArgNames.size() != Kind) return ErrorP("Invalid number of operands for operator"); return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); } /// definition ::= 'def' prototype expression static FunctionAST *ParseDefinition() { getNextToken(); // eat def. PrototypeAST *Proto = ParsePrototype(); if (Proto == 0) return 0; if (ExprAST *E = ParseExpression()) return new FunctionAST(Proto, E); return 0; } /// toplevelexpr ::= expression static FunctionAST *ParseTopLevelExpr() { if (ExprAST *E = ParseExpression()) { // Make an anonymous proto. PrototypeAST *Proto = new PrototypeAST("", std::vector()); return new FunctionAST(Proto, E); } return 0; } /// external ::= 'extern' prototype static PrototypeAST *ParseExtern() { getNextToken(); // eat extern. return ParsePrototype(); } //===----------------------------------------------------------------------===// // Quick and dirty hack //===----------------------------------------------------------------------===// // FIXME: Obviously we can do better than this std::string GenerateUniqueName(const char *root) { static int i = 0; char s[16]; sprintf(s, "%s%d", root, i++); std::string S = s; return S; } std::string MakeLegalFunctionName(std::string Name) { std::string NewName; if (!Name.length()) return GenerateUniqueName("anon_func_"); // Start with what we have NewName = Name; // Look for a numberic first character if (NewName.find_first_of("0123456789") == 0) { NewName.insert(0, 1, 'n'); } // Replace illegal characters with their ASCII equivalent std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; size_t pos; while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { char old_c = NewName.at(pos); char new_str[16]; sprintf(new_str, "%d", (int)old_c); NewName = NewName.replace(pos, 1, new_str); } return NewName; } //===----------------------------------------------------------------------===// // MCJIT object cache class //===----------------------------------------------------------------------===// class MCJITObjectCache : public ObjectCache { public: MCJITObjectCache() { // Set IR cache directory sys::fs::current_path(CacheDir); sys::path::append(CacheDir, "toy_object_cache"); } virtual ~MCJITObjectCache() { } virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) { // Get the ModuleID const std::string ModuleID = M->getModuleIdentifier(); // If we've flagged this as an IR file, cache it if (0 == ModuleID.compare(0, 3, "IR:")) { std::string IRFileName = ModuleID.substr(3); SmallString<128>IRCacheFile = CacheDir; sys::path::append(IRCacheFile, IRFileName); if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) { fprintf(stderr, "Unable to create cache directory\n"); return; } std::string ErrStr; raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary); IRObjectFile << Obj->getBuffer(); } } // MCJIT will call this function before compiling any module // MCJIT takes ownership of both the MemoryBuffer object and the memory // to which it refers. virtual MemoryBuffer* getObject(const Module* M) { // Get the ModuleID const std::string ModuleID = M->getModuleIdentifier(); // If we've flagged this as an IR file, cache it if (0 == ModuleID.compare(0, 3, "IR:")) { std::string IRFileName = ModuleID.substr(3); SmallString<128> IRCacheFile = CacheDir; sys::path::append(IRCacheFile, IRFileName); if (!sys::fs::exists(IRCacheFile.str())) { // This file isn't in our cache return NULL; } std::unique_ptr IRObjectBuffer; MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false); // MCJIT will want to write into this buffer, and we don't want that // because the file has probably just been mmapped. Instead we make // a copy. The filed-based buffer will be released when it goes // out of scope. return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer()); } return NULL; } private: SmallString<128> CacheDir; }; //===----------------------------------------------------------------------===// // MCJIT helper class //===----------------------------------------------------------------------===// class MCJITHelper { public: MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {} ~MCJITHelper(); Function *getFunction(const std::string FnName); Module *getModuleForNewFunction(); void *getPointerToFunction(Function* F); void *getPointerToNamedFunction(const std::string &Name); ExecutionEngine *compileModule(Module *M); void closeCurrentModule(); void addModule(Module *M); void dump(); private: typedef std::vector ModuleVector; LLVMContext &Context; Module *OpenModule; ModuleVector Modules; std::map EngineMap; MCJITObjectCache OurObjectCache; }; class HelpingMemoryManager : public SectionMemoryManager { HelpingMemoryManager(const HelpingMemoryManager&) = delete; void operator=(const HelpingMemoryManager&) = delete; public: HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {} virtual ~HelpingMemoryManager() {} /// This method returns the address of the specified function. /// Our implementation will attempt to find functions in other /// modules associated with the MCJITHelper to cross link functions /// from one generated module to another. /// /// If \p AbortOnFailure is false and no function with the given name is /// found, this function returns a null pointer. Otherwise, it prints a /// message to stderr and aborts. virtual void *getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure = true); private: MCJITHelper *MasterHelper; }; void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure) { // Try the standard symbol resolution first, but ask it not to abort. void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false); if (pfn) return pfn; pfn = MasterHelper->getPointerToNamedFunction(Name); if (!pfn && AbortOnFailure) report_fatal_error("Program used external function '" + Name + "' which could not be resolved!"); return pfn; } MCJITHelper::~MCJITHelper() { // Walk the vector of modules. ModuleVector::iterator it, end; for (it = Modules.begin(), end = Modules.end(); it != end; ++it) { // See if we have an execution engine for this module. std::map::iterator mapIt = EngineMap.find(*it); // If we have an EE, the EE owns the module so just delete the EE. if (mapIt != EngineMap.end()) { delete mapIt->second; } else { // Otherwise, we still own the module. Delete it now. delete *it; } } } Function *MCJITHelper::getFunction(const std::string FnName) { ModuleVector::iterator begin = Modules.begin(); ModuleVector::iterator end = Modules.end(); ModuleVector::iterator it; for (it = begin; it != end; ++it) { Function *F = (*it)->getFunction(FnName); if (F) { if (*it == OpenModule) return F; assert(OpenModule != NULL); // This function is in a module that has already been JITed. // We need to generate a new prototype for external linkage. Function *PF = OpenModule->getFunction(FnName); if (PF && !PF->empty()) { ErrorF("redefinition of function across modules"); return 0; } // If we don't have a prototype yet, create one. if (!PF) PF = Function::Create(F->getFunctionType(), Function::ExternalLinkage, FnName, OpenModule); return PF; } } return NULL; } Module *MCJITHelper::getModuleForNewFunction() { // If we have a Module that hasn't been JITed, use that. if (OpenModule) return OpenModule; // Otherwise create a new Module. std::string ModName = GenerateUniqueName("mcjit_module_"); Module *M = new Module(ModName, Context); Modules.push_back(M); OpenModule = M; return M; } void *MCJITHelper::getPointerToFunction(Function* F) { // Look for this function in an existing module ModuleVector::iterator begin = Modules.begin(); ModuleVector::iterator end = Modules.end(); ModuleVector::iterator it; std::string FnName = F->getName(); for (it = begin; it != end; ++it) { Function *MF = (*it)->getFunction(FnName); if (MF == F) { std::map::iterator eeIt = EngineMap.find(*it); if (eeIt != EngineMap.end()) { void *P = eeIt->second->getPointerToFunction(F); if (P) return P; } else { ExecutionEngine *EE = compileModule(*it); void *P = EE->getPointerToFunction(F); if (P) return P; } } } return NULL; } void MCJITHelper::closeCurrentModule() { OpenModule = NULL; } ExecutionEngine *MCJITHelper::compileModule(Module *M) { if (M == OpenModule) closeCurrentModule(); std::string ErrStr; ExecutionEngine *NewEngine = EngineBuilder(M) .setErrorStr(&ErrStr) .setMCJITMemoryManager(new HelpingMemoryManager(this)) .create(); if (!NewEngine) { fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); exit(1); } if (UseObjectCache) NewEngine->setObjectCache(&OurObjectCache); // Get the ModuleID so we can identify IR input files const std::string ModuleID = M->getModuleIdentifier(); // If we've flagged this as an IR file, it doesn't need function passes run. if (0 != ModuleID.compare(0, 3, "IR:")) { // Create a function pass manager for this engine FunctionPassManager *FPM = new FunctionPassManager(M); // Set up the optimizer pipeline. Start with registering info about how the // target lays out data structures. FPM->add(new DataLayout(*NewEngine->getDataLayout())); // Provide basic AliasAnalysis support for GVN. FPM->add(createBasicAliasAnalysisPass()); // Promote allocas to registers. FPM->add(createPromoteMemoryToRegisterPass()); // Do simple "peephole" optimizations and bit-twiddling optzns. FPM->add(createInstructionCombiningPass()); // Reassociate expressions. FPM->add(createReassociatePass()); // Eliminate Common SubExpressions. FPM->add(createGVNPass()); // Simplify the control flow graph (deleting unreachable blocks, etc). FPM->add(createCFGSimplificationPass()); FPM->doInitialization(); // For each function in the module Module::iterator it; Module::iterator end = M->end(); for (it = M->begin(); it != end; ++it) { // Run the FPM on this function FPM->run(*it); } // We don't need this anymore delete FPM; } // Store this engine EngineMap[M] = NewEngine; NewEngine->finalizeObject(); return NewEngine; } void *MCJITHelper::getPointerToNamedFunction(const std::string &Name) { // Look for the functions in our modules, compiling only as necessary ModuleVector::iterator begin = Modules.begin(); ModuleVector::iterator end = Modules.end(); ModuleVector::iterator it; for (it = begin; it != end; ++it) { Function *F = (*it)->getFunction(Name); if (F && !F->empty()) { std::map::iterator eeIt = EngineMap.find(*it); if (eeIt != EngineMap.end()) { void *P = eeIt->second->getPointerToFunction(F); if (P) return P; } else { ExecutionEngine *EE = compileModule(*it); void *P = EE->getPointerToFunction(F); if (P) return P; } } } return NULL; } void MCJITHelper::addModule(Module* M) { Modules.push_back(M); } void MCJITHelper::dump() { ModuleVector::iterator begin = Modules.begin(); ModuleVector::iterator end = Modules.end(); ModuleVector::iterator it; for (it = begin; it != end; ++it) (*it)->dump(); } //===----------------------------------------------------------------------===// // Code Generation //===----------------------------------------------------------------------===// static MCJITHelper *TheHelper; static LLVMContext TheContext; static IRBuilder<> Builder(TheContext); static std::map NamedValues; Value *ErrorV(const char *Str) { Error(Str); return 0; } /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of /// the function. This is used for mutable variables etc. static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, const std::string &VarName) { IRBuilder<> TmpB(&TheFunction->getEntryBlock(), TheFunction->getEntryBlock().begin()); return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str()); } Value *NumberExprAST::Codegen() { return ConstantFP::get(TheContext, APFloat(Val)); } Value *VariableExprAST::Codegen() { // Look this variable up in the function. Value *V = NamedValues[Name]; char ErrStr[256]; sprintf(ErrStr, "Unknown variable name %s", Name.c_str()); if (V == 0) return ErrorV(ErrStr); // Load the value. return Builder.CreateLoad(V, Name.c_str()); } Value *UnaryExprAST::Codegen() { Value *OperandV = Operand->Codegen(); if (OperandV == 0) return 0; Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); if (F == 0) return ErrorV("Unknown unary operator"); return Builder.CreateCall(F, OperandV, "unop"); } Value *BinaryExprAST::Codegen() { // Special case '=' because we don't want to emit the LHS as an expression. if (Op == '=') { // Assignment requires the LHS to be an identifier. VariableExprAST *LHSE = static_cast(LHS); if (!LHSE) return ErrorV("destination of '=' must be a variable"); // Codegen the RHS. Value *Val = RHS->Codegen(); if (Val == 0) return 0; // Look up the name. Value *Variable = NamedValues[LHSE->getName()]; if (Variable == 0) return ErrorV("Unknown variable name"); Builder.CreateStore(Val, Variable); return Val; } Value *L = LHS->Codegen(); Value *R = RHS->Codegen(); if (L == 0 || R == 0) return 0; switch (Op) { case '+': return Builder.CreateFAdd(L, R, "addtmp"); case '-': return Builder.CreateFSub(L, R, "subtmp"); case '*': return Builder.CreateFMul(L, R, "multmp"); case '/': return Builder.CreateFDiv(L, R, "divtmp"); case '<': L = Builder.CreateFCmpULT(L, R, "cmptmp"); // Convert bool 0/1 to double 0.0 or 1.0 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp"); default: break; } // If it wasn't a builtin binary operator, it must be a user defined one. Emit // a call to it. Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op)); assert(F && "binary operator not found!"); Value *Ops[] = { L, R }; return Builder.CreateCall(F, Ops, "binop"); } Value *CallExprAST::Codegen() { // Look up the name in the global module table. Function *CalleeF = TheHelper->getFunction(Callee); if (CalleeF == 0) return ErrorV("Unknown function referenced"); // If argument mismatch error. if (CalleeF->arg_size() != Args.size()) return ErrorV("Incorrect # arguments passed"); std::vector ArgsV; for (unsigned i = 0, e = Args.size(); i != e; ++i) { ArgsV.push_back(Args[i]->Codegen()); if (ArgsV.back() == 0) return 0; } return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); } Value *IfExprAST::Codegen() { Value *CondV = Cond->Codegen(); if (CondV == 0) return 0; // Convert condition to a bool by comparing equal to 0.0. CondV = Builder.CreateFCmpONE( CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); Function *TheFunction = Builder.GetInsertBlock()->getParent(); // Create blocks for the then and else cases. Insert the 'then' block at the // end of the function. BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction); BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); Builder.CreateCondBr(CondV, ThenBB, ElseBB); // Emit then value. Builder.SetInsertPoint(ThenBB); Value *ThenV = Then->Codegen(); if (ThenV == 0) return 0; Builder.CreateBr(MergeBB); // Codegen of 'Then' can change the current block, update ThenBB for the PHI. ThenBB = Builder.GetInsertBlock(); // Emit else block. TheFunction->getBasicBlockList().push_back(ElseBB); Builder.SetInsertPoint(ElseBB); Value *ElseV = Else->Codegen(); if (ElseV == 0) return 0; Builder.CreateBr(MergeBB); // Codegen of 'Else' can change the current block, update ElseBB for the PHI. ElseBB = Builder.GetInsertBlock(); // Emit merge block. TheFunction->getBasicBlockList().push_back(MergeBB); Builder.SetInsertPoint(MergeBB); PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); PN->addIncoming(ThenV, ThenBB); PN->addIncoming(ElseV, ElseBB); return PN; } Value *ForExprAST::Codegen() { // Output this as: // var = alloca double // ... // start = startexpr // store start -> var // goto loop // loop: // ... // bodyexpr // ... // loopend: // step = stepexpr // endcond = endexpr // // curvar = load var // nextvar = curvar + step // store nextvar -> var // br endcond, loop, endloop // outloop: Function *TheFunction = Builder.GetInsertBlock()->getParent(); // Create an alloca for the variable in the entry block. AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); // Emit the start code first, without 'variable' in scope. Value *StartVal = Start->Codegen(); if (StartVal == 0) return 0; // Store the value into the alloca. Builder.CreateStore(StartVal, Alloca); // Make the new basic block for the loop header, inserting after current // block. BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction); // Insert an explicit fall through from the current block to the LoopBB. Builder.CreateBr(LoopBB); // Start insertion in LoopBB. Builder.SetInsertPoint(LoopBB); // Within the loop, the variable is defined equal to the PHI node. If it // shadows an existing variable, we have to restore it, so save it now. AllocaInst *OldVal = NamedValues[VarName]; NamedValues[VarName] = Alloca; // Emit the body of the loop. This, like any other expr, can change the // current BB. Note that we ignore the value computed by the body, but don't // allow an error. if (Body->Codegen() == 0) return 0; // Emit the step value. Value *StepVal; if (Step) { StepVal = Step->Codegen(); if (StepVal == 0) return 0; } else { // If not specified, use 1.0. StepVal = ConstantFP::get(TheContext, APFloat(1.0)); } // Compute the end condition. Value *EndCond = End->Codegen(); if (EndCond == 0) return EndCond; // Reload, increment, and restore the alloca. This handles the case where // the body of the loop mutates the variable. Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); Builder.CreateStore(NextVar, Alloca); // Convert condition to a bool by comparing equal to 0.0. EndCond = Builder.CreateFCmpONE( EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); // Create the "after loop" block and insert it. BasicBlock *AfterBB = BasicBlock::Create(TheContext, "afterloop", TheFunction); // Insert the conditional branch into the end of LoopEndBB. Builder.CreateCondBr(EndCond, LoopBB, AfterBB); // Any new code will be inserted in AfterBB. Builder.SetInsertPoint(AfterBB); // Restore the unshadowed variable. if (OldVal) NamedValues[VarName] = OldVal; else NamedValues.erase(VarName); // for expr always returns 0.0. return Constant::getNullValue(Type::getDoubleTy(TheContext)); } Value *VarExprAST::Codegen() { std::vector OldBindings; Function *TheFunction = Builder.GetInsertBlock()->getParent(); // Register all variables and emit their initializer. for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { const std::string &VarName = VarNames[i].first; ExprAST *Init = VarNames[i].second; // Emit the initializer before adding the variable to scope, this prevents // the initializer from referencing the variable itself, and permits stuff // like this: // var a = 1 in // var a = a in ... # refers to outer 'a'. Value *InitVal; if (Init) { InitVal = Init->Codegen(); if (InitVal == 0) return 0; } else { // If not specified, use 0.0. InitVal = ConstantFP::get(TheContext, APFloat(0.0)); } AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); Builder.CreateStore(InitVal, Alloca); // Remember the old variable binding so that we can restore the binding when // we unrecurse. OldBindings.push_back(NamedValues[VarName]); // Remember this binding. NamedValues[VarName] = Alloca; } // Codegen the body, now that all vars are in scope. Value *BodyVal = Body->Codegen(); if (BodyVal == 0) return 0; // Pop all our variables from scope. for (unsigned i = 0, e = VarNames.size(); i != e; ++i) NamedValues[VarNames[i].first] = OldBindings[i]; // Return the body computation. return BodyVal; } Function *PrototypeAST::Codegen() { // Make the function type: double(double,double) etc. std::vector Doubles(Args.size(), Type::getDoubleTy(TheContext)); FunctionType *FT = FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); std::string FnName = MakeLegalFunctionName(Name); Module* M = TheHelper->getModuleForNewFunction(); Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M); // If F conflicted, there was already something named 'FnName'. If it has a // body, don't allow redefinition or reextern. if (F->getName() != FnName) { // Delete the one we just made and get the existing one. F->eraseFromParent(); F = M->getFunction(Name); // If F already has a body, reject this. if (!F->empty()) { ErrorF("redefinition of function"); return 0; } // If F took a different number of args, reject. if (F->arg_size() != Args.size()) { ErrorF("redefinition of function with different # args"); return 0; } } // Set names for all arguments. unsigned Idx = 0; for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); ++AI, ++Idx) AI->setName(Args[Idx]); return F; } /// CreateArgumentAllocas - Create an alloca for each argument and register the /// argument in the symbol table so that references to it will succeed. void PrototypeAST::CreateArgumentAllocas(Function *F) { Function::arg_iterator AI = F->arg_begin(); for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { // Create an alloca for this variable. AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); // Store the initial value into the alloca. Builder.CreateStore(AI, Alloca); // Add arguments to variable symbol table. NamedValues[Args[Idx]] = Alloca; } } Function *FunctionAST::Codegen() { NamedValues.clear(); Function *TheFunction = Proto->Codegen(); if (TheFunction == 0) return 0; // If this is an operator, install it. if (Proto->isBinaryOp()) BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); // Create a new basic block to start insertion into. BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); Builder.SetInsertPoint(BB); // Add all arguments to the symbol table and create their allocas. Proto->CreateArgumentAllocas(TheFunction); if (Value *RetVal = Body->Codegen()) { // Finish off the function. Builder.CreateRet(RetVal); // Validate the generated code, checking for consistency. verifyFunction(*TheFunction); return TheFunction; } // Error reading body, remove function. TheFunction->eraseFromParent(); if (Proto->isBinaryOp()) BinopPrecedence.erase(Proto->getOperatorName()); return 0; } //===----------------------------------------------------------------------===// // Top-Level parsing and JIT Driver //===----------------------------------------------------------------------===// static void HandleDefinition() { if (FunctionAST *F = ParseDefinition()) { TheHelper->closeCurrentModule(); if (Function *LF = F->Codegen()) { #ifndef MINIMAL_STDERR_OUTPUT fprintf(stderr, "Read function definition:"); LF->print(errs()); fprintf(stderr, "\n"); #endif } } else { // Skip token for error recovery. getNextToken(); } } static void HandleExtern() { if (PrototypeAST *P = ParseExtern()) { if (Function *F = P->Codegen()) { #ifndef MINIMAL_STDERR_OUTPUT fprintf(stderr, "Read extern: "); F->print(errs()); fprintf(stderr, "\n"); #endif } } else { // Skip token for error recovery. getNextToken(); } } static void HandleTopLevelExpression() { // Evaluate a top-level expression into an anonymous function. if (FunctionAST *F = ParseTopLevelExpr()) { if (Function *LF = F->Codegen()) { // JIT the function, returning a function pointer. void *FPtr = TheHelper->getPointerToFunction(LF); // Cast it to the right type (takes no arguments, returns a double) so we // can call it as a native function. double (*FP)() = (double (*)())(intptr_t)FPtr; #ifdef MINIMAL_STDERR_OUTPUT FP(); #else fprintf(stderr, "Evaluated to %f\n", FP()); #endif } } else { // Skip token for error recovery. getNextToken(); } } /// top ::= definition | external | expression | ';' static void MainLoop() { while (1) { #ifndef MINIMAL_STDERR_OUTPUT fprintf(stderr, "ready> "); #endif switch (CurTok) { case tok_eof: return; case ';': getNextToken(); break; // ignore top-level semicolons. case tok_def: HandleDefinition(); break; case tok_extern: HandleExtern(); break; default: HandleTopLevelExpression(); break; } } } //===----------------------------------------------------------------------===// // "Library" functions that can be "extern'd" from user code. //===----------------------------------------------------------------------===// /// putchard - putchar that takes a double and returns 0. extern "C" double putchard(double X) { putchar((char)X); return 0; } /// printd - printf that takes a double prints it as "%f\n", returning 0. extern "C" double printd(double X) { printf("%f", X); return 0; } extern "C" double printlf() { printf("\n"); return 0; } //===----------------------------------------------------------------------===// // Command line input file handler //===----------------------------------------------------------------------===// Module* parseInputIR(std::string InputFile) { SMDiagnostic Err; Module *M = ParseIRFile(InputFile, Err, TheContext); if (!M) { Err.print("IR parsing failed: ", errs()); return NULL; } char ModID[256]; sprintf(ModID, "IR:%s", InputFile.c_str()); M->setModuleIdentifier(ModID); TheHelper->addModule(M); return M; } //===----------------------------------------------------------------------===// // Main driver code. //===----------------------------------------------------------------------===// int main(int argc, char **argv) { InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetAsmParser(); LLVMContext &Context = TheContext; cl::ParseCommandLineOptions(argc, argv, "Kaleidoscope example program\n"); // Install standard binary operators. // 1 is lowest precedence. BinopPrecedence['='] = 2; BinopPrecedence['<'] = 10; BinopPrecedence['+'] = 20; BinopPrecedence['-'] = 20; BinopPrecedence['/'] = 40; BinopPrecedence['*'] = 40; // highest. // Prime the first token. #ifndef MINIMAL_STDERR_OUTPUT fprintf(stderr, "ready> "); #endif getNextToken(); // Make the helper, which holds all the code. TheHelper = new MCJITHelper(Context); if (!InputIR.empty()) { parseInputIR(InputIR); } // Run the main "interpreter loop" now. MainLoop(); #ifndef MINIMAL_STDERR_OUTPUT // Print out all of the generated code. TheHelper->print(errs()); #endif return 0; }