/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #if !defined(__STDC_FORMAT_MACROS) #define __STDC_FORMAT_MACROS #endif #include #if !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include #include #else #include OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) #pragma comment(lib, "Ws2_32.lib") #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../crypto/test/scoped_types.h" #include "async_bio.h" #include "packeted_bio.h" #include "scoped_types.h" #include "test_config.h" #if !defined(OPENSSL_WINDOWS) static int closesocket(int sock) { return close(sock); } static void PrintSocketError(const char *func) { perror(func); } #else static void PrintSocketError(const char *func) { fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); } #endif static int Usage(const char *program) { fprintf(stderr, "Usage: %s [flags...]\n", program); return 1; } struct TestState { // async_bio is async BIO which pauses reads and writes. BIO *async_bio = nullptr; // packeted_bio is the packeted BIO which simulates read timeouts. BIO *packeted_bio = nullptr; ScopedEVP_PKEY channel_id; bool cert_ready = false; ScopedSSL_SESSION session; ScopedSSL_SESSION pending_session; bool early_callback_called = false; bool handshake_done = false; // private_key is the underlying private key used when testing custom keys. ScopedEVP_PKEY private_key; std::vector private_key_result; // private_key_retries is the number of times an asynchronous private key // operation has been retried. unsigned private_key_retries = 0; bool got_new_session = false; }; static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int index, long argl, void *argp) { delete ((TestState *)ptr); } static int g_config_index = 0; static int g_state_index = 0; static bool SetTestConfig(SSL *ssl, const TestConfig *config) { return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1; } static const TestConfig *GetTestConfig(const SSL *ssl) { return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index); } static bool SetTestState(SSL *ssl, std::unique_ptr state) { // |SSL_set_ex_data| takes ownership of |state| only on success. if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) { state.release(); return true; } return false; } static TestState *GetTestState(const SSL *ssl) { return (TestState *)SSL_get_ex_data(ssl, g_state_index); } static ScopedX509 LoadCertificate(const std::string &file) { ScopedBIO bio(BIO_new(BIO_s_file())); if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { return nullptr; } return ScopedX509(PEM_read_bio_X509(bio.get(), NULL, NULL, NULL)); } static ScopedEVP_PKEY LoadPrivateKey(const std::string &file) { ScopedBIO bio(BIO_new(BIO_s_file())); if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { return nullptr; } return ScopedEVP_PKEY(PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL)); } static int AsyncPrivateKeyType(SSL *ssl) { return EVP_PKEY_id(GetTestState(ssl)->private_key.get()); } static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) { return EVP_PKEY_size(GetTestState(ssl)->private_key.get()); } static ssl_private_key_result_t AsyncPrivateKeySign( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, const EVP_MD *md, const uint8_t *in, size_t in_len) { TestState *test_state = GetTestState(ssl); if (!test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n"); abort(); } ScopedEVP_PKEY_CTX ctx(EVP_PKEY_CTX_new(test_state->private_key.get(), nullptr)); if (!ctx) { return ssl_private_key_failure; } // Write the signature into |test_state|. size_t len = 0; if (!EVP_PKEY_sign_init(ctx.get()) || !EVP_PKEY_CTX_set_signature_md(ctx.get(), md) || !EVP_PKEY_sign(ctx.get(), nullptr, &len, in, in_len)) { return ssl_private_key_failure; } test_state->private_key_result.resize(len); if (!EVP_PKEY_sign(ctx.get(), test_state->private_key_result.data(), &len, in, in_len)) { return ssl_private_key_failure; } test_state->private_key_result.resize(len); // The signature will be released asynchronously in // |AsyncPrivateKeySignComplete|. return ssl_private_key_retry; } static ssl_private_key_result_t AsyncPrivateKeySignComplete( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { TestState *test_state = GetTestState(ssl); if (test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeySignComplete called without operation pending.\n"); abort(); } if (test_state->private_key_retries < 2) { // Only return the signature on the second attempt, to test both incomplete // |sign| and |sign_complete|. return ssl_private_key_retry; } if (max_out < test_state->private_key_result.size()) { fprintf(stderr, "Output buffer too small.\n"); return ssl_private_key_failure; } memcpy(out, test_state->private_key_result.data(), test_state->private_key_result.size()); *out_len = test_state->private_key_result.size(); test_state->private_key_result.clear(); test_state->private_key_retries = 0; return ssl_private_key_success; } static ssl_private_key_result_t AsyncPrivateKeyDecrypt( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, const uint8_t *in, size_t in_len) { TestState *test_state = GetTestState(ssl); if (!test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeyDecrypt called with operation pending.\n"); abort(); } RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get()); if (rsa == NULL) { fprintf(stderr, "AsyncPrivateKeyDecrypt called with incorrect key type.\n"); abort(); } test_state->private_key_result.resize(RSA_size(rsa)); if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(), RSA_size(rsa), in, in_len, RSA_NO_PADDING)) { return ssl_private_key_failure; } test_state->private_key_result.resize(*out_len); // The decryption will be released asynchronously in // |AsyncPrivateKeyDecryptComplete|. return ssl_private_key_retry; } static ssl_private_key_result_t AsyncPrivateKeyDecryptComplete( SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { TestState *test_state = GetTestState(ssl); if (test_state->private_key_result.empty()) { fprintf(stderr, "AsyncPrivateKeyDecryptComplete called without operation " "pending.\n"); abort(); } if (test_state->private_key_retries < 2) { // Only return the decryption on the second attempt, to test both incomplete // |decrypt| and |decrypt_complete|. return ssl_private_key_retry; } if (max_out < test_state->private_key_result.size()) { fprintf(stderr, "Output buffer too small.\n"); return ssl_private_key_failure; } memcpy(out, test_state->private_key_result.data(), test_state->private_key_result.size()); *out_len = test_state->private_key_result.size(); test_state->private_key_result.clear(); test_state->private_key_retries = 0; return ssl_private_key_success; } static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = { AsyncPrivateKeyType, AsyncPrivateKeyMaxSignatureLen, AsyncPrivateKeySign, AsyncPrivateKeySignComplete, AsyncPrivateKeyDecrypt, AsyncPrivateKeyDecryptComplete }; template struct Free { void operator()(T *buf) { free(buf); } }; static bool GetCertificate(SSL *ssl, ScopedX509 *out_x509, ScopedEVP_PKEY *out_pkey) { const TestConfig *config = GetTestConfig(ssl); if (!config->digest_prefs.empty()) { std::unique_ptr> digest_prefs( strdup(config->digest_prefs.c_str())); std::vector digest_list; for (;;) { char *token = strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ","); if (token == nullptr) { break; } digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token))); } if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(), digest_list.size())) { return false; } } if (!config->key_file.empty()) { *out_pkey = LoadPrivateKey(config->key_file.c_str()); if (!*out_pkey) { return false; } } if (!config->cert_file.empty()) { *out_x509 = LoadCertificate(config->cert_file.c_str()); if (!*out_x509) { return false; } } if (!config->ocsp_response.empty() && !SSL_CTX_set_ocsp_response(ssl->ctx, (const uint8_t *)config->ocsp_response.data(), config->ocsp_response.size())) { return false; } return true; } static bool InstallCertificate(SSL *ssl) { ScopedX509 x509; ScopedEVP_PKEY pkey; if (!GetCertificate(ssl, &x509, &pkey)) { return false; } if (pkey) { TestState *test_state = GetTestState(ssl); const TestConfig *config = GetTestConfig(ssl); if (config->async) { test_state->private_key = std::move(pkey); SSL_set_private_key_method(ssl, &g_async_private_key_method); } else if (!SSL_use_PrivateKey(ssl, pkey.get())) { return false; } } if (x509 && !SSL_use_certificate(ssl, x509.get())) { return false; } return true; } static int SelectCertificateCallback(const struct ssl_early_callback_ctx *ctx) { const TestConfig *config = GetTestConfig(ctx->ssl); GetTestState(ctx->ssl)->early_callback_called = true; if (!config->expected_server_name.empty()) { const uint8_t *extension_data; size_t extension_len; CBS extension, server_name_list, host_name; uint8_t name_type; if (!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { fprintf(stderr, "Could not find server_name extension.\n"); return -1; } CBS_init(&extension, extension_data, extension_len); if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) || CBS_len(&extension) != 0 || !CBS_get_u8(&server_name_list, &name_type) || name_type != TLSEXT_NAMETYPE_host_name || !CBS_get_u16_length_prefixed(&server_name_list, &host_name) || CBS_len(&server_name_list) != 0) { fprintf(stderr, "Could not decode server_name extension.\n"); return -1; } if (!CBS_mem_equal(&host_name, (const uint8_t*)config->expected_server_name.data(), config->expected_server_name.size())) { fprintf(stderr, "Server name mismatch.\n"); } } if (config->fail_early_callback) { return -1; } // Install the certificate in the early callback. if (config->use_early_callback) { if (config->async) { // Install the certificate asynchronously. return 0; } if (!InstallCertificate(ctx->ssl)) { return -1; } } return 1; } static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) { if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) { return -1; } ScopedX509 x509; ScopedEVP_PKEY pkey; if (!GetCertificate(ssl, &x509, &pkey)) { return -1; } // Return zero for no certificate. if (!x509) { return 0; } // Asynchronous private keys are not supported with client_cert_cb. *out_x509 = x509.release(); *out_pkey = pkey.release(); return 1; } static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx, SSL_get_ex_data_X509_STORE_CTX_idx()); const TestConfig *config = GetTestConfig(ssl); if (!config->expected_ocsp_response.empty()) { const uint8_t *data; size_t len; SSL_get0_ocsp_response(ssl, &data, &len); if (len == 0) { fprintf(stderr, "OCSP response not available in verify callback\n"); return 0; } } return 1; } static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) { store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION; return 0; } static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out, unsigned int *out_len, void *arg) { const TestConfig *config = GetTestConfig(ssl); if (config->advertise_npn.empty()) { return SSL_TLSEXT_ERR_NOACK; } *out = (const uint8_t*)config->advertise_npn.data(); *out_len = config->advertise_npn.size(); return SSL_TLSEXT_ERR_OK; } static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen, const uint8_t* in, unsigned inlen, void* arg) { const TestConfig *config = GetTestConfig(ssl); if (config->select_next_proto.empty()) { return SSL_TLSEXT_ERR_NOACK; } *out = (uint8_t*)config->select_next_proto.data(); *outlen = config->select_next_proto.size(); return SSL_TLSEXT_ERR_OK; } static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen, const uint8_t* in, unsigned inlen, void* arg) { const TestConfig *config = GetTestConfig(ssl); if (config->decline_alpn) { return SSL_TLSEXT_ERR_NOACK; } if (!config->expected_advertised_alpn.empty() && (config->expected_advertised_alpn.size() != inlen || memcmp(config->expected_advertised_alpn.data(), in, inlen) != 0)) { fprintf(stderr, "bad ALPN select callback inputs\n"); exit(1); } *out = (const uint8_t*)config->select_alpn.data(); *outlen = config->select_alpn.size(); return SSL_TLSEXT_ERR_OK; } static unsigned PskClientCallback(SSL *ssl, const char *hint, char *out_identity, unsigned max_identity_len, uint8_t *out_psk, unsigned max_psk_len) { const TestConfig *config = GetTestConfig(ssl); if (strcmp(hint ? hint : "", config->psk_identity.c_str()) != 0) { fprintf(stderr, "Server PSK hint did not match.\n"); return 0; } // Account for the trailing '\0' for the identity. if (config->psk_identity.size() >= max_identity_len || config->psk.size() > max_psk_len) { fprintf(stderr, "PSK buffers too small\n"); return 0; } BUF_strlcpy(out_identity, config->psk_identity.c_str(), max_identity_len); memcpy(out_psk, config->psk.data(), config->psk.size()); return config->psk.size(); } static unsigned PskServerCallback(SSL *ssl, const char *identity, uint8_t *out_psk, unsigned max_psk_len) { const TestConfig *config = GetTestConfig(ssl); if (strcmp(identity, config->psk_identity.c_str()) != 0) { fprintf(stderr, "Client PSK identity did not match.\n"); return 0; } if (config->psk.size() > max_psk_len) { fprintf(stderr, "PSK buffers too small\n"); return 0; } memcpy(out_psk, config->psk.data(), config->psk.size()); return config->psk.size(); } static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { *out_clock = PacketedBioGetClock(GetTestState(ssl)->packeted_bio); } static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) { *out_pkey = GetTestState(ssl)->channel_id.release(); } static int CertCallback(SSL *ssl, void *arg) { if (!GetTestState(ssl)->cert_ready) { return -1; } if (!InstallCertificate(ssl)) { return 0; } return 1; } static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len, int *copy) { TestState *async_state = GetTestState(ssl); if (async_state->session) { *copy = 0; return async_state->session.release(); } else if (async_state->pending_session) { return SSL_magic_pending_session_ptr(); } else { return NULL; } } static int DDoSCallback(const struct ssl_early_callback_ctx *early_context) { const TestConfig *config = GetTestConfig(early_context->ssl); static int callback_num = 0; callback_num++; if (config->fail_ddos_callback || (config->fail_second_ddos_callback && callback_num == 2)) { return 0; } return 1; } static void InfoCallback(const SSL *ssl, int type, int val) { if (type == SSL_CB_HANDSHAKE_DONE) { if (GetTestConfig(ssl)->handshake_never_done) { fprintf(stderr, "handshake completed\n"); // Abort before any expected error code is printed, to ensure the overall // test fails. abort(); } GetTestState(ssl)->handshake_done = true; } } static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) { GetTestState(ssl)->got_new_session = true; // BoringSSL passes a reference to |session|. SSL_SESSION_free(session); return 1; } static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt) { // This is just test code, so use the all-zeros key. static const uint8_t kZeros[16] = {0}; if (encrypt) { memcpy(key_name, kZeros, sizeof(kZeros)); RAND_bytes(iv, 16); } else if (memcmp(key_name, kZeros, 16) != 0) { return 0; } if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { return -1; } if (!encrypt) { return GetTestConfig(ssl)->renew_ticket ? 2 : 1; } return 1; } // kCustomExtensionValue is the extension value that the custom extension // callbacks will add. static const uint16_t kCustomExtensionValue = 1234; static void *const kCustomExtensionAddArg = reinterpret_cast(kCustomExtensionValue); static void *const kCustomExtensionParseArg = reinterpret_cast(kCustomExtensionValue + 1); static const char kCustomExtensionContents[] = "custom extension"; static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value, const uint8_t **out, size_t *out_len, int *out_alert_value, void *add_arg) { if (extension_value != kCustomExtensionValue || add_arg != kCustomExtensionAddArg) { abort(); } if (GetTestConfig(ssl)->custom_extension_skip) { return 0; } if (GetTestConfig(ssl)->custom_extension_fail_add) { return -1; } *out = reinterpret_cast(kCustomExtensionContents); *out_len = sizeof(kCustomExtensionContents) - 1; return 1; } static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value, const uint8_t *out, void *add_arg) { if (extension_value != kCustomExtensionValue || add_arg != kCustomExtensionAddArg || out != reinterpret_cast(kCustomExtensionContents)) { abort(); } } static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value, const uint8_t *contents, size_t contents_len, int *out_alert_value, void *parse_arg) { if (extension_value != kCustomExtensionValue || parse_arg != kCustomExtensionParseArg) { abort(); } if (contents_len != sizeof(kCustomExtensionContents) - 1 || memcmp(contents, kCustomExtensionContents, contents_len) != 0) { *out_alert_value = SSL_AD_DECODE_ERROR; return 0; } return 1; } // Connect returns a new socket connected to localhost on |port| or -1 on // error. static int Connect(uint16_t port) { int sock = socket(AF_INET, SOCK_STREAM, 0); if (sock == -1) { PrintSocketError("socket"); return -1; } int nodelay = 1; if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, reinterpret_cast(&nodelay), sizeof(nodelay)) != 0) { PrintSocketError("setsockopt"); closesocket(sock); return -1; } sockaddr_in sin; memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_port = htons(port); if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { PrintSocketError("inet_pton"); closesocket(sock); return -1; } if (connect(sock, reinterpret_cast(&sin), sizeof(sin)) != 0) { PrintSocketError("connect"); closesocket(sock); return -1; } return sock; } class SocketCloser { public: explicit SocketCloser(int sock) : sock_(sock) {} ~SocketCloser() { // Half-close and drain the socket before releasing it. This seems to be // necessary for graceful shutdown on Windows. It will also avoid write // failures in the test runner. #if defined(OPENSSL_WINDOWS) shutdown(sock_, SD_SEND); #else shutdown(sock_, SHUT_WR); #endif while (true) { char buf[1024]; if (recv(sock_, buf, sizeof(buf), 0) <= 0) { break; } } closesocket(sock_); } private: const int sock_; }; static ScopedSSL_CTX SetupCtx(const TestConfig *config) { ScopedSSL_CTX ssl_ctx(SSL_CTX_new( config->is_dtls ? DTLS_method() : TLS_method())); if (!ssl_ctx) { return nullptr; } std::string cipher_list = "ALL"; if (!config->cipher.empty()) { cipher_list = config->cipher; SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE); } if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) { return nullptr; } if (!config->cipher_tls10.empty() && !SSL_CTX_set_cipher_list_tls10(ssl_ctx.get(), config->cipher_tls10.c_str())) { return nullptr; } if (!config->cipher_tls11.empty() && !SSL_CTX_set_cipher_list_tls11(ssl_ctx.get(), config->cipher_tls11.c_str())) { return nullptr; } ScopedDH dh(DH_get_2048_256(NULL)); if (!dh) { return nullptr; } if (config->use_sparse_dh_prime) { // This prime number is 2^1024 + 643 – a value just above a power of two. // Because of its form, values modulo it are essentially certain to be one // byte shorter. This is used to test padding of these values. if (BN_hex2bn( &dh->p, "1000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000028" "3") == 0 || !BN_set_word(dh->g, 2)) { return nullptr; } BN_free(dh->q); dh->q = NULL; dh->priv_length = 0; } if (!SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) { return nullptr; } if (config->async && config->is_server) { // Disable the internal session cache. To test asynchronous session lookup, // we use an external session cache. SSL_CTX_set_session_cache_mode( ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL); SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback); } else { SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH); } SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback); if (config->use_old_client_cert_callback) { SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback); } SSL_CTX_set_next_protos_advertised_cb( ssl_ctx.get(), NextProtosAdvertisedCallback, NULL); if (!config->select_next_proto.empty()) { SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback, NULL); } if (!config->select_alpn.empty() || config->decline_alpn) { SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL); } SSL_CTX_enable_tls_channel_id(ssl_ctx.get()); SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback); SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback); SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback); SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback); if (config->use_ticket_callback) { SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback); } if (config->enable_client_custom_extension && !SSL_CTX_add_client_custom_ext( ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, CustomExtensionFreeCallback, kCustomExtensionAddArg, CustomExtensionParseCallback, kCustomExtensionParseArg)) { return nullptr; } if (config->enable_server_custom_extension && !SSL_CTX_add_server_custom_ext( ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, CustomExtensionFreeCallback, kCustomExtensionAddArg, CustomExtensionParseCallback, kCustomExtensionParseArg)) { return nullptr; } if (config->verify_fail) { SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL); } else { SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL); } if (!config->signed_cert_timestamps.empty() && !SSL_CTX_set_signed_cert_timestamp_list( ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(), config->signed_cert_timestamps.size())) { return nullptr; } return ssl_ctx; } // RetryAsync is called after a failed operation on |ssl| with return code // |ret|. If the operation should be retried, it simulates one asynchronous // event and returns true. Otherwise it returns false. static bool RetryAsync(SSL *ssl, int ret) { // No error; don't retry. if (ret >= 0) { return false; } TestState *test_state = GetTestState(ssl); assert(GetTestConfig(ssl)->async); if (test_state->packeted_bio != nullptr && PacketedBioAdvanceClock(test_state->packeted_bio)) { // The DTLS retransmit logic silently ignores write failures. So the test // may progress, allow writes through synchronously. AsyncBioEnforceWriteQuota(test_state->async_bio, false); int timeout_ret = DTLSv1_handle_timeout(ssl); AsyncBioEnforceWriteQuota(test_state->async_bio, true); if (timeout_ret < 0) { fprintf(stderr, "Error retransmitting.\n"); return false; } return true; } // See if we needed to read or write more. If so, allow one byte through on // the appropriate end to maximally stress the state machine. switch (SSL_get_error(ssl, ret)) { case SSL_ERROR_WANT_READ: AsyncBioAllowRead(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_WRITE: AsyncBioAllowWrite(test_state->async_bio, 1); return true; case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { ScopedEVP_PKEY pkey = LoadPrivateKey(GetTestConfig(ssl)->send_channel_id); if (!pkey) { return false; } test_state->channel_id = std::move(pkey); return true; } case SSL_ERROR_WANT_X509_LOOKUP: test_state->cert_ready = true; return true; case SSL_ERROR_PENDING_SESSION: test_state->session = std::move(test_state->pending_session); return true; case SSL_ERROR_PENDING_CERTIFICATE: // The handshake will resume without a second call to the early callback. return InstallCertificate(ssl); case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: test_state->private_key_retries++; return true; default: return false; } } // DoRead reads from |ssl|, resolving any asynchronous operations. It returns // the result value of the final |SSL_read| call. static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) { const TestConfig *config = GetTestConfig(ssl); TestState *test_state = GetTestState(ssl); int ret; do { if (config->async) { // The DTLS retransmit logic silently ignores write failures. So the test // may progress, allow writes through synchronously. |SSL_read| may // trigger a retransmit, so disconnect the write quota. AsyncBioEnforceWriteQuota(test_state->async_bio, false); } ret = SSL_read(ssl, out, max_out); if (config->async) { AsyncBioEnforceWriteQuota(test_state->async_bio, true); } } while (config->async && RetryAsync(ssl, ret)); return ret; } // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous // operations. It returns the result of the final |SSL_write| call. static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) { const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_write(ssl, in, in_len); if (ret > 0) { in += ret; in_len -= ret; } } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0)); return ret; } // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It // returns the result of the final |SSL_shutdown| call. static int DoShutdown(SSL *ssl) { const TestConfig *config = GetTestConfig(ssl); int ret; do { ret = SSL_shutdown(ssl); } while (config->async && RetryAsync(ssl, ret)); return ret; } // CheckHandshakeProperties checks, immediately after |ssl| completes its // initial handshake (or False Starts), whether all the properties are // consistent with the test configuration and invariants. static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) { const TestConfig *config = GetTestConfig(ssl); if (SSL_get_current_cipher(ssl) == nullptr) { fprintf(stderr, "null cipher after handshake\n"); return false; } if (is_resume && (!!SSL_session_reused(ssl) == config->expect_session_miss)) { fprintf(stderr, "session was%s reused\n", SSL_session_reused(ssl) ? "" : " not"); return false; } bool expect_handshake_done = is_resume || !config->false_start; if (expect_handshake_done != GetTestState(ssl)->handshake_done) { fprintf(stderr, "handshake was%s completed\n", GetTestState(ssl)->handshake_done ? "" : " not"); return false; } if (expect_handshake_done && !config->is_server) { bool expect_new_session = !config->expect_no_session && (!SSL_session_reused(ssl) || config->expect_ticket_renewal); if (expect_new_session != GetTestState(ssl)->got_new_session) { fprintf(stderr, "new session was%s cached, but we expected the opposite\n", GetTestState(ssl)->got_new_session ? "" : " not"); return false; } } if (config->is_server && !GetTestState(ssl)->early_callback_called) { fprintf(stderr, "early callback not called\n"); return false; } if (!config->expected_server_name.empty()) { const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (server_name != config->expected_server_name) { fprintf(stderr, "servername mismatch (got %s; want %s)\n", server_name, config->expected_server_name.c_str()); return false; } } if (!config->expected_certificate_types.empty()) { const uint8_t *certificate_types; size_t certificate_types_len = SSL_get0_certificate_types(ssl, &certificate_types); if (certificate_types_len != config->expected_certificate_types.size() || memcmp(certificate_types, config->expected_certificate_types.data(), certificate_types_len) != 0) { fprintf(stderr, "certificate types mismatch\n"); return false; } } if (!config->expected_next_proto.empty()) { const uint8_t *next_proto; unsigned next_proto_len; SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); if (next_proto_len != config->expected_next_proto.size() || memcmp(next_proto, config->expected_next_proto.data(), next_proto_len) != 0) { fprintf(stderr, "negotiated next proto mismatch\n"); return false; } } if (!config->expected_alpn.empty()) { const uint8_t *alpn_proto; unsigned alpn_proto_len; SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len); if (alpn_proto_len != config->expected_alpn.size() || memcmp(alpn_proto, config->expected_alpn.data(), alpn_proto_len) != 0) { fprintf(stderr, "negotiated alpn proto mismatch\n"); return false; } } if (!config->expected_channel_id.empty()) { uint8_t channel_id[64]; if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) { fprintf(stderr, "no channel id negotiated\n"); return false; } if (config->expected_channel_id.size() != 64 || memcmp(config->expected_channel_id.data(), channel_id, 64) != 0) { fprintf(stderr, "channel id mismatch\n"); return false; } } if (config->expect_extended_master_secret) { if (!ssl->session->extended_master_secret) { fprintf(stderr, "No EMS for session when expected"); return false; } } if (!config->expected_ocsp_response.empty()) { const uint8_t *data; size_t len; SSL_get0_ocsp_response(ssl, &data, &len); if (config->expected_ocsp_response.size() != len || memcmp(config->expected_ocsp_response.data(), data, len) != 0) { fprintf(stderr, "OCSP response mismatch\n"); return false; } } if (!config->expected_signed_cert_timestamps.empty()) { const uint8_t *data; size_t len; SSL_get0_signed_cert_timestamp_list(ssl, &data, &len); if (config->expected_signed_cert_timestamps.size() != len || memcmp(config->expected_signed_cert_timestamps.data(), data, len) != 0) { fprintf(stderr, "SCT list mismatch\n"); return false; } } if (config->expect_verify_result) { int expected_verify_result = config->verify_fail ? X509_V_ERR_APPLICATION_VERIFICATION : X509_V_OK; if (SSL_get_verify_result(ssl) != expected_verify_result) { fprintf(stderr, "Wrong certificate verification result\n"); return false; } } if (config->expect_server_key_exchange_hash != 0 && config->expect_server_key_exchange_hash != SSL_get_server_key_exchange_hash(ssl)) { fprintf(stderr, "ServerKeyExchange hash was %d, wanted %d.\n", SSL_get_server_key_exchange_hash(ssl), config->expect_server_key_exchange_hash); return false; } if (config->expect_key_exchange_info != 0) { uint32_t info = SSL_SESSION_get_key_exchange_info(SSL_get_session(ssl)); if (static_cast(config->expect_key_exchange_info) != info) { fprintf(stderr, "key_exchange_info was %" PRIu32 ", wanted %" PRIu32 "\n", info, static_cast(config->expect_key_exchange_info)); return false; } } if (!config->is_server) { /* Clients should expect a peer certificate chain iff this was not a PSK * cipher suite. */ if (config->psk.empty()) { if (SSL_get_peer_cert_chain(ssl) == nullptr) { fprintf(stderr, "Missing peer certificate chain!\n"); return false; } } else if (SSL_get_peer_cert_chain(ssl) != nullptr) { fprintf(stderr, "Unexpected peer certificate chain!\n"); return false; } } return true; } // DoExchange runs a test SSL exchange against the peer. On success, it returns // true and sets |*out_session| to the negotiated SSL session. If the test is a // resumption attempt, |is_resume| is true and |session| is the session from the // previous exchange. static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx, const TestConfig *config, bool is_resume, SSL_SESSION *session) { ScopedSSL ssl(SSL_new(ssl_ctx)); if (!ssl) { return false; } if (!SetTestConfig(ssl.get(), config) || !SetTestState(ssl.get(), std::unique_ptr(new TestState))) { return false; } if (config->fallback_scsv && !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) { return false; } if (!config->use_early_callback && !config->use_old_client_cert_callback) { if (config->async) { SSL_set_cert_cb(ssl.get(), CertCallback, NULL); } else if (!InstallCertificate(ssl.get())) { return false; } } if (config->require_any_client_certificate) { SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT, NULL); } if (config->verify_peer) { SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL); } if (config->false_start) { SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START); } if (config->cbc_record_splitting) { SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING); } if (config->partial_write) { SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); } if (config->no_tls13) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3); } if (config->no_tls12) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2); } if (config->no_tls11) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1); } if (config->no_tls1) { SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1); } if (config->no_ssl3) { SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3); } if (!config->expected_channel_id.empty()) { SSL_enable_tls_channel_id(ssl.get()); } if (!config->send_channel_id.empty()) { SSL_enable_tls_channel_id(ssl.get()); if (!config->async) { // The async case will be supplied by |ChannelIdCallback|. ScopedEVP_PKEY pkey = LoadPrivateKey(config->send_channel_id); if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) { return false; } } } if (!config->host_name.empty() && !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) { return false; } if (!config->advertise_alpn.empty() && SSL_set_alpn_protos(ssl.get(), (const uint8_t *)config->advertise_alpn.data(), config->advertise_alpn.size()) != 0) { return false; } if (!config->psk.empty()) { SSL_set_psk_client_callback(ssl.get(), PskClientCallback); SSL_set_psk_server_callback(ssl.get(), PskServerCallback); } if (!config->psk_identity.empty() && !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) { return false; } if (!config->srtp_profiles.empty() && !SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) { return false; } if (config->enable_ocsp_stapling && !SSL_enable_ocsp_stapling(ssl.get())) { return false; } if (config->enable_signed_cert_timestamps && !SSL_enable_signed_cert_timestamps(ssl.get())) { return false; } if (config->min_version != 0) { SSL_set_min_version(ssl.get(), (uint16_t)config->min_version); } if (config->max_version != 0) { SSL_set_max_version(ssl.get(), (uint16_t)config->max_version); } if (config->mtu != 0) { SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU); SSL_set_mtu(ssl.get(), config->mtu); } if (config->install_ddos_callback) { SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback); } if (config->renegotiate_once) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once); } if (config->renegotiate_freely) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely); } if (config->renegotiate_ignore) { SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore); } if (!config->check_close_notify) { SSL_set_quiet_shutdown(ssl.get(), 1); } if (config->disable_npn) { SSL_set_options(ssl.get(), SSL_OP_DISABLE_NPN); } if (config->p384_only) { int nid = NID_secp384r1; if (!SSL_set1_curves(ssl.get(), &nid, 1)) { return false; } } if (config->enable_all_curves) { static const int kAllCurves[] = { NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_X25519, }; if (!SSL_set1_curves(ssl.get(), kAllCurves, sizeof(kAllCurves) / sizeof(kAllCurves[0]))) { return false; } } if (config->initial_timeout_duration_ms > 0) { DTLSv1_set_initial_timeout_duration(ssl.get(), config->initial_timeout_duration_ms); } int sock = Connect(config->port); if (sock == -1) { return false; } SocketCloser closer(sock); ScopedBIO bio(BIO_new_socket(sock, BIO_NOCLOSE)); if (!bio) { return false; } if (config->is_dtls) { ScopedBIO packeted = PacketedBioCreate(!config->async); if (!packeted) { return false; } GetTestState(ssl.get())->packeted_bio = packeted.get(); BIO_push(packeted.get(), bio.release()); bio = std::move(packeted); } if (config->async) { ScopedBIO async_scoped = config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate(); if (!async_scoped) { return false; } BIO_push(async_scoped.get(), bio.release()); GetTestState(ssl.get())->async_bio = async_scoped.get(); bio = std::move(async_scoped); } SSL_set_bio(ssl.get(), bio.get(), bio.get()); bio.release(); // SSL_set_bio takes ownership. if (session != NULL) { if (!config->is_server) { if (SSL_set_session(ssl.get(), session) != 1) { return false; } } else if (config->async) { // The internal session cache is disabled, so install the session // manually. GetTestState(ssl.get())->pending_session.reset( SSL_SESSION_up_ref(session)); } } if (SSL_get_current_cipher(ssl.get()) != nullptr) { fprintf(stderr, "non-null cipher before handshake\n"); return false; } int ret; if (config->implicit_handshake) { if (config->is_server) { SSL_set_accept_state(ssl.get()); } else { SSL_set_connect_state(ssl.get()); } } else { do { if (config->is_server) { ret = SSL_accept(ssl.get()); } else { ret = SSL_connect(ssl.get()); } } while (config->async && RetryAsync(ssl.get(), ret)); if (ret != 1 || !CheckHandshakeProperties(ssl.get(), is_resume)) { return false; } // Reset the state to assert later that the callback isn't called in // renegotations. GetTestState(ssl.get())->got_new_session = false; } if (config->export_keying_material > 0) { std::vector result( static_cast(config->export_keying_material)); if (!SSL_export_keying_material( ssl.get(), result.data(), result.size(), config->export_label.data(), config->export_label.size(), reinterpret_cast(config->export_context.data()), config->export_context.size(), config->use_export_context)) { fprintf(stderr, "failed to export keying material\n"); return false; } if (WriteAll(ssl.get(), result.data(), result.size()) < 0) { return false; } } if (config->tls_unique) { uint8_t tls_unique[16]; size_t tls_unique_len; if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len, sizeof(tls_unique))) { fprintf(stderr, "failed to get tls-unique\n"); return false; } if (tls_unique_len != 12) { fprintf(stderr, "expected 12 bytes of tls-unique but got %u", static_cast(tls_unique_len)); return false; } if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) { return false; } } if (config->write_different_record_sizes) { if (config->is_dtls) { fprintf(stderr, "write_different_record_sizes not supported for DTLS\n"); return false; } // This mode writes a number of different record sizes in an attempt to // trip up the CBC record splitting code. static const size_t kBufLen = 32769; std::unique_ptr buf(new uint8_t[kBufLen]); memset(buf.get(), 0x42, kBufLen); static const size_t kRecordSizes[] = { 0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769}; for (size_t i = 0; i < sizeof(kRecordSizes) / sizeof(kRecordSizes[0]); i++) { const size_t len = kRecordSizes[i]; if (len > kBufLen) { fprintf(stderr, "Bad kRecordSizes value.\n"); return false; } if (WriteAll(ssl.get(), buf.get(), len) < 0) { return false; } } } else { if (config->shim_writes_first) { if (WriteAll(ssl.get(), reinterpret_cast("hello"), 5) < 0) { return false; } } if (!config->shim_shuts_down) { for (;;) { static const size_t kBufLen = 16384; std::unique_ptr buf(new uint8_t[kBufLen]); // Read only 512 bytes at a time in TLS to ensure records may be // returned in multiple reads. int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512); int err = SSL_get_error(ssl.get(), n); if (err == SSL_ERROR_ZERO_RETURN || (n == 0 && err == SSL_ERROR_SYSCALL)) { if (n != 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } // Stop on either clean or unclean shutdown. break; } else if (err != SSL_ERROR_NONE) { if (n > 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } return false; } // Successfully read data. if (n <= 0) { fprintf(stderr, "Invalid SSL_get_error output\n"); return false; } // After a successful read, with or without False Start, the handshake // must be complete. if (!GetTestState(ssl.get())->handshake_done) { fprintf(stderr, "handshake was not completed after SSL_read\n"); return false; } for (int i = 0; i < n; i++) { buf[i] ^= 0xff; } if (WriteAll(ssl.get(), buf.get(), n) < 0) { return false; } } } } if (!config->is_server && !config->false_start && !config->implicit_handshake && GetTestState(ssl.get())->got_new_session) { fprintf(stderr, "new session was established after the handshake\n"); return false; } if (out_session) { out_session->reset(SSL_get1_session(ssl.get())); } ret = DoShutdown(ssl.get()); if (config->shim_shuts_down && config->check_close_notify) { // We initiate shutdown, so |SSL_shutdown| will return in two stages. First // it returns zero when our close_notify is sent, then one when the peer's // is received. if (ret != 0) { fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret); return false; } ret = DoShutdown(ssl.get()); } if (ret != 1) { fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret); return false; } if (SSL_total_renegotiations(ssl.get()) != config->expect_total_renegotiations) { fprintf(stderr, "Expected %d renegotiations, got %d\n", config->expect_total_renegotiations, SSL_total_renegotiations(ssl.get())); return false; } return true; } class StderrDelimiter { public: ~StderrDelimiter() { fprintf(stderr, "--- DONE ---\n"); } }; int main(int argc, char **argv) { // To distinguish ASan's output from ours, add a trailing message to stderr. // Anything following this line will be considered an error. StderrDelimiter delimiter; #if defined(OPENSSL_WINDOWS) /* Initialize Winsock. */ WORD wsa_version = MAKEWORD(2, 2); WSADATA wsa_data; int wsa_err = WSAStartup(wsa_version, &wsa_data); if (wsa_err != 0) { fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); return 1; } if (wsa_data.wVersion != wsa_version) { fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); return 1; } #else signal(SIGPIPE, SIG_IGN); #endif CRYPTO_library_init(); g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree); if (g_config_index < 0 || g_state_index < 0) { return 1; } TestConfig config; if (!ParseConfig(argc - 1, argv + 1, &config)) { return Usage(argv[0]); } ScopedSSL_CTX ssl_ctx = SetupCtx(&config); if (!ssl_ctx) { ERR_print_errors_fp(stderr); return 1; } ScopedSSL_SESSION session; if (!DoExchange(&session, ssl_ctx.get(), &config, false /* is_resume */, NULL /* session */)) { ERR_print_errors_fp(stderr); return 1; } if (config.resume && !DoExchange(NULL, ssl_ctx.get(), &config, true /* is_resume */, session.get())) { ERR_print_errors_fp(stderr); return 1; } return 0; }