; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -instcombine -S | FileCheck %s ; There should be no 'and' instructions left in any test. define i32 @test1(i32 %A) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: ret i32 0 ; %B = and i32 %A, 0 ret i32 %B } define i32 @test2(i32 %A) { ; CHECK-LABEL: @test2( ; CHECK-NEXT: ret i32 %A ; %B = and i32 %A, -1 ret i32 %B } define i1 @test3(i1 %A) { ; CHECK-LABEL: @test3( ; CHECK-NEXT: ret i1 false ; %B = and i1 %A, false ret i1 %B } define i1 @test4(i1 %A) { ; CHECK-LABEL: @test4( ; CHECK-NEXT: ret i1 %A ; %B = and i1 %A, true ret i1 %B } define i32 @test5(i32 %A) { ; CHECK-LABEL: @test5( ; CHECK-NEXT: ret i32 %A ; %B = and i32 %A, %A ret i32 %B } define i1 @test6(i1 %A) { ; CHECK-LABEL: @test6( ; CHECK-NEXT: ret i1 %A ; %B = and i1 %A, %A ret i1 %B } ; A & ~A == 0 define i32 @test7(i32 %A) { ; CHECK-LABEL: @test7( ; CHECK-NEXT: ret i32 0 ; %NotA = xor i32 %A, -1 %B = and i32 %A, %NotA ret i32 %B } ; AND associates define i8 @test8(i8 %A) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: ret i8 0 ; %B = and i8 %A, 3 %C = and i8 %B, 4 ret i8 %C } ; Test of sign bit, convert to setle %A, 0 define i1 @test9(i32 %A) { ; CHECK-LABEL: @test9( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 %A, 0 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i32 %A, -2147483648 %C = icmp ne i32 %B, 0 ret i1 %C } ; Test of sign bit, convert to setle %A, 0 define i1 @test9a(i32 %A) { ; CHECK-LABEL: @test9a( ; CHECK-NEXT: [[C:%.*]] = icmp slt i32 %A, 0 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i32 %A, -2147483648 %C = icmp ne i32 %B, 0 ret i1 %C } define i32 @test10(i32 %A) { ; CHECK-LABEL: @test10( ; CHECK-NEXT: ret i32 1 ; %B = and i32 %A, 12 %C = xor i32 %B, 15 ; (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) %D = and i32 %C, 1 ret i32 %D } define i32 @test11(i32 %A, i32* %P) { ; CHECK-LABEL: @test11( ; CHECK-NEXT: [[B:%.*]] = or i32 %A, 3 ; CHECK-NEXT: [[C:%.*]] = xor i32 [[B]], 12 ; CHECK-NEXT: store i32 [[C]], i32* %P, align 4 ; CHECK-NEXT: ret i32 3 ; %B = or i32 %A, 3 %C = xor i32 %B, 12 ; additional use of C store i32 %C, i32* %P ; %C = and uint %B, 3 --> 3 %D = and i32 %C, 3 ret i32 %D } define i1 @test12(i32 %A, i32 %B) { ; CHECK-LABEL: @test12( ; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i32 %A, %B ; CHECK-NEXT: ret i1 [[TMP1]] ; %C1 = icmp ult i32 %A, %B %C2 = icmp ule i32 %A, %B ; (A < B) & (A <= B) === (A < B) %D = and i1 %C1, %C2 ret i1 %D } define i1 @test13(i32 %A, i32 %B) { ; CHECK-LABEL: @test13( ; CHECK-NEXT: ret i1 false ; %C1 = icmp ult i32 %A, %B %C2 = icmp ugt i32 %A, %B ; (A < B) & (A > B) === false %D = and i1 %C1, %C2 ret i1 %D } define i1 @test14(i8 %A) { ; CHECK-LABEL: @test14( ; CHECK-NEXT: [[C:%.*]] = icmp slt i8 %A, 0 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i8 %A, -128 %C = icmp ne i8 %B, 0 ret i1 %C } define i8 @test15(i8 %A) { ; CHECK-LABEL: @test15( ; CHECK-NEXT: ret i8 0 ; %B = lshr i8 %A, 7 ; Always equals zero %C = and i8 %B, 2 ret i8 %C } define i8 @test16(i8 %A) { ; CHECK-LABEL: @test16( ; CHECK-NEXT: ret i8 0 ; %B = shl i8 %A, 2 %C = and i8 %B, 3 ret i8 %C } define i1 @test18(i32 %A) { ; CHECK-LABEL: @test18( ; CHECK-NEXT: [[C:%.*]] = icmp ugt i32 %A, 127 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i32 %A, -128 ;; C >= 128 %C = icmp ne i32 %B, 0 ret i1 %C } define <2 x i1> @test18_vec(<2 x i32> %A) { ; CHECK-LABEL: @test18_vec( ; CHECK-NEXT: [[C:%.*]] = icmp ugt <2 x i32> %A, ; CHECK-NEXT: ret <2 x i1> [[C]] ; %B = and <2 x i32> %A, %C = icmp ne <2 x i32> %B, zeroinitializer ret <2 x i1> %C } define i1 @test18a(i8 %A) { ; CHECK-LABEL: @test18a( ; CHECK-NEXT: [[C:%.*]] = icmp ult i8 %A, 2 ; CHECK-NEXT: ret i1 [[C]] ; %B = and i8 %A, -2 %C = icmp eq i8 %B, 0 ret i1 %C } define <2 x i1> @test18a_vec(<2 x i8> %A) { ; CHECK-LABEL: @test18a_vec( ; CHECK-NEXT: [[C:%.*]] = icmp ult <2 x i8> %A, ; CHECK-NEXT: ret <2 x i1> [[C]] ; %B = and <2 x i8> %A, %C = icmp eq <2 x i8> %B, zeroinitializer ret <2 x i1> %C } define i32 @test19(i32 %A) { ; CHECK-LABEL: @test19( ; CHECK-NEXT: [[B:%.*]] = shl i32 %A, 3 ; CHECK-NEXT: ret i32 [[B]] ; %B = shl i32 %A, 3 ;; Clearing a zero bit %C = and i32 %B, -2 ret i32 %C } define i8 @test20(i8 %A) { ; CHECK-LABEL: @test20( ; CHECK-NEXT: [[C:%.*]] = lshr i8 %A, 7 ; CHECK-NEXT: ret i8 [[C]] ; %C = lshr i8 %A, 7 ;; Unneeded %D = and i8 %C, 1 ret i8 %D } define i1 @test23(i32 %A) { ; CHECK-LABEL: @test23( ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 %A, 2 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sgt i32 %A, 1 %C = icmp sle i32 %A, 2 %D = and i1 %B, %C ret i1 %D } ; FIXME: Vectors should fold too. define <2 x i1> @test23vec(<2 x i32> %A) { ; CHECK-LABEL: @test23vec( ; CHECK-NEXT: [[B:%.*]] = icmp sgt <2 x i32> %A, ; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> %A, ; CHECK-NEXT: [[D:%.*]] = and <2 x i1> [[B]], [[C]] ; CHECK-NEXT: ret <2 x i1> [[D]] ; %B = icmp sgt <2 x i32> %A, %C = icmp sle <2 x i32> %A, %D = and <2 x i1> %B, %C ret <2 x i1> %D } define i1 @test24(i32 %A) { ; CHECK-LABEL: @test24( ; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt i32 %A, 2 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sgt i32 %A, 1 %C = icmp ne i32 %A, 2 ;; A > 2 %D = and i1 %B, %C ret i1 %D } define i1 @test25(i32 %A) { ; CHECK-LABEL: @test25( ; CHECK-NEXT: [[A_OFF:%.*]] = add i32 %A, -50 ; CHECK-NEXT: [[TMP1:%.*]] = icmp ult i32 [[A_OFF]], 50 ; CHECK-NEXT: ret i1 [[TMP1]] ; %B = icmp sge i32 %A, 50 %C = icmp slt i32 %A, 100 %D = and i1 %B, %C ret i1 %D } ; FIXME: Vectors should fold too. define <2 x i1> @test25vec(<2 x i32> %A) { ; CHECK-LABEL: @test25vec( ; CHECK-NEXT: [[B:%.*]] = icmp sgt <2 x i32> %A, ; CHECK-NEXT: [[C:%.*]] = icmp slt <2 x i32> %A, ; CHECK-NEXT: [[D:%.*]] = and <2 x i1> [[B]], [[C]] ; CHECK-NEXT: ret <2 x i1> [[D]] ; %B = icmp sge <2 x i32> %A, %C = icmp slt <2 x i32> %A, %D = and <2 x i1> %B, %C ret <2 x i1> %D } define i8 @test27(i8 %A) { ; CHECK-LABEL: @test27( ; CHECK-NEXT: ret i8 0 ; %B = and i8 %A, 4 %C = sub i8 %B, 16 ;; 0xF0 %D = and i8 %C, -16 %E = add i8 %D, 16 ret i8 %E } ;; This is just a zero-extending shr. define i32 @test28(i32 %X) { ; CHECK-LABEL: @test28( ; CHECK-NEXT: [[Y1:%.*]] = lshr i32 %X, 24 ; CHECK-NEXT: ret i32 [[Y1]] ; ;; Sign extend %Y = ashr i32 %X, 24 ;; Mask out sign bits %Z = and i32 %Y, 255 ret i32 %Z } define i32 @test29(i8 %X) { ; CHECK-LABEL: @test29( ; CHECK-NEXT: [[Y:%.*]] = zext i8 %X to i32 ; CHECK-NEXT: ret i32 [[Y]] ; %Y = zext i8 %X to i32 ;; Zero extend makes this unneeded. %Z = and i32 %Y, 255 ret i32 %Z } define i32 @test30(i1 %X) { ; CHECK-LABEL: @test30( ; CHECK-NEXT: [[Y:%.*]] = zext i1 %X to i32 ; CHECK-NEXT: ret i32 [[Y]] ; %Y = zext i1 %X to i32 %Z = and i32 %Y, 1 ret i32 %Z } define i32 @test31(i1 %X) { ; CHECK-LABEL: @test31( ; CHECK-NEXT: [[Y:%.*]] = zext i1 %X to i32 ; CHECK-NEXT: [[Z:%.*]] = shl nuw nsw i32 [[Y]], 4 ; CHECK-NEXT: ret i32 [[Z]] ; %Y = zext i1 %X to i32 %Z = shl i32 %Y, 4 %A = and i32 %Z, 16 ret i32 %A } ; Demanded bit analysis allows us to eliminate the add. define <2 x i32> @and_demanded_bits_splat_vec(<2 x i32> %x) { ; CHECK-LABEL: @and_demanded_bits_splat_vec( ; CHECK-NEXT: [[Z:%.*]] = and <2 x i32> %x, ; CHECK-NEXT: ret <2 x i32> [[Z]] ; %y = add <2 x i32> %x, %z = and <2 x i32> %y, ret <2 x i32> %z } define i32 @test32(i32 %In) { ; CHECK-LABEL: @test32( ; CHECK-NEXT: ret i32 0 ; %Y = and i32 %In, 16 %Z = lshr i32 %Y, 2 %A = and i32 %Z, 1 ret i32 %A } ;; Code corresponding to one-bit bitfield ^1. define i32 @test33(i32 %b) { ; CHECK-LABEL: @test33( ; CHECK-NEXT: [[TMP_13:%.*]] = xor i32 %b, 1 ; CHECK-NEXT: ret i32 [[TMP_13]] ; %tmp.4.mask = and i32 %b, 1 %tmp.10 = xor i32 %tmp.4.mask, 1 %tmp.12 = and i32 %b, -2 %tmp.13 = or i32 %tmp.12, %tmp.10 ret i32 %tmp.13 } define i32 @test33b(i32 %b) { ; CHECK-LABEL: @test33b( ; CHECK-NEXT: [[TMP_13:%.*]] = xor i32 [[B:%.*]], 1 ; CHECK-NEXT: ret i32 [[TMP_13]] ; %tmp.4.mask = and i32 %b, 1 %tmp.10 = xor i32 %tmp.4.mask, 1 %tmp.12 = and i32 %b, -2 %tmp.13 = or i32 %tmp.10, %tmp.12 ret i32 %tmp.13 } define <2 x i32> @test33vec(<2 x i32> %b) { ; CHECK-LABEL: @test33vec( ; CHECK-NEXT: [[TMP_13:%.*]] = xor <2 x i32> [[B:%.*]], ; CHECK-NEXT: ret <2 x i32> [[TMP_13]] ; %tmp.4.mask = and <2 x i32> %b, %tmp.10 = xor <2 x i32> %tmp.4.mask, %tmp.12 = and <2 x i32> %b, %tmp.13 = or <2 x i32> %tmp.12, %tmp.10 ret <2 x i32> %tmp.13 } define <2 x i32> @test33vecb(<2 x i32> %b) { ; CHECK-LABEL: @test33vecb( ; CHECK-NEXT: [[TMP_13:%.*]] = xor <2 x i32> [[B:%.*]], ; CHECK-NEXT: ret <2 x i32> [[TMP_13]] ; %tmp.4.mask = and <2 x i32> %b, %tmp.10 = xor <2 x i32> %tmp.4.mask, %tmp.12 = and <2 x i32> %b, %tmp.13 = or <2 x i32> %tmp.10, %tmp.12 ret <2 x i32> %tmp.13 } define i32 @test34(i32 %A, i32 %B) { ; CHECK-LABEL: @test34( ; CHECK-NEXT: ret i32 %B ; %tmp.2 = or i32 %B, %A %tmp.4 = and i32 %tmp.2, %B ret i32 %tmp.4 } ; FIXME: This test should only need -instsimplify (ValueTracking / computeKnownBits), not -instcombine. define <2 x i32> @PR24942(<2 x i32> %x) { ; CHECK-LABEL: @PR24942( ; CHECK-NEXT: ret <2 x i32> zeroinitializer ; %lshr = lshr <2 x i32> %x, %and = and <2 x i32> %lshr, ret <2 x i32> %and } define i64 @test35(i32 %X) { ; CHECK-LABEL: @test35( ; CHECK-NEXT: %[[sub:.*]] = sub i32 0, %X ; CHECK-NEXT: %[[and:.*]] = and i32 %[[sub]], 240 ; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64 ; CHECK-NEXT: ret i64 %[[cst]] %zext = zext i32 %X to i64 %zsub = sub i64 0, %zext %res = and i64 %zsub, 240 ret i64 %res } define i64 @test36(i32 %X) { ; CHECK-LABEL: @test36( ; CHECK-NEXT: %[[sub:.*]] = add i32 %X, 7 ; CHECK-NEXT: %[[and:.*]] = and i32 %[[sub]], 240 ; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64 ; CHECK-NEXT: ret i64 %[[cst]] %zext = zext i32 %X to i64 %zsub = add i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define i64 @test37(i32 %X) { ; CHECK-LABEL: @test37( ; CHECK-NEXT: %[[sub:.*]] = mul i32 %X, 7 ; CHECK-NEXT: %[[and:.*]] = and i32 %[[sub]], 240 ; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64 ; CHECK-NEXT: ret i64 %[[cst]] %zext = zext i32 %X to i64 %zsub = mul i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define i64 @test38(i32 %X) { ; CHECK-LABEL: @test38( ; CHECK-NEXT: %[[and:.*]] = and i32 %X, 240 ; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64 ; CHECK-NEXT: ret i64 %[[cst]] %zext = zext i32 %X to i64 %zsub = xor i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define i64 @test39(i32 %X) { ; CHECK-LABEL: @test39( ; CHECK-NEXT: %[[and:.*]] = and i32 %X, 240 ; CHECK-NEXT: %[[cst:.*]] = zext i32 %[[and]] to i64 ; CHECK-NEXT: ret i64 %[[cst]] %zext = zext i32 %X to i64 %zsub = or i64 %zext, 7 %res = and i64 %zsub, 240 ret i64 %res } define i32 @test40(i1 %C) { ; CHECK-LABEL: @test40( ; CHECK-NEXT: [[A:%.*]] = select i1 [[C:%.*]], i32 104, i32 10 ; CHECK-NEXT: ret i32 [[A]] ; %A = select i1 %C, i32 1000, i32 10 %V = and i32 %A, 123 ret i32 %V } define <2 x i32> @test40vec(i1 %C) { ; CHECK-LABEL: @test40vec( ; CHECK-NEXT: [[A:%.*]] = select i1 [[C:%.*]], <2 x i32> , <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[A]] ; %A = select i1 %C, <2 x i32> , <2 x i32> %V = and <2 x i32> %A, ret <2 x i32> %V } define <2 x i32> @test40vec2(i1 %C) { ; CHECK-LABEL: @test40vec2( ; CHECK-NEXT: [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> , <2 x i32> ; CHECK-NEXT: ret <2 x i32> [[V]] ; %A = select i1 %C, <2 x i32> , <2 x i32> %V = and <2 x i32> %A, ret <2 x i32> %V } define i32 @test41(i1 %which) { ; CHECK-LABEL: @test41( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi i32 [ 104, [[ENTRY:%.*]] ], [ 10, [[DELAY]] ] ; CHECK-NEXT: ret i32 [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi i32 [ 1000, %entry ], [ 10, %delay ] %value = and i32 %A, 123 ret i32 %value } define <2 x i32> @test41vec(i1 %which) { ; CHECK-LABEL: @test41vec( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ , [[ENTRY:%.*]] ], [ , [[DELAY]] ] ; CHECK-NEXT: ret <2 x i32> [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi <2 x i32> [ , %entry ], [ , %delay ] %value = and <2 x i32> %A, ret <2 x i32> %value } define <2 x i32> @test41vec2(i1 %which) { ; CHECK-LABEL: @test41vec2( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]] ; CHECK: delay: ; CHECK-NEXT: br label [[FINAL]] ; CHECK: final: ; CHECK-NEXT: [[A:%.*]] = phi <2 x i32> [ , [[ENTRY:%.*]] ], [ , [[DELAY]] ] ; CHECK-NEXT: ret <2 x i32> [[A]] ; entry: br i1 %which, label %final, label %delay delay: br label %final final: %A = phi <2 x i32> [ , %entry ], [ , %delay ] %value = and <2 x i32> %A, ret <2 x i32> %value } define i32 @test42(i32 %a, i32 %c, i32 %d) { ; CHECK-LABEL: @test42( ; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]] ; CHECK-NEXT: [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]] ; CHECK-NEXT: ret i32 [[AND]] ; %force = mul i32 %c, %d ; forces the complexity sorting %or = or i32 %a, %force %nota = xor i32 %a, -1 %xor = xor i32 %nota, %force %and = and i32 %xor, %or ret i32 %and } define i32 @test43(i32 %a, i32 %c, i32 %d) { ; CHECK-LABEL: @test43( ; CHECK-NEXT: [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]] ; CHECK-NEXT: [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]] ; CHECK-NEXT: ret i32 [[AND]] ; %force = mul i32 %c, %d ; forces the complexity sorting %or = or i32 %a, %force %nota = xor i32 %a, -1 %xor = xor i32 %nota, %force %and = and i32 %or, %xor ret i32 %and } ; (~y | x) & y -> x & y define i32 @test44(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test44( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %n, %x %a = and i32 %o, %y ret i32 %a } ; (x | ~y) & y -> x & y define i32 @test45(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test45( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %x, %n %a = and i32 %o, %y ret i32 %a } ; y & (~y | x) -> y | x define i32 @test46(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test46( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %n, %x %a = and i32 %y, %o ret i32 %a } ; y & (x | ~y) -> y | x define i32 @test47(i32 %x, i32 %y) nounwind { ; CHECK-LABEL: @test47( ; CHECK-NEXT: [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret i32 [[A]] ; %n = xor i32 %y, -1 %o = or i32 %x, %n %a = and i32 %y, %o ret i32 %a } ; In the next 4 tests, vary the types and predicates for extra coverage. ; (X & (Y | ~X)) -> (X & Y), where 'not' is an inverted cmp define i1 @and_orn_cmp_1(i32 %a, i32 %b, i32 %c) { ; CHECK-LABEL: @and_orn_cmp_1( ; CHECK-NEXT: [[X:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sgt i32 %a, %b %x_inv = icmp sle i32 %a, %b %y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering %or = or i1 %y, %x_inv %and = and i1 %x, %or ret i1 %and } ; Commute the 'and': ; ((Y | ~X) & X) -> (X & Y), where 'not' is an inverted cmp define <2 x i1> @and_orn_cmp_2(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c) { ; CHECK-LABEL: @and_orn_cmp_2( ; CHECK-NEXT: [[X:%.*]] = icmp sge <2 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt <2 x i32> [[C:%.*]], ; CHECK-NEXT: [[AND:%.*]] = and <2 x i1> [[Y]], [[X]] ; CHECK-NEXT: ret <2 x i1> [[AND]] ; %x = icmp sge <2 x i32> %a, %b %x_inv = icmp slt <2 x i32> %a, %b %y = icmp ugt <2 x i32> %c, ; thwart complexity-based ordering %or = or <2 x i1> %y, %x_inv %and = and <2 x i1> %or, %x ret <2 x i1> %and } ; Commute the 'or': ; (X & (~X | Y)) -> (X & Y), where 'not' is an inverted cmp define i1 @and_orn_cmp_3(i72 %a, i72 %b, i72 %c) { ; CHECK-LABEL: @and_orn_cmp_3( ; CHECK-NEXT: [[X:%.*]] = icmp ugt i72 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i72 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp ugt i72 %a, %b %x_inv = icmp ule i72 %a, %b %y = icmp ugt i72 %c, 42 ; thwart complexity-based ordering %or = or i1 %x_inv, %y %and = and i1 %x, %or ret i1 %and } ; Commute the 'and': ; ((~X | Y) & X) -> (X & Y), where 'not' is an inverted cmp define <3 x i1> @or_andn_cmp_4(<3 x i32> %a, <3 x i32> %b, <3 x i32> %c) { ; CHECK-LABEL: @or_andn_cmp_4( ; CHECK-NEXT: [[X:%.*]] = icmp eq <3 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt <3 x i32> [[C:%.*]], ; CHECK-NEXT: [[AND:%.*]] = and <3 x i1> [[Y]], [[X]] ; CHECK-NEXT: ret <3 x i1> [[AND]] ; %x = icmp eq <3 x i32> %a, %b %x_inv = icmp ne <3 x i32> %a, %b %y = icmp ugt <3 x i32> %c, ; thwart complexity-based ordering %or = or <3 x i1> %x_inv, %y %and = and <3 x i1> %or, %x ret <3 x i1> %and } ; In the next 4 tests, vary the types and predicates for extra coverage. ; (~X & (Y | X)) -> (~X & Y), where 'not' is an inverted cmp define i1 @andn_or_cmp_1(i37 %a, i37 %b, i37 %c) { ; CHECK-LABEL: @andn_or_cmp_1( ; CHECK-NEXT: [[X_INV:%.*]] = icmp sle i37 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i37 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[X_INV]], [[Y]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sgt i37 %a, %b %x_inv = icmp sle i37 %a, %b %y = icmp ugt i37 %c, 42 ; thwart complexity-based ordering %or = or i1 %y, %x %and = and i1 %x_inv, %or ret i1 %and } ; Commute the 'and': ; ((Y | X) & ~X) -> (~X & Y), where 'not' is an inverted cmp define i1 @andn_or_cmp_2(i16 %a, i16 %b, i16 %c) { ; CHECK-LABEL: @andn_or_cmp_2( ; CHECK-NEXT: [[X_INV:%.*]] = icmp slt i16 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i16 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp sge i16 %a, %b %x_inv = icmp slt i16 %a, %b %y = icmp ugt i16 %c, 42 ; thwart complexity-based ordering %or = or i1 %y, %x %and = and i1 %or, %x_inv ret i1 %and } ; Commute the 'or': ; (~X & (X | Y)) -> (~X & Y), where 'not' is an inverted cmp define <4 x i1> @andn_or_cmp_3(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c) { ; CHECK-LABEL: @andn_or_cmp_3( ; CHECK-NEXT: [[X_INV:%.*]] = icmp ule <4 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt <4 x i32> [[C:%.*]], ; CHECK-NEXT: [[AND:%.*]] = and <4 x i1> [[X_INV]], [[Y]] ; CHECK-NEXT: ret <4 x i1> [[AND]] ; %x = icmp ugt <4 x i32> %a, %b %x_inv = icmp ule <4 x i32> %a, %b %y = icmp ugt <4 x i32> %c, ; thwart complexity-based ordering %or = or <4 x i1> %x, %y %and = and <4 x i1> %x_inv, %or ret <4 x i1> %and } ; Commute the 'and': ; ((X | Y) & ~X) -> (~X & Y), where 'not' is an inverted cmp define i1 @andn_or_cmp_4(i32 %a, i32 %b, i32 %c) { ; CHECK-LABEL: @andn_or_cmp_4( ; CHECK-NEXT: [[X_INV:%.*]] = icmp ne i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42 ; CHECK-NEXT: [[AND:%.*]] = and i1 [[Y]], [[X_INV]] ; CHECK-NEXT: ret i1 [[AND]] ; %x = icmp eq i32 %a, %b %x_inv = icmp ne i32 %a, %b %y = icmp ugt i32 %c, 42 ; thwart complexity-based ordering %or = or i1 %x, %y %and = and i1 %or, %x_inv ret i1 %and }