//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a simple dominator tree walk that eliminates trivially // redundant instructions. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/EarlyCSE.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/RecyclingAllocator.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "early-cse" STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); STATISTIC(NumCSE, "Number of instructions CSE'd"); STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); STATISTIC(NumCSECall, "Number of call instructions CSE'd"); STATISTIC(NumDSE, "Number of trivial dead stores removed"); //===----------------------------------------------------------------------===// // SimpleValue //===----------------------------------------------------------------------===// namespace { /// \brief Struct representing the available values in the scoped hash table. struct SimpleValue { Instruction *Inst; SimpleValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo::getEmptyKey() || Inst == DenseMapInfo::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // This can only handle non-void readnone functions. if (CallInst *CI = dyn_cast(Inst)) return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); return isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst); } }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static inline SimpleValue getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline SimpleValue getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(SimpleValue Val); static bool isEqual(SimpleValue LHS, SimpleValue RHS); }; } // end namespace llvm unsigned DenseMapInfo::getHashValue(SimpleValue Val) { Instruction *Inst = Val.Inst; // Hash in all of the operands as pointers. if (BinaryOperator *BinOp = dyn_cast(Inst)) { Value *LHS = BinOp->getOperand(0); Value *RHS = BinOp->getOperand(1); if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) std::swap(LHS, RHS); return hash_combine(BinOp->getOpcode(), LHS, RHS); } if (CmpInst *CI = dyn_cast(Inst)) { Value *LHS = CI->getOperand(0); Value *RHS = CI->getOperand(1); CmpInst::Predicate Pred = CI->getPredicate(); if (Inst->getOperand(0) > Inst->getOperand(1)) { std::swap(LHS, RHS); Pred = CI->getSwappedPredicate(); } return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); } // Hash min/max/abs (cmp + select) to allow for commuted operands. // Min/max may also have non-canonical compare predicate (eg, the compare for // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the // compare. Value *A, *B; SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor; // TODO: We should also detect FP min/max. if (SPF == SPF_SMIN || SPF == SPF_SMAX || SPF == SPF_UMIN || SPF == SPF_UMAX || SPF == SPF_ABS || SPF == SPF_NABS) { if (A > B) std::swap(A, B); return hash_combine(Inst->getOpcode(), SPF, A, B); } if (CastInst *CI = dyn_cast(Inst)) return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); if (const ExtractValueInst *EVI = dyn_cast(Inst)) return hash_combine(EVI->getOpcode(), EVI->getOperand(0), hash_combine_range(EVI->idx_begin(), EVI->idx_end())); if (const InsertValueInst *IVI = dyn_cast(Inst)) return hash_combine(IVI->getOpcode(), IVI->getOperand(0), IVI->getOperand(1), hash_combine_range(IVI->idx_begin(), IVI->idx_end())); assert((isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst) || isa(Inst)) && "Invalid/unknown instruction"); // Mix in the opcode. return hash_combine( Inst->getOpcode(), hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); } bool DenseMapInfo::isEqual(SimpleValue LHS, SimpleValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; if (LHSI->getOpcode() != RHSI->getOpcode()) return false; if (LHSI->isIdenticalToWhenDefined(RHSI)) return true; // If we're not strictly identical, we still might be a commutable instruction if (BinaryOperator *LHSBinOp = dyn_cast(LHSI)) { if (!LHSBinOp->isCommutative()) return false; assert(isa(RHSI) && "same opcode, but different instruction type?"); BinaryOperator *RHSBinOp = cast(RHSI); // Commuted equality return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); } if (CmpInst *LHSCmp = dyn_cast(LHSI)) { assert(isa(RHSI) && "same opcode, but different instruction type?"); CmpInst *RHSCmp = cast(RHSI); // Commuted equality return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); } // Min/max/abs can occur with commuted operands, non-canonical predicates, // and/or non-canonical operands. Value *LHSA, *LHSB; SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor; // TODO: We should also detect FP min/max. if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || LSPF == SPF_UMIN || LSPF == SPF_UMAX || LSPF == SPF_ABS || LSPF == SPF_NABS) { Value *RHSA, *RHSB; SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor; return (LSPF == RSPF && ((LHSA == RHSA && LHSB == RHSB) || (LHSA == RHSB && LHSB == RHSA))); } return false; } //===----------------------------------------------------------------------===// // CallValue //===----------------------------------------------------------------------===// namespace { /// \brief Struct representing the available call values in the scoped hash /// table. struct CallValue { Instruction *Inst; CallValue(Instruction *I) : Inst(I) { assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); } bool isSentinel() const { return Inst == DenseMapInfo::getEmptyKey() || Inst == DenseMapInfo::getTombstoneKey(); } static bool canHandle(Instruction *Inst) { // Don't value number anything that returns void. if (Inst->getType()->isVoidTy()) return false; CallInst *CI = dyn_cast(Inst); if (!CI || !CI->onlyReadsMemory()) return false; return true; } }; } // end anonymous namespace namespace llvm { template <> struct DenseMapInfo { static inline CallValue getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline CallValue getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(CallValue Val); static bool isEqual(CallValue LHS, CallValue RHS); }; } // end namespace llvm unsigned DenseMapInfo::getHashValue(CallValue Val) { Instruction *Inst = Val.Inst; // Hash all of the operands as pointers and mix in the opcode. return hash_combine( Inst->getOpcode(), hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); } bool DenseMapInfo::isEqual(CallValue LHS, CallValue RHS) { Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; if (LHS.isSentinel() || RHS.isSentinel()) return LHSI == RHSI; return LHSI->isIdenticalTo(RHSI); } //===----------------------------------------------------------------------===// // EarlyCSE implementation //===----------------------------------------------------------------------===// namespace { /// \brief A simple and fast domtree-based CSE pass. /// /// This pass does a simple depth-first walk over the dominator tree, /// eliminating trivially redundant instructions and using instsimplify to /// canonicalize things as it goes. It is intended to be fast and catch obvious /// cases so that instcombine and other passes are more effective. It is /// expected that a later pass of GVN will catch the interesting/hard cases. class EarlyCSE { public: const TargetLibraryInfo &TLI; const TargetTransformInfo &TTI; DominatorTree &DT; AssumptionCache &AC; const SimplifyQuery SQ; MemorySSA *MSSA; std::unique_ptr MSSAUpdater; using AllocatorTy = RecyclingAllocator>; using ScopedHTType = ScopedHashTable, AllocatorTy>; /// \brief A scoped hash table of the current values of all of our simple /// scalar expressions. /// /// As we walk down the domtree, we look to see if instructions are in this: /// if so, we replace them with what we find, otherwise we insert them so /// that dominated values can succeed in their lookup. ScopedHTType AvailableValues; /// A scoped hash table of the current values of previously encounted memory /// locations. /// /// This allows us to get efficient access to dominating loads or stores when /// we have a fully redundant load. In addition to the most recent load, we /// keep track of a generation count of the read, which is compared against /// the current generation count. The current generation count is incremented /// after every possibly writing memory operation, which ensures that we only /// CSE loads with other loads that have no intervening store. Ordering /// events (such as fences or atomic instructions) increment the generation /// count as well; essentially, we model these as writes to all possible /// locations. Note that atomic and/or volatile loads and stores can be /// present the table; it is the responsibility of the consumer to inspect /// the atomicity/volatility if needed. struct LoadValue { Instruction *DefInst = nullptr; unsigned Generation = 0; int MatchingId = -1; bool IsAtomic = false; bool IsInvariant = false; LoadValue() = default; LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, bool IsAtomic, bool IsInvariant) : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), IsAtomic(IsAtomic), IsInvariant(IsInvariant) {} }; using LoadMapAllocator = RecyclingAllocator>; using LoadHTType = ScopedHashTable, LoadMapAllocator>; LoadHTType AvailableLoads; /// \brief A scoped hash table of the current values of read-only call /// values. /// /// It uses the same generation count as loads. using CallHTType = ScopedHashTable>; CallHTType AvailableCalls; /// \brief This is the current generation of the memory value. unsigned CurrentGeneration = 0; /// \brief Set up the EarlyCSE runner for a particular function. EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, DominatorTree &DT, AssumptionCache &AC, MemorySSA *MSSA) : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), MSSAUpdater(llvm::make_unique(MSSA)) {} bool run(); private: // Almost a POD, but needs to call the constructors for the scoped hash // tables so that a new scope gets pushed on. These are RAII so that the // scope gets popped when the NodeScope is destroyed. class NodeScope { public: NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, CallHTType &AvailableCalls) : Scope(AvailableValues), LoadScope(AvailableLoads), CallScope(AvailableCalls) {} NodeScope(const NodeScope &) = delete; NodeScope &operator=(const NodeScope &) = delete; private: ScopedHTType::ScopeTy Scope; LoadHTType::ScopeTy LoadScope; CallHTType::ScopeTy CallScope; }; // Contains all the needed information to create a stack for doing a depth // first traversal of the tree. This includes scopes for values, loads, and // calls as well as the generation. There is a child iterator so that the // children do not need to be store separately. class StackNode { public: StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, DomTreeNode::iterator end) : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls) {} StackNode(const StackNode &) = delete; StackNode &operator=(const StackNode &) = delete; // Accessors. unsigned currentGeneration() { return CurrentGeneration; } unsigned childGeneration() { return ChildGeneration; } void childGeneration(unsigned generation) { ChildGeneration = generation; } DomTreeNode *node() { return Node; } DomTreeNode::iterator childIter() { return ChildIter; } DomTreeNode *nextChild() { DomTreeNode *child = *ChildIter; ++ChildIter; return child; } DomTreeNode::iterator end() { return EndIter; } bool isProcessed() { return Processed; } void process() { Processed = true; } private: unsigned CurrentGeneration; unsigned ChildGeneration; DomTreeNode *Node; DomTreeNode::iterator ChildIter; DomTreeNode::iterator EndIter; NodeScope Scopes; bool Processed = false; }; /// \brief Wrapper class to handle memory instructions, including loads, /// stores and intrinsic loads and stores defined by the target. class ParseMemoryInst { public: ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) : Inst(Inst) { if (IntrinsicInst *II = dyn_cast(Inst)) if (TTI.getTgtMemIntrinsic(II, Info)) IsTargetMemInst = true; } bool isLoad() const { if (IsTargetMemInst) return Info.ReadMem; return isa(Inst); } bool isStore() const { if (IsTargetMemInst) return Info.WriteMem; return isa(Inst); } bool isAtomic() const { if (IsTargetMemInst) return Info.Ordering != AtomicOrdering::NotAtomic; return Inst->isAtomic(); } bool isUnordered() const { if (IsTargetMemInst) return Info.isUnordered(); if (LoadInst *LI = dyn_cast(Inst)) { return LI->isUnordered(); } else if (StoreInst *SI = dyn_cast(Inst)) { return SI->isUnordered(); } // Conservative answer return !Inst->isAtomic(); } bool isVolatile() const { if (IsTargetMemInst) return Info.IsVolatile; if (LoadInst *LI = dyn_cast(Inst)) { return LI->isVolatile(); } else if (StoreInst *SI = dyn_cast(Inst)) { return SI->isVolatile(); } // Conservative answer return true; } bool isInvariantLoad() const { if (auto *LI = dyn_cast(Inst)) return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; return false; } bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { return (getPointerOperand() == Inst.getPointerOperand() && getMatchingId() == Inst.getMatchingId()); } bool isValid() const { return getPointerOperand() != nullptr; } // For regular (non-intrinsic) loads/stores, this is set to -1. For // intrinsic loads/stores, the id is retrieved from the corresponding // field in the MemIntrinsicInfo structure. That field contains // non-negative values only. int getMatchingId() const { if (IsTargetMemInst) return Info.MatchingId; return -1; } Value *getPointerOperand() const { if (IsTargetMemInst) return Info.PtrVal; if (LoadInst *LI = dyn_cast(Inst)) { return LI->getPointerOperand(); } else if (StoreInst *SI = dyn_cast(Inst)) { return SI->getPointerOperand(); } return nullptr; } bool mayReadFromMemory() const { if (IsTargetMemInst) return Info.ReadMem; return Inst->mayReadFromMemory(); } bool mayWriteToMemory() const { if (IsTargetMemInst) return Info.WriteMem; return Inst->mayWriteToMemory(); } private: bool IsTargetMemInst = false; MemIntrinsicInfo Info; Instruction *Inst; }; bool processNode(DomTreeNode *Node); Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { if (auto *LI = dyn_cast(Inst)) return LI; if (auto *SI = dyn_cast(Inst)) return SI->getValueOperand(); assert(isa(Inst) && "Instruction not supported"); return TTI.getOrCreateResultFromMemIntrinsic(cast(Inst), ExpectedType); } bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, Instruction *EarlierInst, Instruction *LaterInst); void removeMSSA(Instruction *Inst) { if (!MSSA) return; // Removing a store here can leave MemorySSA in an unoptimized state by // creating MemoryPhis that have identical arguments and by creating // MemoryUses whose defining access is not an actual clobber. We handle the // phi case eagerly here. The non-optimized MemoryUse case is lazily // updated by MemorySSA getClobberingMemoryAccess. if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { // Optimize MemoryPhi nodes that may become redundant by having all the // same input values once MA is removed. SmallSetVector PhisToCheck; SmallVector WorkQueue; WorkQueue.push_back(MA); // Process MemoryPhi nodes in FIFO order using a ever-growing vector since // we shouldn't be processing that many phis and this will avoid an // allocation in almost all cases. for (unsigned I = 0; I < WorkQueue.size(); ++I) { MemoryAccess *WI = WorkQueue[I]; for (auto *U : WI->users()) if (MemoryPhi *MP = dyn_cast(U)) PhisToCheck.insert(MP); MSSAUpdater->removeMemoryAccess(WI); for (MemoryPhi *MP : PhisToCheck) { MemoryAccess *FirstIn = MP->getIncomingValue(0); if (llvm::all_of(MP->incoming_values(), [=](Use &In) { return In == FirstIn; })) WorkQueue.push_back(MP); } PhisToCheck.clear(); } } } }; } // end anonymous namespace /// Determine if the memory referenced by LaterInst is from the same heap /// version as EarlierInst. /// This is currently called in two scenarios: /// /// load p /// ... /// load p /// /// and /// /// x = load p /// ... /// store x, p /// /// in both cases we want to verify that there are no possible writes to the /// memory referenced by p between the earlier and later instruction. bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, Instruction *EarlierInst, Instruction *LaterInst) { // Check the simple memory generation tracking first. if (EarlierGeneration == LaterGeneration) return true; if (!MSSA) return false; // If MemorySSA has determined that one of EarlierInst or LaterInst does not // read/write memory, then we can safely return true here. // FIXME: We could be more aggressive when checking doesNotAccessMemory(), // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass // by also checking the MemorySSA MemoryAccess on the instruction. Initial // experiments suggest this isn't worthwhile, at least for C/C++ code compiled // with the default optimization pipeline. auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); if (!EarlierMA) return true; auto *LaterMA = MSSA->getMemoryAccess(LaterInst); if (!LaterMA) return true; // Since we know LaterDef dominates LaterInst and EarlierInst dominates // LaterInst, if LaterDef dominates EarlierInst then it can't occur between // EarlierInst and LaterInst and neither can any other write that potentially // clobbers LaterInst. MemoryAccess *LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); return MSSA->dominates(LaterDef, EarlierMA); } bool EarlyCSE::processNode(DomTreeNode *Node) { bool Changed = false; BasicBlock *BB = Node->getBlock(); // If this block has a single predecessor, then the predecessor is the parent // of the domtree node and all of the live out memory values are still current // in this block. If this block has multiple predecessors, then they could // have invalidated the live-out memory values of our parent value. For now, // just be conservative and invalidate memory if this block has multiple // predecessors. if (!BB->getSinglePredecessor()) ++CurrentGeneration; // If this node has a single predecessor which ends in a conditional branch, // we can infer the value of the branch condition given that we took this // path. We need the single predecessor to ensure there's not another path // which reaches this block where the condition might hold a different // value. Since we're adding this to the scoped hash table (like any other // def), it will have been popped if we encounter a future merge block. if (BasicBlock *Pred = BB->getSinglePredecessor()) { auto *BI = dyn_cast(Pred->getTerminator()); if (BI && BI->isConditional()) { auto *CondInst = dyn_cast(BI->getCondition()); if (CondInst && SimpleValue::canHandle(CondInst)) { assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); auto *TorF = (BI->getSuccessor(0) == BB) ? ConstantInt::getTrue(BB->getContext()) : ConstantInt::getFalse(BB->getContext()); AvailableValues.insert(CondInst, TorF); DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" << CondInst->getName() << "' as " << *TorF << " in " << BB->getName() << "\n"); // Replace all dominated uses with the known value. if (unsigned Count = replaceDominatedUsesWith( CondInst, TorF, DT, BasicBlockEdge(Pred, BB))) { Changed = true; NumCSECVP += Count; } } } } /// LastStore - Keep track of the last non-volatile store that we saw... for /// as long as there in no instruction that reads memory. If we see a store /// to the same location, we delete the dead store. This zaps trivial dead /// stores which can occur in bitfield code among other things. Instruction *LastStore = nullptr; // See if any instructions in the block can be eliminated. If so, do it. If // not, add them to AvailableValues. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { Instruction *Inst = &*I++; // Dead instructions should just be removed. if (isInstructionTriviallyDead(Inst, &TLI)) { DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); removeMSSA(Inst); Inst->eraseFromParent(); Changed = true; ++NumSimplify; continue; } // Skip assume intrinsics, they don't really have side effects (although // they're marked as such to ensure preservation of control dependencies), // and this pass will not bother with its removal. However, we should mark // its condition as true for all dominated blocks. if (match(Inst, m_Intrinsic())) { auto *CondI = dyn_cast(cast(Inst)->getArgOperand(0)); if (CondI && SimpleValue::canHandle(CondI)) { DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst << '\n'); AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); } else DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); continue; } // Skip sideeffect intrinsics, for the same reason as assume intrinsics. if (match(Inst, m_Intrinsic())) { DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); continue; } // Skip invariant.start intrinsics since they only read memory, and we can // forward values across it. Also, we dont need to consume the last store // since the semantics of invariant.start allow us to perform DSE of the // last store, if there was a store following invariant.start. Consider: // // store 30, i8* p // invariant.start(p) // store 40, i8* p // We can DSE the store to 30, since the store 40 to invariant location p // causes undefined behaviour. if (match(Inst, m_Intrinsic())) continue; if (match(Inst, m_Intrinsic())) { if (auto *CondI = dyn_cast(cast(Inst)->getArgOperand(0))) { if (SimpleValue::canHandle(CondI)) { // Do we already know the actual value of this condition? if (auto *KnownCond = AvailableValues.lookup(CondI)) { // Is the condition known to be true? if (isa(KnownCond) && cast(KnownCond)->isOne()) { DEBUG(dbgs() << "EarlyCSE removing guard: " << *Inst << '\n'); removeMSSA(Inst); Inst->eraseFromParent(); Changed = true; continue; } else // Use the known value if it wasn't true. cast(Inst)->setArgOperand(0, KnownCond); } // The condition we're on guarding here is true for all dominated // locations. AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); } } // Guard intrinsics read all memory, but don't write any memory. // Accordingly, don't update the generation but consume the last store (to // avoid an incorrect DSE). LastStore = nullptr; continue; } // If the instruction can be simplified (e.g. X+0 = X) then replace it with // its simpler value. if (Value *V = SimplifyInstruction(Inst, SQ)) { DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); bool Killed = false; if (!Inst->use_empty()) { Inst->replaceAllUsesWith(V); Changed = true; } if (isInstructionTriviallyDead(Inst, &TLI)) { removeMSSA(Inst); Inst->eraseFromParent(); Changed = true; Killed = true; } if (Changed) ++NumSimplify; if (Killed) continue; } // If this is a simple instruction that we can value number, process it. if (SimpleValue::canHandle(Inst)) { // See if the instruction has an available value. If so, use it. if (Value *V = AvailableValues.lookup(Inst)) { DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); if (auto *I = dyn_cast(V)) I->andIRFlags(Inst); Inst->replaceAllUsesWith(V); removeMSSA(Inst); Inst->eraseFromParent(); Changed = true; ++NumCSE; continue; } // Otherwise, just remember that this value is available. AvailableValues.insert(Inst, Inst); continue; } ParseMemoryInst MemInst(Inst, TTI); // If this is a non-volatile load, process it. if (MemInst.isValid() && MemInst.isLoad()) { // (conservatively) we can't peak past the ordering implied by this // operation, but we can add this load to our set of available values if (MemInst.isVolatile() || !MemInst.isUnordered()) { LastStore = nullptr; ++CurrentGeneration; } // If we have an available version of this load, and if it is the right // generation or the load is known to be from an invariant location, // replace this instruction. // // If either the dominating load or the current load are invariant, then // we can assume the current load loads the same value as the dominating // load. LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); if (InVal.DefInst != nullptr && InVal.MatchingId == MemInst.getMatchingId() && // We don't yet handle removing loads with ordering of any kind. !MemInst.isVolatile() && MemInst.isUnordered() && // We can't replace an atomic load with one which isn't also atomic. InVal.IsAtomic >= MemInst.isAtomic() && (InVal.IsInvariant || MemInst.isInvariantLoad() || isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, Inst))) { Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); if (Op != nullptr) { DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: " << *InVal.DefInst << '\n'); if (!Inst->use_empty()) Inst->replaceAllUsesWith(Op); removeMSSA(Inst); Inst->eraseFromParent(); Changed = true; ++NumCSELoad; continue; } } // Otherwise, remember that we have this instruction. AvailableLoads.insert( MemInst.getPointerOperand(), LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), MemInst.isAtomic(), MemInst.isInvariantLoad())); LastStore = nullptr; continue; } // If this instruction may read from memory or throw (and potentially read // from memory in the exception handler), forget LastStore. Load/store // intrinsics will indicate both a read and a write to memory. The target // may override this (e.g. so that a store intrinsic does not read from // memory, and thus will be treated the same as a regular store for // commoning purposes). if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && !(MemInst.isValid() && !MemInst.mayReadFromMemory())) LastStore = nullptr; // If this is a read-only call, process it. if (CallValue::canHandle(Inst)) { // If we have an available version of this call, and if it is the right // generation, replace this instruction. std::pair InVal = AvailableCalls.lookup(Inst); if (InVal.first != nullptr && isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, Inst)) { DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: " << *InVal.first << '\n'); if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); removeMSSA(Inst); Inst->eraseFromParent(); Changed = true; ++NumCSECall; continue; } // Otherwise, remember that we have this instruction. AvailableCalls.insert( Inst, std::pair(Inst, CurrentGeneration)); continue; } // A release fence requires that all stores complete before it, but does // not prevent the reordering of following loads 'before' the fence. As a // result, we don't need to consider it as writing to memory and don't need // to advance the generation. We do need to prevent DSE across the fence, // but that's handled above. if (FenceInst *FI = dyn_cast(Inst)) if (FI->getOrdering() == AtomicOrdering::Release) { assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); continue; } // write back DSE - If we write back the same value we just loaded from // the same location and haven't passed any intervening writes or ordering // operations, we can remove the write. The primary benefit is in allowing // the available load table to remain valid and value forward past where // the store originally was. if (MemInst.isValid() && MemInst.isStore()) { LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); if (InVal.DefInst && InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && InVal.MatchingId == MemInst.getMatchingId() && // We don't yet handle removing stores with ordering of any kind. !MemInst.isVolatile() && MemInst.isUnordered() && isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, Inst)) { // It is okay to have a LastStore to a different pointer here if MemorySSA // tells us that the load and store are from the same memory generation. // In that case, LastStore should keep its present value since we're // removing the current store. assert((!LastStore || ParseMemoryInst(LastStore, TTI).getPointerOperand() == MemInst.getPointerOperand() || MSSA) && "can't have an intervening store if not using MemorySSA!"); DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); removeMSSA(Inst); Inst->eraseFromParent(); Changed = true; ++NumDSE; // We can avoid incrementing the generation count since we were able // to eliminate this store. continue; } } // Okay, this isn't something we can CSE at all. Check to see if it is // something that could modify memory. If so, our available memory values // cannot be used so bump the generation count. if (Inst->mayWriteToMemory()) { ++CurrentGeneration; if (MemInst.isValid() && MemInst.isStore()) { // We do a trivial form of DSE if there are two stores to the same // location with no intervening loads. Delete the earlier store. // At the moment, we don't remove ordered stores, but do remove // unordered atomic stores. There's no special requirement (for // unordered atomics) about removing atomic stores only in favor of // other atomic stores since we we're going to execute the non-atomic // one anyway and the atomic one might never have become visible. if (LastStore) { ParseMemoryInst LastStoreMemInst(LastStore, TTI); assert(LastStoreMemInst.isUnordered() && !LastStoreMemInst.isVolatile() && "Violated invariant"); if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: " << *Inst << '\n'); removeMSSA(LastStore); LastStore->eraseFromParent(); Changed = true; ++NumDSE; LastStore = nullptr; } // fallthrough - we can exploit information about this store } // Okay, we just invalidated anything we knew about loaded values. Try // to salvage *something* by remembering that the stored value is a live // version of the pointer. It is safe to forward from volatile stores // to non-volatile loads, so we don't have to check for volatility of // the store. AvailableLoads.insert( MemInst.getPointerOperand(), LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), MemInst.isAtomic(), /*IsInvariant=*/false)); // Remember that this was the last unordered store we saw for DSE. We // don't yet handle DSE on ordered or volatile stores since we don't // have a good way to model the ordering requirement for following // passes once the store is removed. We could insert a fence, but // since fences are slightly stronger than stores in their ordering, // it's not clear this is a profitable transform. Another option would // be to merge the ordering with that of the post dominating store. if (MemInst.isUnordered() && !MemInst.isVolatile()) LastStore = Inst; else LastStore = nullptr; } } } return Changed; } bool EarlyCSE::run() { // Note, deque is being used here because there is significant performance // gains over vector when the container becomes very large due to the // specific access patterns. For more information see the mailing list // discussion on this: // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html std::deque nodesToProcess; bool Changed = false; // Process the root node. nodesToProcess.push_back(new StackNode( AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); // Save the current generation. unsigned LiveOutGeneration = CurrentGeneration; // Process the stack. while (!nodesToProcess.empty()) { // Grab the first item off the stack. Set the current generation, remove // the node from the stack, and process it. StackNode *NodeToProcess = nodesToProcess.back(); // Initialize class members. CurrentGeneration = NodeToProcess->currentGeneration(); // Check if the node needs to be processed. if (!NodeToProcess->isProcessed()) { // Process the node. Changed |= processNode(NodeToProcess->node()); NodeToProcess->childGeneration(CurrentGeneration); NodeToProcess->process(); } else if (NodeToProcess->childIter() != NodeToProcess->end()) { // Push the next child onto the stack. DomTreeNode *child = NodeToProcess->nextChild(); nodesToProcess.push_back( new StackNode(AvailableValues, AvailableLoads, AvailableCalls, NodeToProcess->childGeneration(), child, child->begin(), child->end())); } else { // It has been processed, and there are no more children to process, // so delete it and pop it off the stack. delete NodeToProcess; nodesToProcess.pop_back(); } } // while (!nodes...) // Reset the current generation. CurrentGeneration = LiveOutGeneration; return Changed; } PreservedAnalyses EarlyCSEPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &TTI = AM.getResult(F); auto &DT = AM.getResult(F); auto &AC = AM.getResult(F); auto *MSSA = UseMemorySSA ? &AM.getResult(F).getMSSA() : nullptr; EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); if (!CSE.run()) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); if (UseMemorySSA) PA.preserve(); return PA; } namespace { /// \brief A simple and fast domtree-based CSE pass. /// /// This pass does a simple depth-first walk over the dominator tree, /// eliminating trivially redundant instructions and using instsimplify to /// canonicalize things as it goes. It is intended to be fast and catch obvious /// cases so that instcombine and other passes are more effective. It is /// expected that a later pass of GVN will catch the interesting/hard cases. template class EarlyCSELegacyCommonPass : public FunctionPass { public: static char ID; EarlyCSELegacyCommonPass() : FunctionPass(ID) { if (UseMemorySSA) initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); else initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TLI = getAnalysis().getTLI(); auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); auto &AC = getAnalysis().getAssumptionCache(F); auto *MSSA = UseMemorySSA ? &getAnalysis().getMSSA() : nullptr; EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); return CSE.run(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); if (UseMemorySSA) { AU.addRequired(); AU.addPreserved(); } AU.addPreserved(); AU.setPreservesCFG(); } }; } // end anonymous namespace using EarlyCSELegacyPass = EarlyCSELegacyCommonPass; template<> char EarlyCSELegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) using EarlyCSEMemSSALegacyPass = EarlyCSELegacyCommonPass; template<> char EarlyCSEMemSSALegacyPass::ID = 0; FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { if (UseMemorySSA) return new EarlyCSEMemSSALegacyPass(); else return new EarlyCSELegacyPass(); } INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", "Early CSE w/ MemorySSA", false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", "Early CSE w/ MemorySSA", false, false)