//===------ ISLTools.cpp ----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Tools, utilities, helpers and extensions useful in conjunction with the // Integer Set Library (isl). // //===----------------------------------------------------------------------===// #include "polly/Support/ISLTools.h" #include "llvm/ADT/StringRef.h" using namespace polly; namespace { /// Create a map that shifts one dimension by an offset. /// /// Example: /// makeShiftDimAff({ [i0, i1] -> [o0, o1] }, 1, -2) /// = { [i0, i1] -> [i0, i1 - 1] } /// /// @param Space The map space of the result. Must have equal number of in- and /// out-dimensions. /// @param Pos Position to shift. /// @param Amount Value added to the shifted dimension. /// /// @return An isl_multi_aff for the map with this shifted dimension. isl::multi_aff makeShiftDimAff(isl::space Space, int Pos, int Amount) { auto Identity = give(isl_multi_aff_identity(Space.take())); if (Amount == 0) return Identity; auto ShiftAff = give(isl_multi_aff_get_aff(Identity.keep(), Pos)); ShiftAff = give(isl_aff_set_constant_si(ShiftAff.take(), Amount)); return give(isl_multi_aff_set_aff(Identity.take(), Pos, ShiftAff.take())); } /// Construct a map that swaps two nested tuples. /// /// @param FromSpace1 { Space1[] } /// @param FromSpace2 { Space2[] } /// /// @return { [Space1[] -> Space2[]] -> [Space2[] -> Space1[]] } isl::basic_map makeTupleSwapBasicMap(isl::space FromSpace1, isl::space FromSpace2) { assert(isl_space_is_set(FromSpace1.keep()) != isl_bool_false); assert(isl_space_is_set(FromSpace2.keep()) != isl_bool_false); auto Dims1 = isl_space_dim(FromSpace1.keep(), isl_dim_set); auto Dims2 = isl_space_dim(FromSpace2.keep(), isl_dim_set); auto FromSpace = give(isl_space_wrap(isl_space_map_from_domain_and_range( FromSpace1.copy(), FromSpace2.copy()))); auto ToSpace = give(isl_space_wrap(isl_space_map_from_domain_and_range( FromSpace2.take(), FromSpace1.take()))); auto MapSpace = give( isl_space_map_from_domain_and_range(FromSpace.take(), ToSpace.take())); auto Result = give(isl_basic_map_universe(MapSpace.take())); for (auto i = Dims1 - Dims1; i < Dims1; i += 1) { Result = give(isl_basic_map_equate(Result.take(), isl_dim_in, i, isl_dim_out, Dims2 + i)); } for (auto i = Dims2 - Dims2; i < Dims2; i += 1) { Result = give(isl_basic_map_equate(Result.take(), isl_dim_in, Dims1 + i, isl_dim_out, i)); } return Result; } /// Like makeTupleSwapBasicMap(isl::space,isl::space), but returns /// an isl_map. isl::map makeTupleSwapMap(isl::space FromSpace1, isl::space FromSpace2) { auto BMapResult = makeTupleSwapBasicMap(std::move(FromSpace1), std::move(FromSpace2)); return give(isl_map_from_basic_map(BMapResult.take())); } } // anonymous namespace isl::map polly::beforeScatter(isl::map Map, bool Strict) { auto RangeSpace = give(isl_space_range(isl_map_get_space(Map.keep()))); auto ScatterRel = give(Strict ? isl_map_lex_gt(RangeSpace.take()) : isl_map_lex_ge(RangeSpace.take())); return give(isl_map_apply_range(Map.take(), ScatterRel.take())); } isl::union_map polly::beforeScatter(isl::union_map UMap, bool Strict) { auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { auto After = beforeScatter(Map, Strict); Result = give(isl_union_map_add_map(Result.take(), After.take())); return isl::stat::ok; }); return Result; } isl::map polly::afterScatter(isl::map Map, bool Strict) { auto RangeSpace = give(isl_space_range(isl_map_get_space(Map.keep()))); auto ScatterRel = give(Strict ? isl_map_lex_lt(RangeSpace.take()) : isl_map_lex_le(RangeSpace.take())); return give(isl_map_apply_range(Map.take(), ScatterRel.take())); } isl::union_map polly::afterScatter(const isl::union_map &UMap, bool Strict) { auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { auto After = afterScatter(Map, Strict); Result = give(isl_union_map_add_map(Result.take(), After.take())); return isl::stat::ok; }); return Result; } isl::map polly::betweenScatter(isl::map From, isl::map To, bool InclFrom, bool InclTo) { auto AfterFrom = afterScatter(From, !InclFrom); auto BeforeTo = beforeScatter(To, !InclTo); return give(isl_map_intersect(AfterFrom.take(), BeforeTo.take())); } isl::union_map polly::betweenScatter(isl::union_map From, isl::union_map To, bool InclFrom, bool InclTo) { auto AfterFrom = afterScatter(From, !InclFrom); auto BeforeTo = beforeScatter(To, !InclTo); return give(isl_union_map_intersect(AfterFrom.take(), BeforeTo.take())); } isl::map polly::singleton(isl::union_map UMap, isl::space ExpectedSpace) { if (!UMap) return nullptr; if (isl_union_map_n_map(UMap.keep()) == 0) return isl::map::empty(ExpectedSpace); isl::map Result = isl::map::from_union_map(UMap); assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); return Result; } isl::set polly::singleton(isl::union_set USet, isl::space ExpectedSpace) { if (!USet) return nullptr; if (isl_union_set_n_set(USet.keep()) == 0) return isl::set::empty(ExpectedSpace); isl::set Result(USet); assert(!Result || Result.get_space().has_equal_tuples(ExpectedSpace)); return Result; } unsigned polly::getNumScatterDims(const isl::union_map &Schedule) { unsigned Dims = 0; Schedule.foreach_map([&Dims](isl::map Map) -> isl::stat { Dims = std::max(Dims, isl_map_dim(Map.keep(), isl_dim_out)); return isl::stat::ok; }); return Dims; } isl::space polly::getScatterSpace(const isl::union_map &Schedule) { if (!Schedule) return nullptr; auto Dims = getNumScatterDims(Schedule); auto ScatterSpace = give(isl_space_set_from_params(isl_union_map_get_space(Schedule.keep()))); return give(isl_space_add_dims(ScatterSpace.take(), isl_dim_set, Dims)); } isl::union_map polly::makeIdentityMap(const isl::union_set &USet, bool RestrictDomain) { auto Result = give(isl_union_map_empty(isl_union_set_get_space(USet.keep()))); USet.foreach_set([=, &Result](isl::set Set) -> isl::stat { auto IdentityMap = give(isl_map_identity( isl_space_map_from_set(isl_set_get_space(Set.keep())))); if (RestrictDomain) IdentityMap = give(isl_map_intersect_domain(IdentityMap.take(), Set.take())); Result = give(isl_union_map_add_map(Result.take(), IdentityMap.take())); return isl::stat::ok; }); return Result; } isl::map polly::reverseDomain(isl::map Map) { auto DomSpace = give(isl_space_unwrap(isl_space_domain(isl_map_get_space(Map.keep())))); auto Space1 = give(isl_space_domain(DomSpace.copy())); auto Space2 = give(isl_space_range(DomSpace.take())); auto Swap = makeTupleSwapMap(std::move(Space1), std::move(Space2)); return give(isl_map_apply_domain(Map.take(), Swap.take())); } isl::union_map polly::reverseDomain(const isl::union_map &UMap) { auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { auto Reversed = reverseDomain(std::move(Map)); Result = give(isl_union_map_add_map(Result.take(), Reversed.take())); return isl::stat::ok; }); return Result; } isl::set polly::shiftDim(isl::set Set, int Pos, int Amount) { int NumDims = isl_set_dim(Set.keep(), isl_dim_set); if (Pos < 0) Pos = NumDims + Pos; assert(Pos < NumDims && "Dimension index must be in range"); auto Space = give(isl_set_get_space(Set.keep())); Space = give(isl_space_map_from_domain_and_range(Space.copy(), Space.copy())); auto Translator = makeShiftDimAff(std::move(Space), Pos, Amount); auto TranslatorMap = give(isl_map_from_multi_aff(Translator.take())); return give(isl_set_apply(Set.take(), TranslatorMap.take())); } isl::union_set polly::shiftDim(isl::union_set USet, int Pos, int Amount) { auto Result = give(isl_union_set_empty(isl_union_set_get_space(USet.keep()))); USet.foreach_set([=, &Result](isl::set Set) -> isl::stat { auto Shifted = shiftDim(Set, Pos, Amount); Result = give(isl_union_set_add_set(Result.take(), Shifted.take())); return isl::stat::ok; }); return Result; } isl::map polly::shiftDim(isl::map Map, isl::dim Dim, int Pos, int Amount) { int NumDims = Map.dim(Dim); if (Pos < 0) Pos = NumDims + Pos; assert(Pos < NumDims && "Dimension index must be in range"); auto Space = give(isl_map_get_space(Map.keep())); switch (Dim) { case isl::dim::in: Space = std::move(Space).domain(); break; case isl::dim::out: Space = give(isl_space_range(Space.take())); break; default: llvm_unreachable("Unsupported value for 'dim'"); } Space = give(isl_space_map_from_domain_and_range(Space.copy(), Space.copy())); auto Translator = makeShiftDimAff(std::move(Space), Pos, Amount); auto TranslatorMap = give(isl_map_from_multi_aff(Translator.take())); switch (Dim) { case isl::dim::in: return Map.apply_domain(TranslatorMap); case isl::dim::out: return Map.apply_range(TranslatorMap); default: llvm_unreachable("Unsupported value for 'dim'"); } } isl::union_map polly::shiftDim(isl::union_map UMap, isl::dim Dim, int Pos, int Amount) { auto Result = isl::union_map::empty(UMap.get_space()); UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat { auto Shifted = shiftDim(Map, Dim, Pos, Amount); Result = std::move(Result).add_map(Shifted); return isl::stat::ok; }); return Result; } void polly::simplify(isl::set &Set) { Set = give(isl_set_compute_divs(Set.take())); Set = give(isl_set_detect_equalities(Set.take())); Set = give(isl_set_coalesce(Set.take())); } void polly::simplify(isl::union_set &USet) { USet = give(isl_union_set_compute_divs(USet.take())); USet = give(isl_union_set_detect_equalities(USet.take())); USet = give(isl_union_set_coalesce(USet.take())); } void polly::simplify(isl::map &Map) { Map = give(isl_map_compute_divs(Map.take())); Map = give(isl_map_detect_equalities(Map.take())); Map = give(isl_map_coalesce(Map.take())); } void polly::simplify(isl::union_map &UMap) { UMap = give(isl_union_map_compute_divs(UMap.take())); UMap = give(isl_union_map_detect_equalities(UMap.take())); UMap = give(isl_union_map_coalesce(UMap.take())); } isl::union_map polly::computeReachingWrite(isl::union_map Schedule, isl::union_map Writes, bool Reverse, bool InclPrevDef, bool InclNextDef) { // { Scatter[] } isl::space ScatterSpace = getScatterSpace(Schedule); // { ScatterRead[] -> ScatterWrite[] } isl::map Relation; if (Reverse) Relation = InclPrevDef ? isl::map::lex_lt(ScatterSpace) : isl::map::lex_le(ScatterSpace); else Relation = InclNextDef ? isl::map::lex_gt(ScatterSpace) : isl::map::lex_ge(ScatterSpace); // { ScatterWrite[] -> [ScatterRead[] -> ScatterWrite[]] } isl::map RelationMap = Relation.range_map().reverse(); // { Element[] -> ScatterWrite[] } isl::union_map WriteAction = Schedule.apply_domain(Writes); // { ScatterWrite[] -> Element[] } isl::union_map WriteActionRev = WriteAction.reverse(); // { Element[] -> [ScatterUse[] -> ScatterWrite[]] } isl::union_map DefSchedRelation = isl::union_map(RelationMap).apply_domain(WriteActionRev); // For each element, at every point in time, map to the times of previous // definitions. { [Element[] -> ScatterRead[]] -> ScatterWrite[] } isl::union_map ReachableWrites = DefSchedRelation.uncurry(); if (Reverse) ReachableWrites = ReachableWrites.lexmin(); else ReachableWrites = ReachableWrites.lexmax(); // { [Element[] -> ScatterWrite[]] -> ScatterWrite[] } isl::union_map SelfUse = WriteAction.range_map(); if (InclPrevDef && InclNextDef) { // Add the Def itself to the solution. ReachableWrites = ReachableWrites.unite(SelfUse).coalesce(); } else if (!InclPrevDef && !InclNextDef) { // Remove Def itself from the solution. ReachableWrites = ReachableWrites.subtract(SelfUse); } // { [Element[] -> ScatterRead[]] -> Domain[] } return ReachableWrites.apply_range(Schedule.reverse()); } isl::union_map polly::computeArrayUnused(isl::union_map Schedule, isl::union_map Writes, isl::union_map Reads, bool ReadEltInSameInst, bool IncludeLastRead, bool IncludeWrite) { // { Element[] -> Scatter[] } auto ReadActions = give(isl_union_map_apply_domain(Schedule.copy(), Reads.take())); auto WriteActions = give(isl_union_map_apply_domain(Schedule.copy(), Writes.copy())); // { [Element[] -> DomainWrite[]] -> Scatter[] } auto EltDomWrites = give(isl_union_map_apply_range( isl_union_map_range_map(isl_union_map_reverse(Writes.copy())), Schedule.copy())); // { [Element[] -> Scatter[]] -> DomainWrite[] } auto ReachingOverwrite = computeReachingWrite( Schedule, Writes, true, ReadEltInSameInst, !ReadEltInSameInst); // { [Element[] -> Scatter[]] -> DomainWrite[] } auto ReadsOverwritten = give(isl_union_map_intersect_domain( ReachingOverwrite.take(), isl_union_map_wrap(ReadActions.take()))); // { [Element[] -> DomainWrite[]] -> Scatter[] } auto ReadsOverwrittenRotated = give(isl_union_map_reverse( isl_union_map_curry(reverseDomain(ReadsOverwritten).take()))); auto LastOverwrittenRead = give(isl_union_map_lexmax(ReadsOverwrittenRotated.copy())); // { [Element[] -> DomainWrite[]] -> Scatter[] } auto BetweenLastReadOverwrite = betweenScatter( LastOverwrittenRead, EltDomWrites, IncludeLastRead, IncludeWrite); // { [Element[] -> Scatter[]] -> DomainWrite[] } isl::union_map ReachingOverwriteZone = computeReachingWrite( Schedule, Writes, true, IncludeLastRead, IncludeWrite); // { [Element[] -> DomainWrite[]] -> Scatter[] } isl::union_map ReachingOverwriteRotated = reverseDomain(ReachingOverwriteZone).curry().reverse(); // { [Element[] -> DomainWrite[]] -> Scatter[] } isl::union_map WritesWithoutReads = ReachingOverwriteRotated.subtract_domain( ReadsOverwrittenRotated.domain()); return BetweenLastReadOverwrite.unite(WritesWithoutReads) .domain_factor_domain(); } isl::union_set polly::convertZoneToTimepoints(isl::union_set Zone, bool InclStart, bool InclEnd) { if (!InclStart && InclEnd) return Zone; auto ShiftedZone = shiftDim(Zone, -1, -1); if (InclStart && !InclEnd) return ShiftedZone; else if (!InclStart && !InclEnd) return give(isl_union_set_intersect(Zone.take(), ShiftedZone.take())); assert(InclStart && InclEnd); return give(isl_union_set_union(Zone.take(), ShiftedZone.take())); } isl::union_map polly::convertZoneToTimepoints(isl::union_map Zone, isl::dim Dim, bool InclStart, bool InclEnd) { if (!InclStart && InclEnd) return Zone; auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); if (InclStart && !InclEnd) return ShiftedZone; else if (!InclStart && !InclEnd) return give(isl_union_map_intersect(Zone.take(), ShiftedZone.take())); assert(InclStart && InclEnd); return give(isl_union_map_union(Zone.take(), ShiftedZone.take())); } isl::map polly::convertZoneToTimepoints(isl::map Zone, isl::dim Dim, bool InclStart, bool InclEnd) { if (!InclStart && InclEnd) return Zone; auto ShiftedZone = shiftDim(Zone, Dim, -1, -1); if (InclStart && !InclEnd) return ShiftedZone; else if (!InclStart && !InclEnd) return give(isl_map_intersect(Zone.take(), ShiftedZone.take())); assert(InclStart && InclEnd); return give(isl_map_union(Zone.take(), ShiftedZone.take())); } isl::map polly::distributeDomain(isl::map Map) { // Note that we cannot take Map apart into { Domain[] -> Range1[] } and { // Domain[] -> Range2[] } and combine again. We would loose any relation // between Range1[] and Range2[] that is not also a constraint to Domain[]. auto Space = give(isl_map_get_space(Map.keep())); auto DomainSpace = give(isl_space_domain(Space.copy())); auto DomainDims = isl_space_dim(DomainSpace.keep(), isl_dim_set); auto RangeSpace = give(isl_space_unwrap(isl_space_range(Space.copy()))); auto Range1Space = give(isl_space_domain(RangeSpace.copy())); auto Range1Dims = isl_space_dim(Range1Space.keep(), isl_dim_set); auto Range2Space = give(isl_space_range(RangeSpace.copy())); auto Range2Dims = isl_space_dim(Range2Space.keep(), isl_dim_set); auto OutputSpace = give(isl_space_map_from_domain_and_range( isl_space_wrap(isl_space_map_from_domain_and_range(DomainSpace.copy(), Range1Space.copy())), isl_space_wrap(isl_space_map_from_domain_and_range(DomainSpace.copy(), Range2Space.copy())))); auto Translator = give(isl_basic_map_universe(isl_space_map_from_domain_and_range( isl_space_wrap(Space.copy()), isl_space_wrap(OutputSpace.copy())))); for (unsigned i = 0; i < DomainDims; i += 1) { Translator = give( isl_basic_map_equate(Translator.take(), isl_dim_in, i, isl_dim_out, i)); Translator = give(isl_basic_map_equate(Translator.take(), isl_dim_in, i, isl_dim_out, DomainDims + Range1Dims + i)); } for (unsigned i = 0; i < Range1Dims; i += 1) { Translator = give(isl_basic_map_equate(Translator.take(), isl_dim_in, DomainDims + i, isl_dim_out, DomainDims + i)); } for (unsigned i = 0; i < Range2Dims; i += 1) { Translator = give(isl_basic_map_equate( Translator.take(), isl_dim_in, DomainDims + Range1Dims + i, isl_dim_out, DomainDims + Range1Dims + DomainDims + i)); } return give(isl_set_unwrap(isl_set_apply( isl_map_wrap(Map.copy()), isl_map_from_basic_map(Translator.copy())))); } isl::union_map polly::distributeDomain(isl::union_map UMap) { auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep()))); isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) { auto Distributed = distributeDomain(Map); Result = give(isl_union_map_add_map(Result.take(), Distributed.copy())); return isl::stat::ok; }); if (Success != isl::stat::ok) return {}; return Result; } isl::union_map polly::liftDomains(isl::union_map UMap, isl::union_set Factor) { // { Factor[] -> Factor[] } auto Factors = makeIdentityMap(std::move(Factor), true); return std::move(Factors).product(std::move(UMap)); } isl::union_map polly::applyDomainRange(isl::union_map UMap, isl::union_map Func) { // This implementation creates unnecessary cross products of the // DomainDomain[] and Func. An alternative implementation could reverse // domain+uncurry,apply Func to what now is the domain, then undo the // preparing transformation. Another alternative implementation could create a // translator map for each piece. // { DomainDomain[] } auto DomainDomain = UMap.domain().unwrap().domain(); // { [DomainDomain[] -> DomainRange[]] -> [DomainDomain[] -> NewDomainRange[]] // } auto LifetedFunc = liftDomains(std::move(Func), DomainDomain); return std::move(UMap).apply_domain(std::move(LifetedFunc)); } isl::map polly::intersectRange(isl::map Map, isl::union_set Range) { isl::set RangeSet = Range.extract_set(Map.get_space().range()); return Map.intersect_range(RangeSet); } isl::val polly::getConstant(isl::pw_aff PwAff, bool Max, bool Min) { assert(!Max || !Min); // Cannot return min and max at the same time. isl::val Result; PwAff.foreach_piece([=, &Result](isl::set Set, isl::aff Aff) -> isl::stat { if (Result && Result.is_nan()) return isl::stat::ok; // TODO: If Min/Max, we can also determine a minimum/maximum value if // Set is constant-bounded. if (!Aff.is_cst()) { Result = isl::val::nan(Aff.get_ctx()); return isl::stat::error; } isl::val ThisVal = Aff.get_constant_val(); if (!Result) { Result = ThisVal; return isl::stat::ok; } if (Result.eq(ThisVal)) return isl::stat::ok; if (Max && ThisVal.gt(Result)) { Result = ThisVal; return isl::stat::ok; } if (Min && ThisVal.lt(Result)) { Result = ThisVal; return isl::stat::ok; } // Not compatible Result = isl::val::nan(Aff.get_ctx()); return isl::stat::error; }); return Result; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) static void foreachPoint(const isl::set &Set, const std::function &F) { isl_set_foreach_point( Set.keep(), [](__isl_take isl_point *p, void *User) -> isl_stat { auto &F = *static_cast *>(User); F(give(p)); return isl_stat_ok; }, const_cast(static_cast(&F))); } static void foreachPoint(isl::basic_set BSet, const std::function &F) { foreachPoint(give(isl_set_from_basic_set(BSet.take())), F); } /// Determine the sorting order of the sets @p A and @p B without considering /// the space structure. /// /// Ordering is based on the lower bounds of the set's dimensions. First /// dimensions are considered first. static int flatCompare(const isl::basic_set &A, const isl::basic_set &B) { int ALen = A.dim(isl::dim::set); int BLen = B.dim(isl::dim::set); int Len = std::min(ALen, BLen); for (int i = 0; i < Len; i += 1) { isl::basic_set ADim = A.project_out(isl::dim::param, 0, A.dim(isl::dim::param)) .project_out(isl::dim::set, i + 1, ALen - i - 1) .project_out(isl::dim::set, 0, i); isl::basic_set BDim = B.project_out(isl::dim::param, 0, B.dim(isl::dim::param)) .project_out(isl::dim::set, i + 1, BLen - i - 1) .project_out(isl::dim::set, 0, i); isl::basic_set AHull = isl::set(ADim).convex_hull(); isl::basic_set BHull = isl::set(BDim).convex_hull(); bool ALowerBounded = bool(isl::set(AHull).dim_has_any_lower_bound(isl::dim::set, 0)); bool BLowerBounded = bool(isl::set(BHull).dim_has_any_lower_bound(isl::dim::set, 0)); int BoundedCompare = BLowerBounded - ALowerBounded; if (BoundedCompare != 0) return BoundedCompare; if (!ALowerBounded || !BLowerBounded) continue; isl::pw_aff AMin = isl::set(ADim).dim_min(0); isl::pw_aff BMin = isl::set(BDim).dim_min(0); isl::val AMinVal = polly::getConstant(AMin, false, true); isl::val BMinVal = polly::getConstant(BMin, false, true); int MinCompare = AMinVal.sub(BMinVal).sgn(); if (MinCompare != 0) return MinCompare; } // If all the dimensions' lower bounds are equal or incomparable, sort based // on the number of dimensions. return ALen - BLen; } /// Compare the sets @p A and @p B according to their nested space structure. If /// the structure is the same, sort using the dimension lower bounds. static int recursiveCompare(const isl::basic_set &A, const isl::basic_set &B) { isl::space ASpace = A.get_space(); isl::space BSpace = B.get_space(); int WrappingCompare = bool(ASpace.is_wrapping()) - bool(BSpace.is_wrapping()); if (WrappingCompare != 0) return WrappingCompare; if (ASpace.is_wrapping() && B.is_wrapping()) { isl::basic_map AMap = A.unwrap(); isl::basic_map BMap = B.unwrap(); int FirstResult = recursiveCompare(AMap.domain(), BMap.domain()); if (FirstResult != 0) return FirstResult; return recursiveCompare(AMap.range(), BMap.range()); } std::string AName = ASpace.has_tuple_name(isl::dim::set) ? ASpace.get_tuple_name(isl::dim::set) : std::string(); std::string BName = BSpace.has_tuple_name(isl::dim::set) ? BSpace.get_tuple_name(isl::dim::set) : std::string(); int NameCompare = AName.compare(BName); if (NameCompare != 0) return NameCompare; return flatCompare(A, B); } /// Wrapper for recursiveCompare, convert a {-1,0,1} compare result to what /// std::sort expects. static bool orderComparer(const isl::basic_set &A, const isl::basic_set &B) { return recursiveCompare(A, B) < 0; } /// Print a string representation of @p USet to @p OS. /// /// The pieces of @p USet are printed in a sorted order. Spaces with equal or /// similar nesting structure are printed together. Compared to isl's own /// printing function the uses the structure itself as base of the sorting, not /// a hash of it. It ensures that e.g. maps spaces with same domain structure /// are printed together. Set pieces with same structure are printed in order of /// their lower bounds. /// /// @param USet Polyhedra to print. /// @param OS Target stream. /// @param Simplify Whether to simplify the polyhedron before printing. /// @param IsMap Whether @p USet is a wrapped map. If true, sets are /// unwrapped before printing to again appear as a map. static void printSortedPolyhedra(isl::union_set USet, llvm::raw_ostream &OS, bool Simplify, bool IsMap) { if (!USet) { OS << "\n"; return; } if (Simplify) simplify(USet); // Get all the polyhedra. std::vector BSets; USet.foreach_set([&BSets](isl::set Set) -> isl::stat { Set.foreach_basic_set([&BSets](isl::basic_set BSet) -> isl::stat { BSets.push_back(BSet); return isl::stat::ok; }); return isl::stat::ok; }); if (BSets.empty()) { OS << "{\n}\n"; return; } // Sort the polyhedra. std::sort(BSets.begin(), BSets.end(), orderComparer); // Print the polyhedra. bool First = true; for (const isl::basic_set &BSet : BSets) { std::string Str; if (IsMap) Str = isl::map(BSet.unwrap()).to_str(); else Str = isl::set(BSet).to_str(); size_t OpenPos = Str.find_first_of('{'); assert(OpenPos != std::string::npos); size_t ClosePos = Str.find_last_of('}'); assert(ClosePos != std::string::npos); if (First) OS << llvm::StringRef(Str).substr(0, OpenPos + 1) << "\n "; else OS << ";\n "; OS << llvm::StringRef(Str).substr(OpenPos + 1, ClosePos - OpenPos - 2); First = false; } assert(!First); OS << "\n}\n"; } static void recursiveExpand(isl::basic_set BSet, int Dim, isl::set &Expanded) { int Dims = BSet.dim(isl::dim::set); if (Dim >= Dims) { Expanded = Expanded.unite(BSet); return; } isl::basic_set DimOnly = BSet.project_out(isl::dim::param, 0, BSet.dim(isl::dim::param)) .project_out(isl::dim::set, Dim + 1, Dims - Dim - 1) .project_out(isl::dim::set, 0, Dim); if (!DimOnly.is_bounded()) { recursiveExpand(BSet, Dim + 1, Expanded); return; } foreachPoint(DimOnly, [&, Dim](isl::point P) { isl::val Val = P.get_coordinate_val(isl::dim::set, 0); isl::basic_set FixBSet = BSet.fix_val(isl::dim::set, Dim, Val); recursiveExpand(FixBSet, Dim + 1, Expanded); }); } /// Make each point of a set explicit. /// /// "Expanding" makes each point a set contains explicit. That is, the result is /// a set of singleton polyhedra. Unbounded dimensions are not expanded. /// /// Example: /// { [i] : 0 <= i < 2 } /// is expanded to: /// { [0]; [1] } static isl::set expand(const isl::set &Set) { isl::set Expanded = isl::set::empty(Set.get_space()); Set.foreach_basic_set([&](isl::basic_set BSet) -> isl::stat { recursiveExpand(BSet, 0, Expanded); return isl::stat::ok; }); return Expanded; } /// Expand all points of a union set explicit. /// /// @see expand(const isl::set) static isl::union_set expand(const isl::union_set &USet) { isl::union_set Expanded = give(isl_union_set_empty(isl_union_set_get_space(USet.keep()))); USet.foreach_set([&](isl::set Set) -> isl::stat { isl::set SetExpanded = expand(Set); Expanded = Expanded.add_set(SetExpanded); return isl::stat::ok; }); return Expanded; } LLVM_DUMP_METHOD void polly::dumpPw(const isl::set &Set) { printSortedPolyhedra(Set, llvm::errs(), true, false); } LLVM_DUMP_METHOD void polly::dumpPw(const isl::map &Map) { printSortedPolyhedra(Map.wrap(), llvm::errs(), true, true); } LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_set &USet) { printSortedPolyhedra(USet, llvm::errs(), true, false); } LLVM_DUMP_METHOD void polly::dumpPw(const isl::union_map &UMap) { printSortedPolyhedra(UMap.wrap(), llvm::errs(), true, true); } LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_set *Set) { dumpPw(isl::manage(isl_set_copy(Set))); } LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_map *Map) { dumpPw(isl::manage(isl_map_copy(Map))); } LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_set *USet) { dumpPw(isl::manage(isl_union_set_copy(USet))); } LLVM_DUMP_METHOD void polly::dumpPw(__isl_keep isl_union_map *UMap) { dumpPw(isl::manage(isl_union_map_copy(UMap))); } LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::set &Set) { printSortedPolyhedra(expand(Set), llvm::errs(), false, false); } LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::map &Map) { printSortedPolyhedra(expand(Map.wrap()), llvm::errs(), false, true); } LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_set &USet) { printSortedPolyhedra(expand(USet), llvm::errs(), false, false); } LLVM_DUMP_METHOD void polly::dumpExpanded(const isl::union_map &UMap) { printSortedPolyhedra(expand(UMap.wrap()), llvm::errs(), false, true); } LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_set *Set) { dumpExpanded(isl::manage(isl_set_copy(Set))); } LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_map *Map) { dumpExpanded(isl::manage(isl_map_copy(Map))); } LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_set *USet) { dumpExpanded(isl::manage(isl_union_set_copy(USet))); } LLVM_DUMP_METHOD void polly::dumpExpanded(__isl_keep isl_union_map *UMap) { dumpExpanded(isl::manage(isl_union_map_copy(UMap))); } #endif