// ==++== // // Copyright (c) Microsoft Corporation. All rights reserved. // // ==--== /*============================================================ ** ** Class: Single ** ** ** Purpose: A wrapper class for the primitive type float. ** ** ===========================================================*/ namespace System { using System.Globalization; using System; ///#if GENERICS_WORK /// using System.Numerics; ///#endif using System.Runtime.InteropServices; using System.Runtime.CompilerServices; using System.Runtime.ConstrainedExecution; using System.Diagnostics.Contracts; [Serializable] [System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)] [System.Runtime.InteropServices.ComVisible(true)] #if GENERICS_WORK public struct Single : IComparable, IFormattable, IConvertible , IComparable, IEquatable /// , IArithmetic #else public struct Single : IComparable, IFormattable, IConvertible #endif { internal float m_value; // // Public constants // public const float MinValue = (float)-3.40282346638528859e+38; public const float Epsilon = (float)1.4e-45; public const float MaxValue = (float)3.40282346638528859e+38; public const float PositiveInfinity = (float)1.0 / (float)0.0; public const float NegativeInfinity = (float)-1.0 / (float)0.0; public const float NaN = (float)0.0 / (float)0.0; [Pure] [System.Security.SecuritySafeCritical] // auto-generated public unsafe static bool IsInfinity(float f) { return (*(int*)(&f) & 0x7FFFFFFF) == 0x7F800000; } [Pure] [System.Security.SecuritySafeCritical] // auto-generated public unsafe static bool IsPositiveInfinity(float f) { return *(int*)(&f) == 0x7F800000; } [Pure] [System.Security.SecuritySafeCritical] // auto-generated [System.Runtime.Versioning.NonVersionable] public unsafe static bool IsNegativeInfinity(float f) { return *(int*)(&f) == unchecked((int)0xFF800000); } [Pure] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] [System.Security.SecuritySafeCritical] [System.Runtime.Versioning.NonVersionable] public unsafe static bool IsNaN(float f) { return (*(int*)(&f) & 0x7FFFFFFF) > 0x7F800000; } #if MONO [Pure] [MethodImpl(MethodImplOptions.AggressiveInlining)] public unsafe static bool IsFinite(float f) { return (*(int*)(&f) & 0x7FFFFFFF) < 0x7F800000; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static unsafe bool IsNegative(float f) { var bits = unchecked((uint)BitConverter.SingleToInt32Bits(f)); return (bits & 0x80000000) == 0x80000000; } internal const float NegativeZero = (float)-0.0; #endif // Compares this object to another object, returning an integer that // indicates the relationship. // Returns a value less than zero if this object // null is considered to be less than any instance. // If object is not of type Single, this method throws an ArgumentException. // public int CompareTo(Object value) { if (value == null) { return 1; } if (value is Single) { float f = (float)value; if (m_value < f) return -1; if (m_value > f) return 1; if (m_value == f) return 0; // At least one of the values is NaN. if (IsNaN(m_value)) return (IsNaN(f) ? 0 : -1); else // f is NaN. return 1; } throw new ArgumentException (Environment.GetResourceString("Arg_MustBeSingle")); } public int CompareTo(Single value) { if (m_value < value) return -1; if (m_value > value) return 1; if (m_value == value) return 0; // At least one of the values is NaN. if (IsNaN(m_value)) return (IsNaN(value) ? 0 : -1); else // f is NaN. return 1; } [System.Runtime.Versioning.NonVersionable] public static bool operator ==(Single left, Single right) { return left == right; } [System.Runtime.Versioning.NonVersionable] public static bool operator !=(Single left, Single right) { return left != right; } [System.Runtime.Versioning.NonVersionable] public static bool operator <(Single left, Single right) { return left < right; } [System.Runtime.Versioning.NonVersionable] public static bool operator >(Single left, Single right) { return left > right; } [System.Runtime.Versioning.NonVersionable] public static bool operator <=(Single left, Single right) { return left <= right; } [System.Runtime.Versioning.NonVersionable] public static bool operator >=(Single left, Single right) { return left >= right; } public override bool Equals(Object obj) { if (!(obj is Single)) { return false; } float temp = ((Single)obj).m_value; if (temp == m_value) { return true; } return IsNaN(temp) && IsNaN(m_value); } public bool Equals(Single obj) { if (obj == m_value) { return true; } return IsNaN(obj) && IsNaN(m_value); } [System.Security.SecuritySafeCritical] // auto-generated public unsafe override int GetHashCode() { float f = m_value; if (f == 0) { // Ensure that 0 and -0 have the same hash code return 0; } int v = *(int*)(&f); return v; } [System.Security.SecuritySafeCritical] // auto-generated public override String ToString() { Contract.Ensures(Contract.Result() != null); return Number.FormatSingle(m_value, null, NumberFormatInfo.CurrentInfo); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(IFormatProvider provider) { Contract.Ensures(Contract.Result() != null); return Number.FormatSingle(m_value, null, NumberFormatInfo.GetInstance(provider)); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(String format) { Contract.Ensures(Contract.Result() != null); return Number.FormatSingle(m_value, format, NumberFormatInfo.CurrentInfo); } [System.Security.SecuritySafeCritical] // auto-generated public String ToString(String format, IFormatProvider provider) { Contract.Ensures(Contract.Result() != null); return Number.FormatSingle(m_value, format, NumberFormatInfo.GetInstance(provider)); } // Parses a float from a String in the given style. If // a NumberFormatInfo isn't specified, the current culture's // NumberFormatInfo is assumed. // // This method will not throw an OverflowException, but will return // PositiveInfinity or NegativeInfinity for a number that is too // large or too small. // public static float Parse(String s) { return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo); } public static float Parse(String s, NumberStyles style) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); return Parse(s, style, NumberFormatInfo.CurrentInfo); } public static float Parse(String s, IFormatProvider provider) { return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider)); } public static float Parse(String s, NumberStyles style, IFormatProvider provider) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); return Parse(s, style, NumberFormatInfo.GetInstance(provider)); } private static float Parse(String s, NumberStyles style, NumberFormatInfo info) { return Number.ParseSingle(s, style, info); } public static Boolean TryParse(String s, out Single result) { return TryParse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result); } public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Single result) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result); } private static Boolean TryParse(String s, NumberStyles style, NumberFormatInfo info, out Single result) { if (s == null) { result = 0; return false; } bool success = Number.TryParseSingle(s, style, info, out result); if (!success) { String sTrim = s.Trim(); if (sTrim.Equals(info.PositiveInfinitySymbol)) { result = PositiveInfinity; } else if (sTrim.Equals(info.NegativeInfinitySymbol)) { result = NegativeInfinity; } else if (sTrim.Equals(info.NaNSymbol)) { result = NaN; } else return false; // We really failed } return true; } // // IConvertible implementation // public TypeCode GetTypeCode() { return TypeCode.Single; } /// bool IConvertible.ToBoolean(IFormatProvider provider) { return Convert.ToBoolean(m_value); } /// char IConvertible.ToChar(IFormatProvider provider) { throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Single", "Char")); } /// sbyte IConvertible.ToSByte(IFormatProvider provider) { return Convert.ToSByte(m_value); } /// byte IConvertible.ToByte(IFormatProvider provider) { return Convert.ToByte(m_value); } /// short IConvertible.ToInt16(IFormatProvider provider) { return Convert.ToInt16(m_value); } /// ushort IConvertible.ToUInt16(IFormatProvider provider) { return Convert.ToUInt16(m_value); } /// int IConvertible.ToInt32(IFormatProvider provider) { return Convert.ToInt32(m_value); } /// uint IConvertible.ToUInt32(IFormatProvider provider) { return Convert.ToUInt32(m_value); } /// long IConvertible.ToInt64(IFormatProvider provider) { return Convert.ToInt64(m_value); } /// ulong IConvertible.ToUInt64(IFormatProvider provider) { return Convert.ToUInt64(m_value); } /// float IConvertible.ToSingle(IFormatProvider provider) { return m_value; } /// double IConvertible.ToDouble(IFormatProvider provider) { return Convert.ToDouble(m_value); } /// Decimal IConvertible.ToDecimal(IFormatProvider provider) { return Convert.ToDecimal(m_value); } /// DateTime IConvertible.ToDateTime(IFormatProvider provider) { throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Single", "DateTime")); } /// Object IConvertible.ToType(Type type, IFormatProvider provider) { return Convert.DefaultToType((IConvertible)this, type, provider); } ///#if GENERICS_WORK /// // /// // IArithmetic implementation /// // /// /// /// /// Single IArithmetic.AbsoluteValue(out bool overflowed) { /// Single abs = (m_value < 0 ? -m_value : m_value); /// overflowed = IsInfinity(abs) || IsNaN(abs); /// return abs; /// } /// /// /// /// Single IArithmetic.Negate(out bool overflowed) { /// Single neg= -m_value; /// overflowed = IsInfinity(neg) || IsNaN(neg); /// return neg; /// } /// /// /// /// Single IArithmetic.Sign(out bool overflowed) { /// overflowed = IsNaN(m_value); /// if (overflowed) { /// return m_value; /// } /// return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1); /// } /// /// /// /// Single IArithmetic.Add(Single addend, out bool overflowed) { /// Single s = m_value + addend; /// overflowed = IsInfinity(s) || IsNaN(s); /// return s; /// } /// /// /// /// Single IArithmetic.Subtract(Single subtrahend, out bool overflowed) { /// Single s = m_value - subtrahend; /// overflowed = IsInfinity(s) || IsNaN(s); /// return s; /// } /// /// /// /// Single IArithmetic.Multiply(Single multiplier, out bool overflowed) { /// Single s = m_value * multiplier; /// overflowed = IsInfinity(s) || IsNaN(s); /// return s; /// } /// /// /// /// /// Single IArithmetic.Divide(Single divisor, out bool overflowed) { /// Single s = m_value / divisor; /// overflowed = IsInfinity(s) || IsNaN(s); /// return s; /// } /// /// /// /// Single IArithmetic.DivideRemainder(Single divisor, out Single remainder, out bool overflowed) { /// remainder = m_value % divisor; /// Single s = m_value / divisor; /// overflowed = IsInfinity(s) || IsInfinity(remainder) || IsNaN(s) || IsNaN(remainder); /// return s; /// } /// /// /// /// Single IArithmetic.Remainder(Single divisor, out bool overflowed) { /// Single s = m_value % divisor; /// overflowed = IsInfinity(s) || IsNaN(s); /// return s; /// } /// /// /// /// ArithmeticDescriptor IArithmetic.GetDescriptor() { /// if (s_descriptor == null) { /// s_descriptor = new SingleArithmeticDescriptor( ArithmeticCapabilities.One /// | ArithmeticCapabilities.Zero /// | ArithmeticCapabilities.MaxValue /// | ArithmeticCapabilities.MinValue /// | ArithmeticCapabilities.PositiveInfinity /// | ArithmeticCapabilities.NegativeInfinity); /// } /// return s_descriptor; /// } /// /// private static SingleArithmeticDescriptor s_descriptor; /// /// class SingleArithmeticDescriptor : ArithmeticDescriptor { /// public SingleArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {} /// public override Single One { /// get { /// return (Single) 1; /// } /// } /// /// public override Single Zero { /// get { /// return (Single) 0; /// } /// } /// /// public override Single MinValue { /// get { /// return Single.MinValue; /// } /// } /// /// public override Single MaxValue { /// get { /// return Single.MaxValue; /// } /// } /// /// public override Single PositiveInfinity { /// get { /// return Single.PositiveInfinity; /// } /// } /// /// public override Single NegativeInfinity { /// get { /// return Single.NegativeInfinity; /// } /// } /// /// } ///#endif // #if GENERICS_WORK } }