//===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements PGO instrumentation using a minimum spanning tree based // on the following paper: // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, // Issue 3, pp 313-322 // The idea of the algorithm based on the fact that for each node (except for // the entry and exit), the sum of incoming edge counts equals the sum of // outgoing edge counts. The count of edge on spanning tree can be derived from // those edges not on the spanning tree. Knuth proves this method instruments // the minimum number of edges. // // The minimal spanning tree here is actually a maximum weight tree -- on-tree // edges have higher frequencies (more likely to execute). The idea is to // instrument those less frequently executed edges to reduce the runtime // overhead of instrumented binaries. // // This file contains two passes: // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge // count profile, and generates the instrumentation for indirect call // profiling. // (2) Pass PGOInstrumentationUse which reads the edge count profile and // annotates the branch weights. It also reads the indirect call value // profiling records and annotate the indirect call instructions. // // To get the precise counter information, These two passes need to invoke at // the same compilation point (so they see the same IR). For pass // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and // the profile is opened in module level and passed to each PGOUseFunc instance. // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put // in class FuncPGOInstrumentation. // // Class PGOEdge represents a CFG edge and some auxiliary information. Class // BBInfo contains auxiliary information for each BB. These two classes are used // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived // class of PGOEdge and BBInfo, respectively. They contains extra data structure // used in populating profile counters. // The MST implementation is in Class CFGMST (CFGMST.h). // //===----------------------------------------------------------------------===// #include "llvm/Transforms/PGOInstrumentation.h" #include "CFGMST.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/IndirectCallSiteVisitor.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Comdat.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/ProfileSummary.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DOTGraphTraits.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/JamCRC.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Instrumentation.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "pgo-instrumentation" STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented."); STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented."); STATISTIC(NumOfPGOEdge, "Number of edges."); STATISTIC(NumOfPGOBB, "Number of basic-blocks."); STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); STATISTIC(NumOfPGOMissing, "Number of functions without profile."); STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations."); // Command line option to specify the file to read profile from. This is // mainly used for testing. static cl::opt PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, cl::value_desc("filename"), cl::desc("Specify the path of profile data file. This is" "mainly for test purpose.")); // Command line option to disable value profiling. The default is false: // i.e. value profiling is enabled by default. This is for debug purpose. static cl::opt DisableValueProfiling("disable-vp", cl::init(false), cl::Hidden, cl::desc("Disable Value Profiling")); // Command line option to set the maximum number of VP annotations to write to // the metadata for a single indirect call callsite. static cl::opt MaxNumAnnotations( "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore, cl::desc("Max number of annotations for a single indirect " "call callsite")); // Command line option to set the maximum number of value annotations // to write to the metadata for a single memop intrinsic. static cl::opt MaxNumMemOPAnnotations( "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore, cl::desc("Max number of preicise value annotations for a single memop" "intrinsic")); // Command line option to control appending FunctionHash to the name of a COMDAT // function. This is to avoid the hash mismatch caused by the preinliner. static cl::opt DoComdatRenaming( "do-comdat-renaming", cl::init(false), cl::Hidden, cl::desc("Append function hash to the name of COMDAT function to avoid " "function hash mismatch due to the preinliner")); // Command line option to enable/disable the warning about missing profile // information. static cl::opt PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden, cl::desc("Use this option to turn on/off " "warnings about missing profile data for " "functions.")); // Command line option to enable/disable the warning about a hash mismatch in // the profile data. static cl::opt NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden, cl::desc("Use this option to turn off/on " "warnings about profile cfg mismatch.")); // Command line option to enable/disable the warning about a hash mismatch in // the profile data for Comdat functions, which often turns out to be false // positive due to the pre-instrumentation inline. static cl::opt NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true), cl::Hidden, cl::desc("The option is used to turn on/off " "warnings about hash mismatch for comdat " "functions.")); // Command line option to enable/disable select instruction instrumentation. static cl::opt PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden, cl::desc("Use this option to turn on/off SELECT " "instruction instrumentation. ")); // Command line option to turn on CFG dot or text dump of raw profile counts static cl::opt PGOViewRawCounts( "pgo-view-raw-counts", cl::Hidden, cl::desc("A boolean option to show CFG dag or text " "with raw profile counts from " "profile data. See also option " "-pgo-view-counts. To limit graph " "display to only one function, use " "filtering option -view-bfi-func-name."), cl::values(clEnumValN(PGOVCT_None, "none", "do not show."), clEnumValN(PGOVCT_Graph, "graph", "show a graph."), clEnumValN(PGOVCT_Text, "text", "show in text."))); // Command line option to enable/disable memop intrinsic call.size profiling. static cl::opt PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden, cl::desc("Use this option to turn on/off " "memory intrinsic size profiling.")); // Emit branch probability as optimization remarks. static cl::opt EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden, cl::desc("When this option is on, the annotated " "branch probability will be emitted as " " optimization remarks: -Rpass-analysis=" "pgo-instr-use")); // Command line option to turn on CFG dot dump after profile annotation. // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts extern cl::opt PGOViewCounts; // Command line option to specify the name of the function for CFG dump // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= extern cl::opt ViewBlockFreqFuncName; // Return a string describing the branch condition that can be // used in static branch probability heuristics: static std::string getBranchCondString(Instruction *TI) { BranchInst *BI = dyn_cast(TI); if (!BI || !BI->isConditional()) return std::string(); Value *Cond = BI->getCondition(); ICmpInst *CI = dyn_cast(Cond); if (!CI) return std::string(); std::string result; raw_string_ostream OS(result); OS << CmpInst::getPredicateName(CI->getPredicate()) << "_"; CI->getOperand(0)->getType()->print(OS, true); Value *RHS = CI->getOperand(1); ConstantInt *CV = dyn_cast(RHS); if (CV) { if (CV->isZero()) OS << "_Zero"; else if (CV->isOne()) OS << "_One"; else if (CV->isMinusOne()) OS << "_MinusOne"; else OS << "_Const"; } OS.flush(); return result; } namespace { /// The select instruction visitor plays three roles specified /// by the mode. In \c VM_counting mode, it simply counts the number of /// select instructions. In \c VM_instrument mode, it inserts code to count /// the number times TrueValue of select is taken. In \c VM_annotate mode, /// it reads the profile data and annotate the select instruction with metadata. enum VisitMode { VM_counting, VM_instrument, VM_annotate }; class PGOUseFunc; /// Instruction Visitor class to visit select instructions. struct SelectInstVisitor : public InstVisitor { Function &F; unsigned NSIs = 0; // Number of select instructions instrumented. VisitMode Mode = VM_counting; // Visiting mode. unsigned *CurCtrIdx = nullptr; // Pointer to current counter index. unsigned TotalNumCtrs = 0; // Total number of counters GlobalVariable *FuncNameVar = nullptr; uint64_t FuncHash = 0; PGOUseFunc *UseFunc = nullptr; SelectInstVisitor(Function &Func) : F(Func) {} void countSelects(Function &Func) { NSIs = 0; Mode = VM_counting; visit(Func); } // Visit the IR stream and instrument all select instructions. \p // Ind is a pointer to the counter index variable; \p TotalNC // is the total number of counters; \p FNV is the pointer to the // PGO function name var; \p FHash is the function hash. void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC, GlobalVariable *FNV, uint64_t FHash) { Mode = VM_instrument; CurCtrIdx = Ind; TotalNumCtrs = TotalNC; FuncHash = FHash; FuncNameVar = FNV; visit(Func); } // Visit the IR stream and annotate all select instructions. void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) { Mode = VM_annotate; UseFunc = UF; CurCtrIdx = Ind; visit(Func); } void instrumentOneSelectInst(SelectInst &SI); void annotateOneSelectInst(SelectInst &SI); // Visit \p SI instruction and perform tasks according to visit mode. void visitSelectInst(SelectInst &SI); // Return the number of select instructions. This needs be called after // countSelects(). unsigned getNumOfSelectInsts() const { return NSIs; } }; /// Instruction Visitor class to visit memory intrinsic calls. struct MemIntrinsicVisitor : public InstVisitor { Function &F; unsigned NMemIs = 0; // Number of memIntrinsics instrumented. VisitMode Mode = VM_counting; // Visiting mode. unsigned CurCtrId = 0; // Current counter index. unsigned TotalNumCtrs = 0; // Total number of counters GlobalVariable *FuncNameVar = nullptr; uint64_t FuncHash = 0; PGOUseFunc *UseFunc = nullptr; std::vector Candidates; MemIntrinsicVisitor(Function &Func) : F(Func) {} void countMemIntrinsics(Function &Func) { NMemIs = 0; Mode = VM_counting; visit(Func); } void instrumentMemIntrinsics(Function &Func, unsigned TotalNC, GlobalVariable *FNV, uint64_t FHash) { Mode = VM_instrument; TotalNumCtrs = TotalNC; FuncHash = FHash; FuncNameVar = FNV; visit(Func); } std::vector findMemIntrinsics(Function &Func) { Candidates.clear(); Mode = VM_annotate; visit(Func); return Candidates; } // Visit the IR stream and annotate all mem intrinsic call instructions. void instrumentOneMemIntrinsic(MemIntrinsic &MI); // Visit \p MI instruction and perform tasks according to visit mode. void visitMemIntrinsic(MemIntrinsic &SI); unsigned getNumOfMemIntrinsics() const { return NMemIs; } }; class PGOInstrumentationGenLegacyPass : public ModulePass { public: static char ID; PGOInstrumentationGenLegacyPass() : ModulePass(ID) { initializePGOInstrumentationGenLegacyPassPass( *PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "PGOInstrumentationGenPass"; } private: bool runOnModule(Module &M) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } }; class PGOInstrumentationUseLegacyPass : public ModulePass { public: static char ID; // Provide the profile filename as the parameter. PGOInstrumentationUseLegacyPass(std::string Filename = "") : ModulePass(ID), ProfileFileName(std::move(Filename)) { if (!PGOTestProfileFile.empty()) ProfileFileName = PGOTestProfileFile; initializePGOInstrumentationUseLegacyPassPass( *PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "PGOInstrumentationUsePass"; } private: std::string ProfileFileName; bool runOnModule(Module &M) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } }; } // end anonymous namespace char PGOInstrumentationGenLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", "PGO instrumentation.", false, false) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", "PGO instrumentation.", false, false) ModulePass *llvm::createPGOInstrumentationGenLegacyPass() { return new PGOInstrumentationGenLegacyPass(); } char PGOInstrumentationUseLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use", "Read PGO instrumentation profile.", false, false) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use", "Read PGO instrumentation profile.", false, false) ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename) { return new PGOInstrumentationUseLegacyPass(Filename.str()); } namespace { /// \brief An MST based instrumentation for PGO /// /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO /// in the function level. struct PGOEdge { // This class implements the CFG edges. Note the CFG can be a multi-graph. // So there might be multiple edges with same SrcBB and DestBB. const BasicBlock *SrcBB; const BasicBlock *DestBB; uint64_t Weight; bool InMST = false; bool Removed = false; bool IsCritical = false; PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) : SrcBB(Src), DestBB(Dest), Weight(W) {} // Return the information string of an edge. const std::string infoString() const { return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str(); } }; // This class stores the auxiliary information for each BB. struct BBInfo { BBInfo *Group; uint32_t Index; uint32_t Rank = 0; BBInfo(unsigned IX) : Group(this), Index(IX) {} // Return the information string of this object. const std::string infoString() const { return (Twine("Index=") + Twine(Index)).str(); } }; // This class implements the CFG edges. Note the CFG can be a multi-graph. template class FuncPGOInstrumentation { private: Function &F; // A map that stores the Comdat group in function F. std::unordered_multimap &ComdatMembers; void computeCFGHash(); void renameComdatFunction(); public: std::vector> ValueSites; SelectInstVisitor SIVisitor; MemIntrinsicVisitor MIVisitor; std::string FuncName; GlobalVariable *FuncNameVar; // CFG hash value for this function. uint64_t FunctionHash = 0; // The Minimum Spanning Tree of function CFG. CFGMST MST; // Give an edge, find the BB that will be instrumented. // Return nullptr if there is no BB to be instrumented. BasicBlock *getInstrBB(Edge *E); // Return the auxiliary BB information. BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } // Return the auxiliary BB information if available. BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); } // Dump edges and BB information. void dumpInfo(std::string Str = "") const { MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + Twine(FunctionHash) + "\t" + Str); } FuncPGOInstrumentation( Function &Func, std::unordered_multimap &ComdatMembers, bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr, BlockFrequencyInfo *BFI = nullptr) : F(Func), ComdatMembers(ComdatMembers), ValueSites(IPVK_Last + 1), SIVisitor(Func), MIVisitor(Func), MST(F, BPI, BFI) { // This should be done before CFG hash computation. SIVisitor.countSelects(Func); MIVisitor.countMemIntrinsics(Func); NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); NumOfPGOMemIntrinsics += MIVisitor.getNumOfMemIntrinsics(); ValueSites[IPVK_IndirectCallTarget] = findIndirectCallSites(Func); ValueSites[IPVK_MemOPSize] = MIVisitor.findMemIntrinsics(Func); FuncName = getPGOFuncName(F); computeCFGHash(); if (!ComdatMembers.empty()) renameComdatFunction(); DEBUG(dumpInfo("after CFGMST")); NumOfPGOBB += MST.BBInfos.size(); for (auto &E : MST.AllEdges) { if (E->Removed) continue; NumOfPGOEdge++; if (!E->InMST) NumOfPGOInstrument++; } if (CreateGlobalVar) FuncNameVar = createPGOFuncNameVar(F, FuncName); } // Return the number of profile counters needed for the function. unsigned getNumCounters() { unsigned NumCounters = 0; for (auto &E : this->MST.AllEdges) { if (!E->InMST && !E->Removed) NumCounters++; } return NumCounters + SIVisitor.getNumOfSelectInsts(); } }; } // end anonymous namespace // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index // value of each BB in the CFG. The higher 32 bits record the number of edges. template void FuncPGOInstrumentation::computeCFGHash() { std::vector Indexes; JamCRC JC; for (auto &BB : F) { const TerminatorInst *TI = BB.getTerminator(); for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { BasicBlock *Succ = TI->getSuccessor(I); auto BI = findBBInfo(Succ); if (BI == nullptr) continue; uint32_t Index = BI->Index; for (int J = 0; J < 4; J++) Indexes.push_back((char)(Index >> (J * 8))); } } JC.update(Indexes); FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 | (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 | (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC(); DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n" << " CRC = " << JC.getCRC() << ", Selects = " << SIVisitor.getNumOfSelectInsts() << ", Edges = " << MST.AllEdges.size() << ", ICSites = " << ValueSites[IPVK_IndirectCallTarget].size() << ", Hash = " << FunctionHash << "\n";); } // Check if we can safely rename this Comdat function. static bool canRenameComdat( Function &F, std::unordered_multimap &ComdatMembers) { if (!DoComdatRenaming || !canRenameComdatFunc(F, true)) return false; // FIXME: Current only handle those Comdat groups that only containing one // function and function aliases. // (1) For a Comdat group containing multiple functions, we need to have a // unique postfix based on the hashes for each function. There is a // non-trivial code refactoring to do this efficiently. // (2) Variables can not be renamed, so we can not rename Comdat function in a // group including global vars. Comdat *C = F.getComdat(); for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { if (dyn_cast(CM.second)) continue; Function *FM = dyn_cast(CM.second); if (FM != &F) return false; } return true; } // Append the CFGHash to the Comdat function name. template void FuncPGOInstrumentation::renameComdatFunction() { if (!canRenameComdat(F, ComdatMembers)) return; std::string OrigName = F.getName().str(); std::string NewFuncName = Twine(F.getName() + "." + Twine(FunctionHash)).str(); F.setName(Twine(NewFuncName)); GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F); FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str(); Comdat *NewComdat; Module *M = F.getParent(); // For AvailableExternallyLinkage functions, change the linkage to // LinkOnceODR and put them into comdat. This is because after renaming, there // is no backup external copy available for the function. if (!F.hasComdat()) { assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); NewComdat = M->getOrInsertComdat(StringRef(NewFuncName)); F.setLinkage(GlobalValue::LinkOnceODRLinkage); F.setComdat(NewComdat); return; } // This function belongs to a single function Comdat group. Comdat *OrigComdat = F.getComdat(); std::string NewComdatName = Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str(); NewComdat = M->getOrInsertComdat(StringRef(NewComdatName)); NewComdat->setSelectionKind(OrigComdat->getSelectionKind()); for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) { if (GlobalAlias *GA = dyn_cast(CM.second)) { // For aliases, change the name directly. assert(dyn_cast(GA->getAliasee()->stripPointerCasts()) == &F); std::string OrigGAName = GA->getName().str(); GA->setName(Twine(GA->getName() + "." + Twine(FunctionHash))); GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigGAName, GA); continue; } // Must be a function. Function *CF = dyn_cast(CM.second); assert(CF); CF->setComdat(NewComdat); } } // Given a CFG E to be instrumented, find which BB to place the instrumented // code. The function will split the critical edge if necessary. template BasicBlock *FuncPGOInstrumentation::getInstrBB(Edge *E) { if (E->InMST || E->Removed) return nullptr; BasicBlock *SrcBB = const_cast(E->SrcBB); BasicBlock *DestBB = const_cast(E->DestBB); // For a fake edge, instrument the real BB. if (SrcBB == nullptr) return DestBB; if (DestBB == nullptr) return SrcBB; // Instrument the SrcBB if it has a single successor, // otherwise, the DestBB if this is not a critical edge. TerminatorInst *TI = SrcBB->getTerminator(); if (TI->getNumSuccessors() <= 1) return SrcBB; if (!E->IsCritical) return DestBB; // For a critical edge, we have to split. Instrument the newly // created BB. NumOfPGOSplit++; DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index << " --> " << getBBInfo(DestBB).Index << "\n"); unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); BasicBlock *InstrBB = SplitCriticalEdge(TI, SuccNum); assert(InstrBB && "Critical edge is not split"); E->Removed = true; return InstrBB; } // Visit all edge and instrument the edges not in MST, and do value profiling. // Critical edges will be split. static void instrumentOneFunc( Function &F, Module *M, BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFI, std::unordered_multimap &ComdatMembers) { // Split indirectbr critical edges here before computing the MST rather than // later in getInstrBB() to avoid invalidating it. SplitIndirectBrCriticalEdges(F, BPI, BFI); FuncPGOInstrumentation FuncInfo(F, ComdatMembers, true, BPI, BFI); unsigned NumCounters = FuncInfo.getNumCounters(); uint32_t I = 0; Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); for (auto &E : FuncInfo.MST.AllEdges) { BasicBlock *InstrBB = FuncInfo.getInstrBB(E.get()); if (!InstrBB) continue; IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); assert(Builder.GetInsertPoint() != InstrBB->end() && "Cannot get the Instrumentation point"); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment), {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters), Builder.getInt32(I++)}); } // Now instrument select instructions: FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar, FuncInfo.FunctionHash); assert(I == NumCounters); if (DisableValueProfiling) return; unsigned NumIndirectCallSites = 0; for (auto &I : FuncInfo.ValueSites[IPVK_IndirectCallTarget]) { CallSite CS(I); Value *Callee = CS.getCalledValue(); DEBUG(dbgs() << "Instrument one indirect call: CallSite Index = " << NumIndirectCallSites << "\n"); IRBuilder<> Builder(I); assert(Builder.GetInsertPoint() != I->getParent()->end() && "Cannot get the Instrumentation point"); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), Builder.getInt64(FuncInfo.FunctionHash), Builder.CreatePtrToInt(Callee, Builder.getInt64Ty()), Builder.getInt32(IPVK_IndirectCallTarget), Builder.getInt32(NumIndirectCallSites++)}); } NumOfPGOICall += NumIndirectCallSites; // Now instrument memop intrinsic calls. FuncInfo.MIVisitor.instrumentMemIntrinsics( F, NumCounters, FuncInfo.FuncNameVar, FuncInfo.FunctionHash); } namespace { // This class represents a CFG edge in profile use compilation. struct PGOUseEdge : public PGOEdge { bool CountValid = false; uint64_t CountValue = 0; PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) : PGOEdge(Src, Dest, W) {} // Set edge count value void setEdgeCount(uint64_t Value) { CountValue = Value; CountValid = true; } // Return the information string for this object. const std::string infoString() const { if (!CountValid) return PGOEdge::infoString(); return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)) .str(); } }; using DirectEdges = SmallVector; // This class stores the auxiliary information for each BB. struct UseBBInfo : public BBInfo { uint64_t CountValue = 0; bool CountValid; int32_t UnknownCountInEdge = 0; int32_t UnknownCountOutEdge = 0; DirectEdges InEdges; DirectEdges OutEdges; UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {} UseBBInfo(unsigned IX, uint64_t C) : BBInfo(IX), CountValue(C), CountValid(true) {} // Set the profile count value for this BB. void setBBInfoCount(uint64_t Value) { CountValue = Value; CountValid = true; } // Return the information string of this object. const std::string infoString() const { if (!CountValid) return BBInfo::infoString(); return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str(); } }; } // end anonymous namespace // Sum up the count values for all the edges. static uint64_t sumEdgeCount(const ArrayRef Edges) { uint64_t Total = 0; for (auto &E : Edges) { if (E->Removed) continue; Total += E->CountValue; } return Total; } namespace { class PGOUseFunc { public: PGOUseFunc(Function &Func, Module *Modu, std::unordered_multimap &ComdatMembers, BranchProbabilityInfo *BPI = nullptr, BlockFrequencyInfo *BFIin = nullptr) : F(Func), M(Modu), BFI(BFIin), FuncInfo(Func, ComdatMembers, false, BPI, BFIin), FreqAttr(FFA_Normal) {} // Read counts for the instrumented BB from profile. bool readCounters(IndexedInstrProfReader *PGOReader); // Populate the counts for all BBs. void populateCounters(); // Set the branch weights based on the count values. void setBranchWeights(); // Annotate the value profile call sites all all value kind. void annotateValueSites(); // Annotate the value profile call sites for one value kind. void annotateValueSites(uint32_t Kind); // Annotate the irreducible loop header weights. void annotateIrrLoopHeaderWeights(); // The hotness of the function from the profile count. enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot }; // Return the function hotness from the profile. FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; } // Return the function hash. uint64_t getFuncHash() const { return FuncInfo.FunctionHash; } // Return the profile record for this function; InstrProfRecord &getProfileRecord() { return ProfileRecord; } // Return the auxiliary BB information. UseBBInfo &getBBInfo(const BasicBlock *BB) const { return FuncInfo.getBBInfo(BB); } // Return the auxiliary BB information if available. UseBBInfo *findBBInfo(const BasicBlock *BB) const { return FuncInfo.findBBInfo(BB); } Function &getFunc() const { return F; } void dumpInfo(std::string Str = "") const { FuncInfo.dumpInfo(Str); } private: Function &F; Module *M; BlockFrequencyInfo *BFI; // This member stores the shared information with class PGOGenFunc. FuncPGOInstrumentation FuncInfo; // The maximum count value in the profile. This is only used in PGO use // compilation. uint64_t ProgramMaxCount; // Position of counter that remains to be read. uint32_t CountPosition = 0; // Total size of the profile count for this function. uint32_t ProfileCountSize = 0; // ProfileRecord for this function. InstrProfRecord ProfileRecord; // Function hotness info derived from profile. FuncFreqAttr FreqAttr; // Find the Instrumented BB and set the value. void setInstrumentedCounts(const std::vector &CountFromProfile); // Set the edge counter value for the unknown edge -- there should be only // one unknown edge. void setEdgeCount(DirectEdges &Edges, uint64_t Value); // Return FuncName string; const std::string getFuncName() const { return FuncInfo.FuncName; } // Set the hot/cold inline hints based on the count values. // FIXME: This function should be removed once the functionality in // the inliner is implemented. void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { if (ProgramMaxCount == 0) return; // Threshold of the hot functions. const BranchProbability HotFunctionThreshold(1, 100); // Threshold of the cold functions. const BranchProbability ColdFunctionThreshold(2, 10000); if (EntryCount >= HotFunctionThreshold.scale(ProgramMaxCount)) FreqAttr = FFA_Hot; else if (MaxCount <= ColdFunctionThreshold.scale(ProgramMaxCount)) FreqAttr = FFA_Cold; } }; } // end anonymous namespace // Visit all the edges and assign the count value for the instrumented // edges and the BB. void PGOUseFunc::setInstrumentedCounts( const std::vector &CountFromProfile) { assert(FuncInfo.getNumCounters() == CountFromProfile.size()); // Use a worklist as we will update the vector during the iteration. std::vector WorkList; for (auto &E : FuncInfo.MST.AllEdges) WorkList.push_back(E.get()); uint32_t I = 0; for (auto &E : WorkList) { BasicBlock *InstrBB = FuncInfo.getInstrBB(E); if (!InstrBB) continue; uint64_t CountValue = CountFromProfile[I++]; if (!E->Removed) { getBBInfo(InstrBB).setBBInfoCount(CountValue); E->setEdgeCount(CountValue); continue; } // Need to add two new edges. BasicBlock *SrcBB = const_cast(E->SrcBB); BasicBlock *DestBB = const_cast(E->DestBB); // Add new edge of SrcBB->InstrBB. PGOUseEdge &NewEdge = FuncInfo.MST.addEdge(SrcBB, InstrBB, 0); NewEdge.setEdgeCount(CountValue); // Add new edge of InstrBB->DestBB. PGOUseEdge &NewEdge1 = FuncInfo.MST.addEdge(InstrBB, DestBB, 0); NewEdge1.setEdgeCount(CountValue); NewEdge1.InMST = true; getBBInfo(InstrBB).setBBInfoCount(CountValue); } ProfileCountSize = CountFromProfile.size(); CountPosition = I; } // Set the count value for the unknown edge. There should be one and only one // unknown edge in Edges vector. void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { for (auto &E : Edges) { if (E->CountValid) continue; E->setEdgeCount(Value); getBBInfo(E->SrcBB).UnknownCountOutEdge--; getBBInfo(E->DestBB).UnknownCountInEdge--; return; } llvm_unreachable("Cannot find the unknown count edge"); } // Read the profile from ProfileFileName and assign the value to the // instrumented BB and the edges. This function also updates ProgramMaxCount. // Return true if the profile are successfully read, and false on errors. bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader) { auto &Ctx = M->getContext(); Expected Result = PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash); if (Error E = Result.takeError()) { handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { auto Err = IPE.get(); bool SkipWarning = false; if (Err == instrprof_error::unknown_function) { NumOfPGOMissing++; SkipWarning = !PGOWarnMissing; } else if (Err == instrprof_error::hash_mismatch || Err == instrprof_error::malformed) { NumOfPGOMismatch++; SkipWarning = NoPGOWarnMismatch || (NoPGOWarnMismatchComdat && (F.hasComdat() || F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); } if (SkipWarning) return; std::string Msg = IPE.message() + std::string(" ") + F.getName().str(); Ctx.diagnose( DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); }); return false; } ProfileRecord = std::move(Result.get()); std::vector &CountFromProfile = ProfileRecord.Counts; NumOfPGOFunc++; DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); uint64_t ValueSum = 0; for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); ValueSum += CountFromProfile[I]; } DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); getBBInfo(nullptr).UnknownCountOutEdge = 2; getBBInfo(nullptr).UnknownCountInEdge = 2; setInstrumentedCounts(CountFromProfile); ProgramMaxCount = PGOReader->getMaximumFunctionCount(); return true; } // Populate the counters from instrumented BBs to all BBs. // In the end of this operation, all BBs should have a valid count value. void PGOUseFunc::populateCounters() { // First set up Count variable for all BBs. for (auto &E : FuncInfo.MST.AllEdges) { if (E->Removed) continue; const BasicBlock *SrcBB = E->SrcBB; const BasicBlock *DestBB = E->DestBB; UseBBInfo &SrcInfo = getBBInfo(SrcBB); UseBBInfo &DestInfo = getBBInfo(DestBB); SrcInfo.OutEdges.push_back(E.get()); DestInfo.InEdges.push_back(E.get()); SrcInfo.UnknownCountOutEdge++; DestInfo.UnknownCountInEdge++; if (!E->CountValid) continue; DestInfo.UnknownCountInEdge--; SrcInfo.UnknownCountOutEdge--; } bool Changes = true; unsigned NumPasses = 0; while (Changes) { NumPasses++; Changes = false; // For efficient traversal, it's better to start from the end as most // of the instrumented edges are at the end. for (auto &BB : reverse(F)) { UseBBInfo *Count = findBBInfo(&BB); if (Count == nullptr) continue; if (!Count->CountValid) { if (Count->UnknownCountOutEdge == 0) { Count->CountValue = sumEdgeCount(Count->OutEdges); Count->CountValid = true; Changes = true; } else if (Count->UnknownCountInEdge == 0) { Count->CountValue = sumEdgeCount(Count->InEdges); Count->CountValid = true; Changes = true; } } if (Count->CountValid) { if (Count->UnknownCountOutEdge == 1) { uint64_t Total = 0; uint64_t OutSum = sumEdgeCount(Count->OutEdges); // If the one of the successor block can early terminate (no-return), // we can end up with situation where out edge sum count is larger as // the source BB's count is collected by a post-dominated block. if (Count->CountValue > OutSum) Total = Count->CountValue - OutSum; setEdgeCount(Count->OutEdges, Total); Changes = true; } if (Count->UnknownCountInEdge == 1) { uint64_t Total = 0; uint64_t InSum = sumEdgeCount(Count->InEdges); if (Count->CountValue > InSum) Total = Count->CountValue - InSum; setEdgeCount(Count->InEdges, Total); Changes = true; } } } } DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); #ifndef NDEBUG // Assert every BB has a valid counter. for (auto &BB : F) { auto BI = findBBInfo(&BB); if (BI == nullptr) continue; assert(BI->CountValid && "BB count is not valid"); } #endif uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; F.setEntryCount(FuncEntryCount); uint64_t FuncMaxCount = FuncEntryCount; for (auto &BB : F) { auto BI = findBBInfo(&BB); if (BI == nullptr) continue; FuncMaxCount = std::max(FuncMaxCount, BI->CountValue); } markFunctionAttributes(FuncEntryCount, FuncMaxCount); // Now annotate select instructions FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition); assert(CountPosition == ProfileCountSize); DEBUG(FuncInfo.dumpInfo("after reading profile.")); } // Assign the scaled count values to the BB with multiple out edges. void PGOUseFunc::setBranchWeights() { // Generate MD_prof metadata for every branch instruction. DEBUG(dbgs() << "\nSetting branch weights.\n"); for (auto &BB : F) { TerminatorInst *TI = BB.getTerminator(); if (TI->getNumSuccessors() < 2) continue; if (!(isa(TI) || isa(TI) || isa(TI))) continue; if (getBBInfo(&BB).CountValue == 0) continue; // We have a non-zero Branch BB. const UseBBInfo &BBCountInfo = getBBInfo(&BB); unsigned Size = BBCountInfo.OutEdges.size(); SmallVector EdgeCounts(Size, 0); uint64_t MaxCount = 0; for (unsigned s = 0; s < Size; s++) { const PGOUseEdge *E = BBCountInfo.OutEdges[s]; const BasicBlock *SrcBB = E->SrcBB; const BasicBlock *DestBB = E->DestBB; if (DestBB == nullptr) continue; unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); uint64_t EdgeCount = E->CountValue; if (EdgeCount > MaxCount) MaxCount = EdgeCount; EdgeCounts[SuccNum] = EdgeCount; } setProfMetadata(M, TI, EdgeCounts, MaxCount); } } static bool isIndirectBrTarget(BasicBlock *BB) { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { if (isa((*PI)->getTerminator())) return true; } return false; } void PGOUseFunc::annotateIrrLoopHeaderWeights() { DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n"); // Find irr loop headers for (auto &BB : F) { // As a heuristic also annotate indrectbr targets as they have a high chance // to become an irreducible loop header after the indirectbr tail // duplication. if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) { TerminatorInst *TI = BB.getTerminator(); const UseBBInfo &BBCountInfo = getBBInfo(&BB); setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue); } } } void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) { Module *M = F.getParent(); IRBuilder<> Builder(&SI); Type *Int64Ty = Builder.getInt64Ty(); Type *I8PtrTy = Builder.getInt8PtrTy(); auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step), {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs), Builder.getInt32(*CurCtrIdx), Step}); ++(*CurCtrIdx); } void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) { std::vector &CountFromProfile = UseFunc->getProfileRecord().Counts; assert(*CurCtrIdx < CountFromProfile.size() && "Out of bound access of counters"); uint64_t SCounts[2]; SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count ++(*CurCtrIdx); uint64_t TotalCount = 0; auto BI = UseFunc->findBBInfo(SI.getParent()); if (BI != nullptr) TotalCount = BI->CountValue; // False Count SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0); uint64_t MaxCount = std::max(SCounts[0], SCounts[1]); if (MaxCount) setProfMetadata(F.getParent(), &SI, SCounts, MaxCount); } void SelectInstVisitor::visitSelectInst(SelectInst &SI) { if (!PGOInstrSelect) return; // FIXME: do not handle this yet. if (SI.getCondition()->getType()->isVectorTy()) return; switch (Mode) { case VM_counting: NSIs++; return; case VM_instrument: instrumentOneSelectInst(SI); return; case VM_annotate: annotateOneSelectInst(SI); return; } llvm_unreachable("Unknown visiting mode"); } void MemIntrinsicVisitor::instrumentOneMemIntrinsic(MemIntrinsic &MI) { Module *M = F.getParent(); IRBuilder<> Builder(&MI); Type *Int64Ty = Builder.getInt64Ty(); Type *I8PtrTy = Builder.getInt8PtrTy(); Value *Length = MI.getLength(); assert(!dyn_cast(Length)); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), Builder.getInt64(FuncHash), Builder.CreateZExtOrTrunc(Length, Int64Ty), Builder.getInt32(IPVK_MemOPSize), Builder.getInt32(CurCtrId)}); ++CurCtrId; } void MemIntrinsicVisitor::visitMemIntrinsic(MemIntrinsic &MI) { if (!PGOInstrMemOP) return; Value *Length = MI.getLength(); // Not instrument constant length calls. if (dyn_cast(Length)) return; switch (Mode) { case VM_counting: NMemIs++; return; case VM_instrument: instrumentOneMemIntrinsic(MI); return; case VM_annotate: Candidates.push_back(&MI); return; } llvm_unreachable("Unknown visiting mode"); } // Traverse all valuesites and annotate the instructions for all value kind. void PGOUseFunc::annotateValueSites() { if (DisableValueProfiling) return; // Create the PGOFuncName meta data. createPGOFuncNameMetadata(F, FuncInfo.FuncName); for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) annotateValueSites(Kind); } // Annotate the instructions for a specific value kind. void PGOUseFunc::annotateValueSites(uint32_t Kind) { unsigned ValueSiteIndex = 0; auto &ValueSites = FuncInfo.ValueSites[Kind]; unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind); if (NumValueSites != ValueSites.size()) { auto &Ctx = M->getContext(); Ctx.diagnose(DiagnosticInfoPGOProfile( M->getName().data(), Twine("Inconsistent number of value sites for kind = ") + Twine(Kind) + " in " + F.getName().str(), DS_Warning)); return; } for (auto &I : ValueSites) { DEBUG(dbgs() << "Read one value site profile (kind = " << Kind << "): Index = " << ValueSiteIndex << " out of " << NumValueSites << "\n"); annotateValueSite(*M, *I, ProfileRecord, static_cast(Kind), ValueSiteIndex, Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations : MaxNumAnnotations); ValueSiteIndex++; } } // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime // aware this is an ir_level profile so it can set the version flag. static void createIRLevelProfileFlagVariable(Module &M) { Type *IntTy64 = Type::getInt64Ty(M.getContext()); uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF); auto IRLevelVersionVariable = new GlobalVariable( M, IntTy64, true, GlobalVariable::ExternalLinkage, Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility); Triple TT(M.getTargetTriple()); if (!TT.supportsCOMDAT()) IRLevelVersionVariable->setLinkage(GlobalValue::WeakAnyLinkage); else IRLevelVersionVariable->setComdat(M.getOrInsertComdat( StringRef(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)))); } // Collect the set of members for each Comdat in module M and store // in ComdatMembers. static void collectComdatMembers( Module &M, std::unordered_multimap &ComdatMembers) { if (!DoComdatRenaming) return; for (Function &F : M) if (Comdat *C = F.getComdat()) ComdatMembers.insert(std::make_pair(C, &F)); for (GlobalVariable &GV : M.globals()) if (Comdat *C = GV.getComdat()) ComdatMembers.insert(std::make_pair(C, &GV)); for (GlobalAlias &GA : M.aliases()) if (Comdat *C = GA.getComdat()) ComdatMembers.insert(std::make_pair(C, &GA)); } static bool InstrumentAllFunctions( Module &M, function_ref LookupBPI, function_ref LookupBFI) { createIRLevelProfileFlagVariable(M); std::unordered_multimap ComdatMembers; collectComdatMembers(M, ComdatMembers); for (auto &F : M) { if (F.isDeclaration()) continue; auto *BPI = LookupBPI(F); auto *BFI = LookupBFI(F); instrumentOneFunc(F, &M, BPI, BFI, ComdatMembers); } return true; } bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) { if (skipModule(M)) return false; auto LookupBPI = [this](Function &F) { return &this->getAnalysis(F).getBPI(); }; auto LookupBFI = [this](Function &F) { return &this->getAnalysis(F).getBFI(); }; return InstrumentAllFunctions(M, LookupBPI, LookupBFI); } PreservedAnalyses PGOInstrumentationGen::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); auto LookupBPI = [&FAM](Function &F) { return &FAM.getResult(F); }; auto LookupBFI = [&FAM](Function &F) { return &FAM.getResult(F); }; if (!InstrumentAllFunctions(M, LookupBPI, LookupBFI)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } static bool annotateAllFunctions( Module &M, StringRef ProfileFileName, function_ref LookupBPI, function_ref LookupBFI) { DEBUG(dbgs() << "Read in profile counters: "); auto &Ctx = M.getContext(); // Read the counter array from file. auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName); if (Error E = ReaderOrErr.takeError()) { handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { Ctx.diagnose( DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message())); }); return false; } std::unique_ptr PGOReader = std::move(ReaderOrErr.get()); if (!PGOReader) { Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), StringRef("Cannot get PGOReader"))); return false; } // TODO: might need to change the warning once the clang option is finalized. if (!PGOReader->isIRLevelProfile()) { Ctx.diagnose(DiagnosticInfoPGOProfile( ProfileFileName.data(), "Not an IR level instrumentation profile")); return false; } std::unordered_multimap ComdatMembers; collectComdatMembers(M, ComdatMembers); std::vector HotFunctions; std::vector ColdFunctions; for (auto &F : M) { if (F.isDeclaration()) continue; auto *BPI = LookupBPI(F); auto *BFI = LookupBFI(F); // Split indirectbr critical edges here before computing the MST rather than // later in getInstrBB() to avoid invalidating it. SplitIndirectBrCriticalEdges(F, BPI, BFI); PGOUseFunc Func(F, &M, ComdatMembers, BPI, BFI); if (!Func.readCounters(PGOReader.get())) continue; Func.populateCounters(); Func.setBranchWeights(); Func.annotateValueSites(); Func.annotateIrrLoopHeaderWeights(); PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr(); if (FreqAttr == PGOUseFunc::FFA_Cold) ColdFunctions.push_back(&F); else if (FreqAttr == PGOUseFunc::FFA_Hot) HotFunctions.push_back(&F); if (PGOViewCounts != PGOVCT_None && (ViewBlockFreqFuncName.empty() || F.getName().equals(ViewBlockFreqFuncName))) { LoopInfo LI{DominatorTree(F)}; std::unique_ptr NewBPI = llvm::make_unique(F, LI); std::unique_ptr NewBFI = llvm::make_unique(F, *NewBPI, LI); if (PGOViewCounts == PGOVCT_Graph) NewBFI->view(); else if (PGOViewCounts == PGOVCT_Text) { dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n"; NewBFI->print(dbgs()); } } if (PGOViewRawCounts != PGOVCT_None && (ViewBlockFreqFuncName.empty() || F.getName().equals(ViewBlockFreqFuncName))) { if (PGOViewRawCounts == PGOVCT_Graph) if (ViewBlockFreqFuncName.empty()) WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); else ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); else if (PGOViewRawCounts == PGOVCT_Text) { dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n"; Func.dumpInfo(); } } } M.setProfileSummary(PGOReader->getSummary().getMD(M.getContext())); // Set function hotness attribute from the profile. // We have to apply these attributes at the end because their presence // can affect the BranchProbabilityInfo of any callers, resulting in an // inconsistent MST between prof-gen and prof-use. for (auto &F : HotFunctions) { F->addFnAttr(Attribute::InlineHint); DEBUG(dbgs() << "Set inline attribute to function: " << F->getName() << "\n"); } for (auto &F : ColdFunctions) { F->addFnAttr(Attribute::Cold); DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() << "\n"); } return true; } PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename) : ProfileFileName(std::move(Filename)) { if (!PGOTestProfileFile.empty()) ProfileFileName = PGOTestProfileFile; } PreservedAnalyses PGOInstrumentationUse::run(Module &M, ModuleAnalysisManager &AM) { auto &FAM = AM.getResult(M).getManager(); auto LookupBPI = [&FAM](Function &F) { return &FAM.getResult(F); }; auto LookupBFI = [&FAM](Function &F) { return &FAM.getResult(F); }; if (!annotateAllFunctions(M, ProfileFileName, LookupBPI, LookupBFI)) return PreservedAnalyses::all(); return PreservedAnalyses::none(); } bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) { if (skipModule(M)) return false; auto LookupBPI = [this](Function &F) { return &this->getAnalysis(F).getBPI(); }; auto LookupBFI = [this](Function &F) { return &this->getAnalysis(F).getBFI(); }; return annotateAllFunctions(M, ProfileFileName, LookupBPI, LookupBFI); } static std::string getSimpleNodeName(const BasicBlock *Node) { if (!Node->getName().empty()) return Node->getName(); std::string SimpleNodeName; raw_string_ostream OS(SimpleNodeName); Node->printAsOperand(OS, false); return OS.str(); } void llvm::setProfMetadata(Module *M, Instruction *TI, ArrayRef EdgeCounts, uint64_t MaxCount) { MDBuilder MDB(M->getContext()); assert(MaxCount > 0 && "Bad max count"); uint64_t Scale = calculateCountScale(MaxCount); SmallVector Weights; for (const auto &ECI : EdgeCounts) Weights.push_back(scaleBranchCount(ECI, Scale)); DEBUG(dbgs() << "Weight is: "; for (const auto &W : Weights) { dbgs() << W << " "; } dbgs() << "\n";); TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); if (EmitBranchProbability) { std::string BrCondStr = getBranchCondString(TI); if (BrCondStr.empty()) return; unsigned WSum = std::accumulate(Weights.begin(), Weights.end(), 0, [](unsigned w1, unsigned w2) { return w1 + w2; }); uint64_t TotalCount = std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), 0, [](uint64_t c1, uint64_t c2) { return c1 + c2; }); BranchProbability BP(Weights[0], WSum); std::string BranchProbStr; raw_string_ostream OS(BranchProbStr); OS << BP; OS << " (total count : " << TotalCount << ")"; OS.flush(); Function *F = TI->getParent()->getParent(); OptimizationRemarkEmitter ORE(F); ORE.emit([&]() { return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI) << BrCondStr << " is true with probability : " << BranchProbStr; }); } } namespace llvm { void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) { MDBuilder MDB(M->getContext()); TI->setMetadata(llvm::LLVMContext::MD_irr_loop, MDB.createIrrLoopHeaderWeight(Count)); } template <> struct GraphTraits { using NodeRef = const BasicBlock *; using ChildIteratorType = succ_const_iterator; using nodes_iterator = pointer_iterator; static NodeRef getEntryNode(const PGOUseFunc *G) { return &G->getFunc().front(); } static ChildIteratorType child_begin(const NodeRef N) { return succ_begin(N); } static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); } static nodes_iterator nodes_begin(const PGOUseFunc *G) { return nodes_iterator(G->getFunc().begin()); } static nodes_iterator nodes_end(const PGOUseFunc *G) { return nodes_iterator(G->getFunc().end()); } }; template <> struct DOTGraphTraits : DefaultDOTGraphTraits { explicit DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} static std::string getGraphName(const PGOUseFunc *G) { return G->getFunc().getName(); } std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) { std::string Result; raw_string_ostream OS(Result); OS << getSimpleNodeName(Node) << ":\\l"; UseBBInfo *BI = Graph->findBBInfo(Node); OS << "Count : "; if (BI && BI->CountValid) OS << BI->CountValue << "\\l"; else OS << "Unknown\\l"; if (!PGOInstrSelect) return Result; for (auto BI = Node->begin(); BI != Node->end(); ++BI) { auto *I = &*BI; if (!isa(I)) continue; // Display scaled counts for SELECT instruction: OS << "SELECT : { T = "; uint64_t TC, FC; bool HasProf = I->extractProfMetadata(TC, FC); if (!HasProf) OS << "Unknown, F = Unknown }\\l"; else OS << TC << ", F = " << FC << " }\\l"; } return Result; } }; } // end namespace llvm