//===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // /// \file /// /// This file contains definition for AMDGPU ISA disassembler // //===----------------------------------------------------------------------===// // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? #include "Disassembler/AMDGPUDisassembler.h" #include "AMDGPU.h" #include "AMDGPURegisterInfo.h" #include "SIDefines.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm-c/Disassembler.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler/MCDisassembler.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixedLenDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "amdgpu-disassembler" using DecodeStatus = llvm::MCDisassembler::DecodeStatus; inline static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand& Opnd) { Inst.addOperand(Opnd); return Opnd.isValid() ? MCDisassembler::Success : MCDisassembler::SoftFail; } static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, uint16_t NameIdx) { int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); if (OpIdx != -1) { auto I = MI.begin(); std::advance(I, OpIdx); MI.insert(I, Op); } return OpIdx; } static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm, uint64_t Addr, const void *Decoder) { auto DAsm = static_cast(Decoder); APInt SignedOffset(18, Imm * 4, true); int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2)) return MCDisassembler::Success; return addOperand(Inst, MCOperand::createImm(Imm)); } #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ static DecodeStatus StaticDecoderName(MCInst &Inst, \ unsigned Imm, \ uint64_t /*Addr*/, \ const void *Decoder) { \ auto DAsm = static_cast(Decoder); \ return addOperand(Inst, DAsm->DecoderName(Imm)); \ } #define DECODE_OPERAND_REG(RegClass) \ DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass) DECODE_OPERAND_REG(VGPR_32) DECODE_OPERAND_REG(VS_32) DECODE_OPERAND_REG(VS_64) DECODE_OPERAND_REG(VS_128) DECODE_OPERAND_REG(VReg_64) DECODE_OPERAND_REG(VReg_96) DECODE_OPERAND_REG(VReg_128) DECODE_OPERAND_REG(SReg_32) DECODE_OPERAND_REG(SReg_32_XM0_XEXEC) DECODE_OPERAND_REG(SReg_32_XEXEC_HI) DECODE_OPERAND_REG(SReg_64) DECODE_OPERAND_REG(SReg_64_XEXEC) DECODE_OPERAND_REG(SReg_128) DECODE_OPERAND_REG(SReg_256) DECODE_OPERAND_REG(SReg_512) static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm, uint64_t Addr, const void *Decoder) { auto DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm)); } static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm, uint64_t Addr, const void *Decoder) { auto DAsm = static_cast(Decoder); return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm)); } #define DECODE_SDWA(DecName) \ DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) DECODE_SDWA(Src32) DECODE_SDWA(Src16) DECODE_SDWA(VopcDst) #include "AMDGPUGenDisassemblerTables.inc" //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// template static inline T eatBytes(ArrayRef& Bytes) { assert(Bytes.size() >= sizeof(T)); const auto Res = support::endian::read(Bytes.data()); Bytes = Bytes.slice(sizeof(T)); return Res; } DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table, MCInst &MI, uint64_t Inst, uint64_t Address) const { assert(MI.getOpcode() == 0); assert(MI.getNumOperands() == 0); MCInst TmpInst; HasLiteral = false; const auto SavedBytes = Bytes; if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) { MI = TmpInst; return MCDisassembler::Success; } Bytes = SavedBytes; return MCDisassembler::Fail; } DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, ArrayRef Bytes_, uint64_t Address, raw_ostream &WS, raw_ostream &CS) const { CommentStream = &CS; bool IsSDWA = false; // ToDo: AMDGPUDisassembler supports only VI ISA. if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]) report_fatal_error("Disassembly not yet supported for subtarget"); const unsigned MaxInstBytesNum = (std::min)((size_t)8, Bytes_.size()); Bytes = Bytes_.slice(0, MaxInstBytesNum); DecodeStatus Res = MCDisassembler::Fail; do { // ToDo: better to switch encoding length using some bit predicate // but it is unknown yet, so try all we can // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 // encodings if (Bytes.size() >= 8) { const uint64_t QW = eatBytes(Bytes); Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address); if (Res) break; Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address); if (Res) { IsSDWA = true; break; } Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address); if (Res) { IsSDWA = true; break; } } // Reinitialize Bytes as DPP64 could have eaten too much Bytes = Bytes_.slice(0, MaxInstBytesNum); // Try decode 32-bit instruction if (Bytes.size() < 4) break; const uint32_t DW = eatBytes(Bytes); Res = tryDecodeInst(DecoderTableVI32, MI, DW, Address); if (Res) break; Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address); if (Res) break; Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address); if (Res) break; if (Bytes.size() < 4) break; const uint64_t QW = ((uint64_t)eatBytes(Bytes) << 32) | DW; Res = tryDecodeInst(DecoderTableVI64, MI, QW, Address); if (Res) break; Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address); if (Res) break; Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address); } while (false); if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi || MI.getOpcode() == AMDGPU::V_MAC_F32_e64_si || MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi)) { // Insert dummy unused src2_modifiers. insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::src2_modifiers); } if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) { Res = convertMIMGInst(MI); } if (Res && IsSDWA) Res = convertSDWAInst(MI); Size = Res ? (MaxInstBytesNum - Bytes.size()) : 0; return Res; } DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { if (STI.getFeatureBits()[AMDGPU::FeatureGFX9]) { if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1) // VOPC - insert clamp insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); if (SDst != -1) { // VOPC - insert VCC register as sdst insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), AMDGPU::OpName::sdst); } else { // VOP1/2 - insert omod if present in instruction insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); } } return MCDisassembler::Success; } DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dmask); unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; if (DMask == 0) return MCDisassembler::Success; unsigned ChannelCount = countPopulation(DMask); if (ChannelCount == 1) return MCDisassembler::Success; int NewOpcode = AMDGPU::getMaskedMIMGOp(*MCII, MI.getOpcode(), ChannelCount); assert(NewOpcode != -1 && "could not find matching mimg channel instruction"); auto RCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass; // Widen the register to the correct number of enabled channels. unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); auto NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, &MRI.getRegClass(RCID)); if (NewVdata == AMDGPU::NoRegister) { // It's possible to encode this such that the low register + enabled // components exceeds the register count. return MCDisassembler::Success; } MI.setOpcode(NewOpcode); // vaddr will be always appear as a single VGPR. This will look different than // how it is usually emitted because the number of register components is not // in the instruction encoding. MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); return MCDisassembler::Success; } const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { return getContext().getRegisterInfo()-> getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); } inline MCOperand AMDGPUDisassembler::errOperand(unsigned V, const Twine& ErrMsg) const { *CommentStream << "Error: " + ErrMsg; // ToDo: add support for error operands to MCInst.h // return MCOperand::createError(V); return MCOperand(); } inline MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); } inline MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, unsigned Val) const { const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; if (Val >= RegCl.getNumRegs()) return errOperand(Val, Twine(getRegClassName(RegClassID)) + ": unknown register " + Twine(Val)); return createRegOperand(RegCl.getRegister(Val)); } inline MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, unsigned Val) const { // ToDo: SI/CI have 104 SGPRs, VI - 102 // Valery: here we accepting as much as we can, let assembler sort it out int shift = 0; switch (SRegClassID) { case AMDGPU::SGPR_32RegClassID: case AMDGPU::TTMP_32RegClassID: break; case AMDGPU::SGPR_64RegClassID: case AMDGPU::TTMP_64RegClassID: shift = 1; break; case AMDGPU::SGPR_128RegClassID: case AMDGPU::TTMP_128RegClassID: // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in // this bundle? case AMDGPU::SGPR_256RegClassID: case AMDGPU::TTMP_256RegClassID: // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in // this bundle? case AMDGPU::SGPR_512RegClassID: case AMDGPU::TTMP_512RegClassID: shift = 2; break; // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in // this bundle? default: llvm_unreachable("unhandled register class"); } if (Val % (1 << shift)) { *CommentStream << "Warning: " << getRegClassName(SRegClassID) << ": scalar reg isn't aligned " << Val; } return createRegOperand(SRegClassID, Val >> shift); } MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const { return decodeSrcOp(OPW32, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const { return decodeSrcOp(OPW64, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const { return decodeSrcOp(OPW128, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const { return decodeSrcOp(OPW16, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const { return decodeSrcOp(OPWV216, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const { // Some instructions have operand restrictions beyond what the encoding // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra // high bit. Val &= 255; return createRegOperand(AMDGPU::VGPR_32RegClassID, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const { return createRegOperand(AMDGPU::VReg_64RegClassID, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const { return createRegOperand(AMDGPU::VReg_96RegClassID, Val); } MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const { return createRegOperand(AMDGPU::VReg_128RegClassID, Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const { // table-gen generated disassembler doesn't care about operand types // leaving only registry class so SSrc_32 operand turns into SReg_32 // and therefore we accept immediates and literals here as well return decodeSrcOp(OPW32, Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC( unsigned Val) const { // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI return decodeOperand_SReg_32(Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI( unsigned Val) const { // SReg_32_XM0 is SReg_32 without EXEC_HI return decodeOperand_SReg_32(Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const { return decodeSrcOp(OPW64, Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const { return decodeSrcOp(OPW64, Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const { return decodeSrcOp(OPW128, Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const { return decodeDstOp(OPW256, Val); } MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const { return decodeDstOp(OPW512, Val); } MCOperand AMDGPUDisassembler::decodeLiteralConstant() const { // For now all literal constants are supposed to be unsigned integer // ToDo: deal with signed/unsigned 64-bit integer constants // ToDo: deal with float/double constants if (!HasLiteral) { if (Bytes.size() < 4) { return errOperand(0, "cannot read literal, inst bytes left " + Twine(Bytes.size())); } HasLiteral = true; Literal = eatBytes(Bytes); } return MCOperand::createImm(Literal); } MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { using namespace AMDGPU::EncValues; assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? (static_cast(Imm) - INLINE_INTEGER_C_MIN) : (INLINE_INTEGER_C_POSITIVE_MAX - static_cast(Imm))); // Cast prevents negative overflow. } static int64_t getInlineImmVal32(unsigned Imm) { switch (Imm) { case 240: return FloatToBits(0.5f); case 241: return FloatToBits(-0.5f); case 242: return FloatToBits(1.0f); case 243: return FloatToBits(-1.0f); case 244: return FloatToBits(2.0f); case 245: return FloatToBits(-2.0f); case 246: return FloatToBits(4.0f); case 247: return FloatToBits(-4.0f); case 248: // 1 / (2 * PI) return 0x3e22f983; default: llvm_unreachable("invalid fp inline imm"); } } static int64_t getInlineImmVal64(unsigned Imm) { switch (Imm) { case 240: return DoubleToBits(0.5); case 241: return DoubleToBits(-0.5); case 242: return DoubleToBits(1.0); case 243: return DoubleToBits(-1.0); case 244: return DoubleToBits(2.0); case 245: return DoubleToBits(-2.0); case 246: return DoubleToBits(4.0); case 247: return DoubleToBits(-4.0); case 248: // 1 / (2 * PI) return 0x3fc45f306dc9c882; default: llvm_unreachable("invalid fp inline imm"); } } static int64_t getInlineImmVal16(unsigned Imm) { switch (Imm) { case 240: return 0x3800; case 241: return 0xB800; case 242: return 0x3C00; case 243: return 0xBC00; case 244: return 0x4000; case 245: return 0xC000; case 246: return 0x4400; case 247: return 0xC400; case 248: // 1 / (2 * PI) return 0x3118; default: llvm_unreachable("invalid fp inline imm"); } } MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) { assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); // ToDo: case 248: 1/(2*PI) - is allowed only on VI switch (Width) { case OPW32: return MCOperand::createImm(getInlineImmVal32(Imm)); case OPW64: return MCOperand::createImm(getInlineImmVal64(Imm)); case OPW16: case OPWV216: return MCOperand::createImm(getInlineImmVal16(Imm)); default: llvm_unreachable("implement me"); } } unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { using namespace AMDGPU; assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); switch (Width) { default: // fall case OPW32: case OPW16: case OPWV216: return VGPR_32RegClassID; case OPW64: return VReg_64RegClassID; case OPW128: return VReg_128RegClassID; } } unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { using namespace AMDGPU; assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); switch (Width) { default: // fall case OPW32: case OPW16: case OPWV216: return SGPR_32RegClassID; case OPW64: return SGPR_64RegClassID; case OPW128: return SGPR_128RegClassID; case OPW256: return SGPR_256RegClassID; case OPW512: return SGPR_512RegClassID; } } unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { using namespace AMDGPU; assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); switch (Width) { default: // fall case OPW32: case OPW16: case OPWV216: return TTMP_32RegClassID; case OPW64: return TTMP_64RegClassID; case OPW128: return TTMP_128RegClassID; case OPW256: return TTMP_256RegClassID; case OPW512: return TTMP_512RegClassID; } } int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { using namespace AMDGPU::EncValues; unsigned TTmpMin = isGFX9() ? TTMP_GFX9_MIN : TTMP_VI_MIN; unsigned TTmpMax = isGFX9() ? TTMP_GFX9_MAX : TTMP_VI_MAX; return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; } MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const { using namespace AMDGPU::EncValues; assert(Val < 512); // enum9 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { return createRegOperand(getVgprClassId(Width), Val - VGPR_MIN); } if (Val <= SGPR_MAX) { assert(SGPR_MIN == 0); // "SGPR_MIN <= Val" is always true and causes compilation warning. return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); } int TTmpIdx = getTTmpIdx(Val); if (TTmpIdx >= 0) { return createSRegOperand(getTtmpClassId(Width), TTmpIdx); } if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) return decodeIntImmed(Val); if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) return decodeFPImmed(Width, Val); if (Val == LITERAL_CONST) return decodeLiteralConstant(); switch (Width) { case OPW32: case OPW16: case OPWV216: return decodeSpecialReg32(Val); case OPW64: return decodeSpecialReg64(Val); default: llvm_unreachable("unexpected immediate type"); } } MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const { using namespace AMDGPU::EncValues; assert(Val < 128); assert(Width == OPW256 || Width == OPW512); if (Val <= SGPR_MAX) { assert(SGPR_MIN == 0); // "SGPR_MIN <= Val" is always true and causes compilation warning. return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); } int TTmpIdx = getTTmpIdx(Val); if (TTmpIdx >= 0) { return createSRegOperand(getTtmpClassId(Width), TTmpIdx); } llvm_unreachable("unknown dst register"); } MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { using namespace AMDGPU; switch (Val) { case 102: return createRegOperand(FLAT_SCR_LO); case 103: return createRegOperand(FLAT_SCR_HI); // ToDo: no support for xnack_mask_lo/_hi register case 104: case 105: break; case 106: return createRegOperand(VCC_LO); case 107: return createRegOperand(VCC_HI); case 108: assert(!isGFX9()); return createRegOperand(TBA_LO); case 109: assert(!isGFX9()); return createRegOperand(TBA_HI); case 110: assert(!isGFX9()); return createRegOperand(TMA_LO); case 111: assert(!isGFX9()); return createRegOperand(TMA_HI); case 124: return createRegOperand(M0); case 126: return createRegOperand(EXEC_LO); case 127: return createRegOperand(EXEC_HI); case 235: return createRegOperand(SRC_SHARED_BASE); case 236: return createRegOperand(SRC_SHARED_LIMIT); case 237: return createRegOperand(SRC_PRIVATE_BASE); case 238: return createRegOperand(SRC_PRIVATE_LIMIT); // TODO: SRC_POPS_EXITING_WAVE_ID // ToDo: no support for vccz register case 251: break; // ToDo: no support for execz register case 252: break; case 253: return createRegOperand(SCC); default: break; } return errOperand(Val, "unknown operand encoding " + Twine(Val)); } MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { using namespace AMDGPU; switch (Val) { case 102: return createRegOperand(FLAT_SCR); case 106: return createRegOperand(VCC); case 108: assert(!isGFX9()); return createRegOperand(TBA); case 110: assert(!isGFX9()); return createRegOperand(TMA); case 126: return createRegOperand(EXEC); default: break; } return errOperand(Val, "unknown operand encoding " + Twine(Val)); } MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, unsigned Val) const { using namespace AMDGPU::SDWA; if (STI.getFeatureBits()[AMDGPU::FeatureGFX9]) { // XXX: static_cast is needed to avoid stupid warning: // compare with unsigned is always true if (SDWA9EncValues::SRC_VGPR_MIN <= static_cast(Val) && Val <= SDWA9EncValues::SRC_VGPR_MAX) { return createRegOperand(getVgprClassId(Width), Val - SDWA9EncValues::SRC_VGPR_MIN); } if (SDWA9EncValues::SRC_SGPR_MIN <= Val && Val <= SDWA9EncValues::SRC_SGPR_MAX) { return createSRegOperand(getSgprClassId(Width), Val - SDWA9EncValues::SRC_SGPR_MIN); } if (SDWA9EncValues::SRC_TTMP_MIN <= Val && Val <= SDWA9EncValues::SRC_TTMP_MAX) { return createSRegOperand(getTtmpClassId(Width), Val - SDWA9EncValues::SRC_TTMP_MIN); } return decodeSpecialReg32(Val - SDWA9EncValues::SRC_SGPR_MIN); } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) { return createRegOperand(getVgprClassId(Width), Val); } llvm_unreachable("unsupported target"); } MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { return decodeSDWASrc(OPW16, Val); } MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { return decodeSDWASrc(OPW32, Val); } MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { using namespace AMDGPU::SDWA; assert(STI.getFeatureBits()[AMDGPU::FeatureGFX9] && "SDWAVopcDst should be present only on GFX9"); if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; int TTmpIdx = getTTmpIdx(Val); if (TTmpIdx >= 0) { return createSRegOperand(getTtmpClassId(OPW64), TTmpIdx); } else if (Val > AMDGPU::EncValues::SGPR_MAX) { return decodeSpecialReg64(Val); } else { return createSRegOperand(getSgprClassId(OPW64), Val); } } else { return createRegOperand(AMDGPU::VCC); } } bool AMDGPUDisassembler::isVI() const { return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; } bool AMDGPUDisassembler::isGFX9() const { return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; } //===----------------------------------------------------------------------===// // AMDGPUSymbolizer //===----------------------------------------------------------------------===// // Try to find symbol name for specified label bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst, raw_ostream &/*cStream*/, int64_t Value, uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, uint64_t /*InstSize*/) { using SymbolInfoTy = std::tuple; using SectionSymbolsTy = std::vector; if (!IsBranch) { return false; } auto *Symbols = static_cast(DisInfo); auto Result = std::find_if(Symbols->begin(), Symbols->end(), [Value](const SymbolInfoTy& Val) { return std::get<0>(Val) == static_cast(Value) && std::get<2>(Val) == ELF::STT_NOTYPE; }); if (Result != Symbols->end()) { auto *Sym = Ctx.getOrCreateSymbol(std::get<1>(*Result)); const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); Inst.addOperand(MCOperand::createExpr(Add)); return true; } return false; } void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, int64_t Value, uint64_t Address) { llvm_unreachable("unimplemented"); } //===----------------------------------------------------------------------===// // Initialization //===----------------------------------------------------------------------===// static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, LLVMOpInfoCallback /*GetOpInfo*/, LLVMSymbolLookupCallback /*SymbolLookUp*/, void *DisInfo, MCContext *Ctx, std::unique_ptr &&RelInfo) { return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); } static MCDisassembler *createAMDGPUDisassembler(const Target &T, const MCSubtargetInfo &STI, MCContext &Ctx) { return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); } extern "C" void LLVMInitializeAMDGPUDisassembler() { TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), createAMDGPUDisassembler); TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), createAMDGPUSymbolizer); }