//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines some helpful functions for dealing with the possibility of // Unix signals occurring while your program is running. // //===----------------------------------------------------------------------===// #include "Unix.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Demangle/Demangle.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/FileUtilities.h" #include "llvm/Support/Format.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/Program.h" #include "llvm/Support/UniqueLock.h" #include "llvm/Support/raw_ostream.h" #include #include #ifdef HAVE_BACKTRACE # include BACKTRACE_HEADER // For backtrace(). #endif #if HAVE_SIGNAL_H #include #endif #if HAVE_SYS_STAT_H #include #endif #if HAVE_DLFCN_H #include #endif #if HAVE_MACH_MACH_H #include #endif #if HAVE_LINK_H #include #endif #ifdef HAVE__UNWIND_BACKTRACE // FIXME: We should be able to use for any target that has an // _Unwind_Backtrace function, but on FreeBSD the configure test passes // despite the function not existing, and on Android, conflicts // with . #ifdef __GLIBC__ #include #else #undef HAVE__UNWIND_BACKTRACE #endif #endif using namespace llvm; static RETSIGTYPE SignalHandler(int Sig); // defined below. static ManagedStatic > SignalsMutex; /// InterruptFunction - The function to call if ctrl-c is pressed. static void (*InterruptFunction)() = nullptr; static ManagedStatic> FilesToRemove; static StringRef Argv0; // IntSigs - Signals that represent requested termination. There's no bug // or failure, or if there is, it's not our direct responsibility. For whatever // reason, our continued execution is no longer desirable. static const int IntSigs[] = { SIGHUP, SIGINT, SIGPIPE, SIGTERM, SIGUSR1, SIGUSR2 }; // KillSigs - Signals that represent that we have a bug, and our prompt // termination has been ordered. static const int KillSigs[] = { SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGQUIT #ifdef SIGSYS , SIGSYS #endif #ifdef SIGXCPU , SIGXCPU #endif #ifdef SIGXFSZ , SIGXFSZ #endif #ifdef SIGEMT , SIGEMT #endif }; static unsigned NumRegisteredSignals = 0; static struct { struct sigaction SA; int SigNo; } RegisteredSignalInfo[array_lengthof(IntSigs) + array_lengthof(KillSigs)]; static void RegisterHandler(int Signal) { assert(NumRegisteredSignals < array_lengthof(RegisteredSignalInfo) && "Out of space for signal handlers!"); struct sigaction NewHandler; NewHandler.sa_handler = SignalHandler; NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK; sigemptyset(&NewHandler.sa_mask); // Install the new handler, save the old one in RegisteredSignalInfo. sigaction(Signal, &NewHandler, &RegisteredSignalInfo[NumRegisteredSignals].SA); RegisteredSignalInfo[NumRegisteredSignals].SigNo = Signal; ++NumRegisteredSignals; } #if defined(HAVE_SIGALTSTACK) // Hold onto both the old and new alternate signal stack so that it's not // reported as a leak. We don't make any attempt to remove our alt signal // stack if we remove our signal handlers; that can't be done reliably if // someone else is also trying to do the same thing. static stack_t OldAltStack; static void* NewAltStackPointer; static void CreateSigAltStack() { const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024; // If we're executing on the alternate stack, or we already have an alternate // signal stack that we're happy with, there's nothing for us to do. Don't // reduce the size, some other part of the process might need a larger stack // than we do. if (sigaltstack(nullptr, &OldAltStack) != 0 || OldAltStack.ss_flags & SS_ONSTACK || (OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize)) return; stack_t AltStack = {}; AltStack.ss_sp = reinterpret_cast(malloc(AltStackSize)); NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak. AltStack.ss_size = AltStackSize; if (sigaltstack(&AltStack, &OldAltStack) != 0) free(AltStack.ss_sp); } #else static void CreateSigAltStack() {} #endif static void RegisterHandlers() { sys::SmartScopedLock Guard(*SignalsMutex); // If the handlers are already registered, we're done. if (NumRegisteredSignals != 0) return; // Create an alternate stack for signal handling. This is necessary for us to // be able to reliably handle signals due to stack overflow. CreateSigAltStack(); for (auto S : IntSigs) RegisterHandler(S); for (auto S : KillSigs) RegisterHandler(S); } static void UnregisterHandlers() { // Restore all of the signal handlers to how they were before we showed up. for (unsigned i = 0, e = NumRegisteredSignals; i != e; ++i) sigaction(RegisteredSignalInfo[i].SigNo, &RegisteredSignalInfo[i].SA, nullptr); NumRegisteredSignals = 0; } /// RemoveFilesToRemove - Process the FilesToRemove list. This function /// should be called with the SignalsMutex lock held. /// NB: This must be an async signal safe function. It cannot allocate or free /// memory, even in debug builds. static void RemoveFilesToRemove() { // Avoid constructing ManagedStatic in the signal handler. // If FilesToRemove is not constructed, there are no files to remove. if (!FilesToRemove.isConstructed()) return; // We avoid iterators in case of debug iterators that allocate or release // memory. std::vector& FilesToRemoveRef = *FilesToRemove; for (unsigned i = 0, e = FilesToRemoveRef.size(); i != e; ++i) { const char *path = FilesToRemoveRef[i].c_str(); // Get the status so we can determine if it's a file or directory. If we // can't stat the file, ignore it. struct stat buf; if (stat(path, &buf) != 0) continue; // If this is not a regular file, ignore it. We want to prevent removal of // special files like /dev/null, even if the compiler is being run with the // super-user permissions. if (!S_ISREG(buf.st_mode)) continue; // Otherwise, remove the file. We ignore any errors here as there is nothing // else we can do. unlink(path); } } // SignalHandler - The signal handler that runs. static RETSIGTYPE SignalHandler(int Sig) { // Restore the signal behavior to default, so that the program actually // crashes when we return and the signal reissues. This also ensures that if // we crash in our signal handler that the program will terminate immediately // instead of recursing in the signal handler. UnregisterHandlers(); // Unmask all potentially blocked kill signals. sigset_t SigMask; sigfillset(&SigMask); sigprocmask(SIG_UNBLOCK, &SigMask, nullptr); { unique_lock> Guard(*SignalsMutex); RemoveFilesToRemove(); if (std::find(std::begin(IntSigs), std::end(IntSigs), Sig) != std::end(IntSigs)) { if (InterruptFunction) { void (*IF)() = InterruptFunction; Guard.unlock(); InterruptFunction = nullptr; IF(); // run the interrupt function. return; } Guard.unlock(); raise(Sig); // Execute the default handler. return; } } // Otherwise if it is a fault (like SEGV) run any handler. llvm::sys::RunSignalHandlers(); #ifdef __s390__ // On S/390, certain signals are delivered with PSW Address pointing to // *after* the faulting instruction. Simply returning from the signal // handler would continue execution after that point, instead of // re-raising the signal. Raise the signal manually in those cases. if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP) raise(Sig); #endif } void llvm::sys::RunInterruptHandlers() { sys::SmartScopedLock Guard(*SignalsMutex); RemoveFilesToRemove(); } void llvm::sys::SetInterruptFunction(void (*IF)()) { { sys::SmartScopedLock Guard(*SignalsMutex); InterruptFunction = IF; } RegisterHandlers(); } // RemoveFileOnSignal - The public API bool llvm::sys::RemoveFileOnSignal(StringRef Filename, std::string* ErrMsg) { { sys::SmartScopedLock Guard(*SignalsMutex); FilesToRemove->push_back(Filename); } RegisterHandlers(); return false; } // DontRemoveFileOnSignal - The public API void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) { sys::SmartScopedLock Guard(*SignalsMutex); std::vector::reverse_iterator RI = find(reverse(*FilesToRemove), Filename); std::vector::iterator I = FilesToRemove->end(); if (RI != FilesToRemove->rend()) I = FilesToRemove->erase(RI.base()-1); } /// AddSignalHandler - Add a function to be called when a signal is delivered /// to the process. The handler can have a cookie passed to it to identify /// what instance of the handler it is. void llvm::sys::AddSignalHandler(void (*FnPtr)(void *), void *Cookie) { CallBacksToRun->push_back(std::make_pair(FnPtr, Cookie)); RegisterHandlers(); } #if defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && HAVE_LINK_H && \ (defined(__linux__) || defined(__FreeBSD__) || \ defined(__FreeBSD_kernel__) || defined(__NetBSD__)) struct DlIteratePhdrData { void **StackTrace; int depth; bool first; const char **modules; intptr_t *offsets; const char *main_exec_name; }; static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) { DlIteratePhdrData *data = (DlIteratePhdrData*)arg; const char *name = data->first ? data->main_exec_name : info->dlpi_name; data->first = false; for (int i = 0; i < info->dlpi_phnum; i++) { const auto *phdr = &info->dlpi_phdr[i]; if (phdr->p_type != PT_LOAD) continue; intptr_t beg = info->dlpi_addr + phdr->p_vaddr; intptr_t end = beg + phdr->p_memsz; for (int j = 0; j < data->depth; j++) { if (data->modules[j]) continue; intptr_t addr = (intptr_t)data->StackTrace[j]; if (beg <= addr && addr < end) { data->modules[j] = name; data->offsets[j] = addr - info->dlpi_addr; } } } return 0; } /// If this is an ELF platform, we can find all loaded modules and their virtual /// addresses with dl_iterate_phdr. static bool findModulesAndOffsets(void **StackTrace, int Depth, const char **Modules, intptr_t *Offsets, const char *MainExecutableName, StringSaver &StrPool) { DlIteratePhdrData data = {StackTrace, Depth, true, Modules, Offsets, MainExecutableName}; dl_iterate_phdr(dl_iterate_phdr_cb, &data); return true; } #else /// This platform does not have dl_iterate_phdr, so we do not yet know how to /// find all loaded DSOs. static bool findModulesAndOffsets(void **StackTrace, int Depth, const char **Modules, intptr_t *Offsets, const char *MainExecutableName, StringSaver &StrPool) { return false; } #endif // defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && ... #if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE) static int unwindBacktrace(void **StackTrace, int MaxEntries) { if (MaxEntries < 0) return 0; // Skip the first frame ('unwindBacktrace' itself). int Entries = -1; auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code { // Apparently we need to detect reaching the end of the stack ourselves. void *IP = (void *)_Unwind_GetIP(Context); if (!IP) return _URC_END_OF_STACK; assert(Entries < MaxEntries && "recursively called after END_OF_STACK?"); if (Entries >= 0) StackTrace[Entries] = IP; if (++Entries == MaxEntries) return _URC_END_OF_STACK; return _URC_NO_REASON; }; _Unwind_Backtrace( [](_Unwind_Context *Context, void *Handler) { return (*static_cast(Handler))(Context); }, static_cast(&HandleFrame)); return std::max(Entries, 0); } #endif // PrintStackTrace - In the case of a program crash or fault, print out a stack // trace so that the user has an indication of why and where we died. // // On glibc systems we have the 'backtrace' function, which works nicely, but // doesn't demangle symbols. void llvm::sys::PrintStackTrace(raw_ostream &OS) { #if ENABLE_BACKTRACES static void *StackTrace[256]; int depth = 0; #if defined(HAVE_BACKTRACE) // Use backtrace() to output a backtrace on Linux systems with glibc. if (!depth) depth = backtrace(StackTrace, static_cast(array_lengthof(StackTrace))); #endif #if defined(HAVE__UNWIND_BACKTRACE) // Try _Unwind_Backtrace() if backtrace() failed. if (!depth) depth = unwindBacktrace(StackTrace, static_cast(array_lengthof(StackTrace))); #endif if (!depth) return; if (printSymbolizedStackTrace(Argv0, StackTrace, depth, OS)) return; #if HAVE_DLFCN_H && HAVE_DLADDR int width = 0; for (int i = 0; i < depth; ++i) { Dl_info dlinfo; dladdr(StackTrace[i], &dlinfo); const char* name = strrchr(dlinfo.dli_fname, '/'); int nwidth; if (!name) nwidth = strlen(dlinfo.dli_fname); else nwidth = strlen(name) - 1; if (nwidth > width) width = nwidth; } for (int i = 0; i < depth; ++i) { Dl_info dlinfo; dladdr(StackTrace[i], &dlinfo); OS << format("%-2d", i); const char* name = strrchr(dlinfo.dli_fname, '/'); if (!name) OS << format(" %-*s", width, dlinfo.dli_fname); else OS << format(" %-*s", width, name+1); OS << format(" %#0*lx", (int)(sizeof(void*) * 2) + 2, (unsigned long)StackTrace[i]); if (dlinfo.dli_sname != nullptr) { OS << ' '; int res; char* d = itaniumDemangle(dlinfo.dli_sname, nullptr, nullptr, &res); if (!d) OS << dlinfo.dli_sname; else OS << d; free(d); // FIXME: When we move to C++11, use %t length modifier. It's not in // C++03 and causes gcc to issue warnings. Losing the upper 32 bits of // the stack offset for a stack dump isn't likely to cause any problems. OS << format(" + %u",(unsigned)((char*)StackTrace[i]- (char*)dlinfo.dli_saddr)); } OS << '\n'; } #elif defined(HAVE_BACKTRACE) backtrace_symbols_fd(StackTrace, depth, STDERR_FILENO); #endif #endif } static void PrintStackTraceSignalHandler(void *) { sys::PrintStackTrace(llvm::errs()); } void llvm::sys::DisableSystemDialogsOnCrash() {} /// PrintStackTraceOnErrorSignal - When an error signal (such as SIGABRT or /// SIGSEGV) is delivered to the process, print a stack trace and then exit. void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0, bool DisableCrashReporting) { ::Argv0 = Argv0; AddSignalHandler(PrintStackTraceSignalHandler, nullptr); #if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES // Environment variable to disable any kind of crash dialog. if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) { mach_port_t self = mach_task_self(); exception_mask_t mask = EXC_MASK_CRASH; kern_return_t ret = task_set_exception_ports(self, mask, MACH_PORT_NULL, EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES, THREAD_STATE_NONE); (void)ret; } #endif }