//---------------------------------------------------------------------
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
using System.Collections.Generic;
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...
// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation
// in cases where it was you who created the variables or the variables had already been validated or
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in
// the shipped product.
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.
using System.Globalization;
using System.Data.Common;
using md = System.Data.Metadata.Edm;
using System.Data.Query.InternalTrees;
using System.Data.Query.PlanCompiler;
namespace System.Data.Query.PlanCompiler {
///
/// Kind of VarInfo
///
internal enum VarInfoKind
{
///
/// The VarInfo is of type.
///
PrimitiveTypeVarInfo,
///
/// The VarInfo is of type.
///
StructuredTypeVarInfo,
///
/// The VarInfo is of type.
///
CollectionVarInfo
}
///
/// Information about a Var and its replacement
///
internal abstract class VarInfo {
///
/// Gets for this .
///
internal abstract VarInfoKind Kind { get; }
///
/// Get the list of new Vars introduced by this VarInfo
///
internal virtual List NewVars { get { return null; } }
}
///
/// Represents information about a collection typed Var.
/// Each such Var is replaced by a Var with a new "mapped" type - the "mapped" type
/// is simply a collection type where the element type has been "mapped"
///
internal class CollectionVarInfo : VarInfo {
private List m_newVars; // always a singleton list
///
/// Create a CollectionVarInfo
///
///
internal CollectionVarInfo(Var newVar) {
m_newVars = new List();
m_newVars.Add(newVar);
}
///
/// Get the newVar
///
internal Var NewVar { get { return m_newVars[0]; } }
///
/// Gets for this . Always .
///
internal override VarInfoKind Kind { get { return VarInfoKind.CollectionVarInfo; } }
///
/// Get the list of all NewVars - just one really
///
internal override List NewVars { get { return m_newVars; } }
}
///
/// The StructuredVarInfo class contains information about a structured type Var
/// and how it can be replaced. This is targeted towards Vars of complex/record/
/// entity/ref types, and the goal is to replace all such Vars in this module.
///
internal class StructuredVarInfo : VarInfo {
private Dictionary m_propertyToVarMap;
List m_newVars;
bool m_newVarsIncludeNullSentinelVar;
List m_newProperties;
md.RowType m_newType;
md.TypeUsage m_newTypeUsage;
///
/// Constructor
///
/// new "flat" record type corresponding to the Var's datatype
/// List of vars to replace current Var
/// List of properties in the "flat" record type
/// Do the new vars include a var that represents a null sentinel either for this type or for any nested type
internal StructuredVarInfo(md.RowType newType, List newVars, List newTypeProperties, bool newVarsIncludeNullSentinelVar)
{
PlanCompiler.Assert(newVars.Count == newTypeProperties.Count, "count mismatch");
// I see a few places where this is legal
// PlanCompiler.Assert(newVars.Count > 0, "0 vars?");
m_newVars = newVars;
m_newProperties = newTypeProperties;
m_newType = newType;
m_newVarsIncludeNullSentinelVar = newVarsIncludeNullSentinelVar;
m_newTypeUsage = md.TypeUsage.Create(newType);
}
///
/// Gets for this . Always .
///
internal override VarInfoKind Kind
{
get { return VarInfoKind.StructuredTypeVarInfo; }
}
///
/// The NewVars property of the VarInfo is a list of the corresponding
/// "scalar" Vars that can be used to replace the current Var. This is
/// mainly intended for use by other RelOps that maintain lists of Vars
/// - for example, the "Vars" property of ProjectOp and other similar
/// locations.
///
internal override List NewVars { get { return m_newVars; } }
///
/// The Fields property is matched 1-1 with the NewVars property, and
/// specifies the properties of the record type corresponding to the
/// original VarType
///
internal List Fields { get { return m_newProperties; } }
///
/// Indicates whether any of the vars in NewVars 'derives'
/// from a null sentinel. For example, for a type that is a Record with two
/// nested records, if any has a null sentinel, it would be set to true.
/// It is used when expanding sort keys, to be able to indicate that there is a
/// sorting operation that includes null sentinels. This indication is later
/// used by transformation rules.
///
internal bool NewVarsIncludeNullSentinelVar { get { return m_newVarsIncludeNullSentinelVar; } }
///
/// Get the Var corresponding to a specific property
///
/// the requested property
/// the corresponding Var
/// true, if the Var was found
internal bool TryGetVar(md.EdmProperty p, out Var v) {
if (m_propertyToVarMap == null) {
InitPropertyToVarMap();
}
return m_propertyToVarMap.TryGetValue(p, out v);
}
///
/// The NewType property describes the new "flattened" record type
/// that is a replacement for the original type of the Var
///
internal md.RowType NewType { get { return m_newType; } }
///
/// Returns the NewType wrapped in a TypeUsage
///
internal md.TypeUsage NewTypeUsage { get { return m_newTypeUsage; } }
///
/// Initialize mapping from properties to the corresponding Var
///
private void InitPropertyToVarMap() {
if (m_propertyToVarMap == null) {
m_propertyToVarMap = new Dictionary();
IEnumerator newVarEnumerator = m_newVars.GetEnumerator();
foreach (md.EdmProperty prop in m_newProperties) {
newVarEnumerator.MoveNext();
m_propertyToVarMap.Add(prop, newVarEnumerator.Current);
}
newVarEnumerator.Dispose();
}
}
}
///
/// Represents information about a primitive typed Var and how it can be replaced.
///
internal class PrimitiveTypeVarInfo : VarInfo
{
private List m_newVars; // always a singleton list
///
/// Initializes a new instance of class.
///
///
/// New that replaces current .
///
internal PrimitiveTypeVarInfo(Var newVar)
{
System.Diagnostics.Debug.Assert(newVar != null, "newVar != null");
m_newVars = new List() { newVar };
}
///
/// Gets the newVar.
///
internal Var NewVar { get { return m_newVars[0]; } }
///
/// Gets for this . Always .
///
internal override VarInfoKind Kind
{
get { return VarInfoKind.PrimitiveTypeVarInfo; }
}
///
/// Gets the list of all NewVars. The list contains always just one element.
///
internal override List NewVars { get { return m_newVars; } }
}
///
/// The VarInfo map maintains a mapping from Vars to their corresponding VarInfo
/// It is logically a Dictionary
///
internal class VarInfoMap {
private Dictionary m_map;
///
/// Default constructor
///
internal VarInfoMap() {
m_map = new Dictionary();
}
///
/// Create a new VarInfo for a structured type Var
///
/// The structured type Var
/// "Mapped" type for v
/// List of vars corresponding to v
/// Flattened Properties
/// Do the new vars include a var that represents a null sentinel either for this type or for any nested type
/// the VarInfo
internal VarInfo CreateStructuredVarInfo(Var v, md.RowType newType, List newVars, List newProperties, bool newVarsIncludeNullSentinelVar)
{
VarInfo varInfo = new StructuredVarInfo(newType, newVars, newProperties, newVarsIncludeNullSentinelVar);
m_map.Add(v, varInfo);
return varInfo;
}
///
/// Create a new VarInfo for a structured type Var where the newVars cannot include a null sentinel
///
/// The structured type Var
/// "Mapped" type for v
/// List of vars corresponding to v
/// Flattened Properties
internal VarInfo CreateStructuredVarInfo(Var v, md.RowType newType, List newVars, List newProperties)
{
return CreateStructuredVarInfo(v, newType, newVars, newProperties, false);
}
///
/// Create a VarInfo for a collection typed Var
///
/// The collection-typed Var
/// the new Var
/// the VarInfo
internal VarInfo CreateCollectionVarInfo(Var v, Var newVar) {
VarInfo varInfo = new CollectionVarInfo(newVar);
m_map.Add(v, varInfo);
return varInfo;
}
///
/// Creates a var info for var variables of primitive or enum type.
///
/// Current variable of primitive or enum type.
/// The new variable replacing .
/// for .
internal VarInfo CreatePrimitiveTypeVarInfo(Var v, Var newVar)
{
System.Diagnostics.Debug.Assert(v != null, "v != null");
System.Diagnostics.Debug.Assert(newVar != null, "newVar != null");
PlanCompiler.Assert(md.TypeSemantics.IsScalarType(v.Type), "The current variable should be of primitive or enum type.");
PlanCompiler.Assert(md.TypeSemantics.IsScalarType(newVar.Type), "The new variable should be of primitive or enum type.");
VarInfo varInfo = new PrimitiveTypeVarInfo(newVar);
m_map.Add(v, varInfo);
return varInfo;
}
///
/// Return the VarInfo for the specified var (if one exists, of course)
///
/// The Var
/// the corresponding VarInfo
///
internal bool TryGetVarInfo(Var v, out VarInfo varInfo) {
return m_map.TryGetValue(v, out varInfo);
}
}
}