/* * Copyright (c) 1994 by Xerox Corporation. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program for any * purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is * granted, provided the above notices are retained, and a notice that * the code was modified is included with the above copyright notice. */ #ifndef GC_CPP_H #define GC_CPP_H /**************************************************************************** C++ Interface to the Boehm Collector John R. Ellis and Jesse Hull This interface provides access to the Boehm collector. It provides basic facilities similar to those described in "Safe, Efficient Garbage Collection for C++", by John R. Ellis and David L. Detlefs (ftp://ftp.parc.xerox.com/pub/ellis/gc). All heap-allocated objects are either "collectible" or "uncollectible". Programs must explicitly delete uncollectible objects, whereas the garbage collector will automatically delete collectible objects when it discovers them to be inaccessible. Collectible objects may freely point at uncollectible objects and vice versa. Objects allocated with the built-in "::operator new" are uncollectible. Objects derived from class "gc" are collectible. For example: class A: public gc {...}; A* a = new A; // a is collectible. Collectible instances of non-class types can be allocated using the GC (or UseGC) placement: typedef int A[ 10 ]; A* a = new (GC) A; Uncollectible instances of classes derived from "gc" can be allocated using the NoGC placement: class A: public gc {...}; A* a = new (NoGC) A; // a is uncollectible. The new(PointerFreeGC) syntax allows the allocation of collectible objects that are not scanned by the collector. This useful if you are allocating compressed data, bitmaps, or network packets. (In the latter case, it may remove danger of unfriendly network packets intentionally containing values that cause spurious memory retention.) Both uncollectible and collectible objects can be explicitly deleted with "delete", which invokes an object's destructors and frees its storage immediately. A collectible object may have a clean-up function, which will be invoked when the collector discovers the object to be inaccessible. An object derived from "gc_cleanup" or containing a member derived from "gc_cleanup" has a default clean-up function that invokes the object's destructors. Explicit clean-up functions may be specified as an additional placement argument: A* a = ::new (GC, MyCleanup) A; An object is considered "accessible" by the collector if it can be reached by a path of pointers from static variables, automatic variables of active functions, or from some object with clean-up enabled; pointers from an object to itself are ignored. Thus, if objects A and B both have clean-up functions, and A points at B, B is considered accessible. After A's clean-up is invoked and its storage released, B will then become inaccessible and will have its clean-up invoked. If A points at B and B points to A, forming a cycle, then that's considered a storage leak, and neither will be collectible. See the interface gc.h for low-level facilities for handling such cycles of objects with clean-up. The collector cannot guarantee that it will find all inaccessible objects. In practice, it finds almost all of them. Cautions: 1. Be sure the collector has been augmented with "make c++" or "--enable-cplusplus". 2. If your compiler supports the new "operator new[]" syntax, then add -DGC_OPERATOR_NEW_ARRAY to the Makefile. If your compiler doesn't support "operator new[]", beware that an array of type T, where T is derived from "gc", may or may not be allocated as a collectible object (it depends on the compiler). Use the explicit GC placement to make the array collectible. For example: class A: public gc {...}; A* a1 = new A[ 10 ]; // collectible or uncollectible? A* a2 = new (GC) A[ 10 ]; // collectible. 3. The destructors of collectible arrays of objects derived from "gc_cleanup" will not be invoked properly. For example: class A: public gc_cleanup {...}; A* a = new (GC) A[ 10 ]; // destructors not invoked correctly Typically, only the destructor for the first element of the array will be invoked when the array is garbage-collected. To get all the destructors of any array executed, you must supply an explicit clean-up function: A* a = new (GC, MyCleanUp) A[ 10 ]; (Implementing clean-up of arrays correctly, portably, and in a way that preserves the correct exception semantics requires a language extension, e.g. the "gc" keyword.) 4. Compiler bugs (now hopefully history): * Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the destructors of classes derived from gc_cleanup won't be invoked. You'll have to explicitly register a clean-up function with new-placement syntax. * Evidently cfront 3.0 does not allow destructors to be explicitly invoked using the ANSI-conforming syntax t->~T(). If you're using cfront 3.0, you'll have to comment out the class gc_cleanup, which uses explicit invocation. 5. GC name conflicts: Many other systems seem to use the identifier "GC" as an abbreviation for "Graphics Context". Since version 5.0, GC placement has been replaced by UseGC. GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined. ****************************************************************************/ #include "gc.h" #ifdef GC_NAMESPACE # define GC_NS_QUALIFY(T) boehmgc::T #else # define GC_NS_QUALIFY(T) T #endif #ifndef THINK_CPLUS # define GC_cdecl GC_CALLBACK #else # define GC_cdecl _cdecl #endif #if !defined(GC_NO_OPERATOR_NEW_ARRAY) \ && !defined(_ENABLE_ARRAYNEW) /* Digimars */ \ && (defined(__BORLANDC__) && (__BORLANDC__ < 0x450) \ || (defined(__GNUC__) && !GC_GNUC_PREREQ(2, 6)) \ || (defined(_MSC_VER) && _MSC_VER <= 1020) \ || (defined(__WATCOMC__) && __WATCOMC__ < 1050)) # define GC_NO_OPERATOR_NEW_ARRAY #endif #if !defined(GC_NO_OPERATOR_NEW_ARRAY) && !defined(GC_OPERATOR_NEW_ARRAY) # define GC_OPERATOR_NEW_ARRAY #endif #if (!defined(__BORLANDC__) || __BORLANDC__ > 0x0620) \ && ! defined (__sgi) && ! defined(__WATCOMC__) \ && (!defined(_MSC_VER) || _MSC_VER > 1020) # define GC_PLACEMENT_DELETE #endif #ifdef GC_NAMESPACE namespace boehmgc { #endif enum GCPlacement { UseGC, # ifndef GC_NAME_CONFLICT GC = UseGC, # endif NoGC, PointerFreeGC # ifdef GC_ATOMIC_UNCOLLECTABLE , PointerFreeNoGC # endif }; /** * Instances of classes derived from "gc" will be allocated in the collected * heap by default, unless an explicit NoGC placement is specified. */ class gc { public: inline void* operator new(size_t size); inline void* operator new(size_t size, GCPlacement gcp); inline void* operator new(size_t size, void* p); // Must be redefined here, since the other overloadings hide // the global definition. inline void operator delete(void* obj); # ifdef GC_PLACEMENT_DELETE inline void operator delete(void*, GCPlacement); // Called if construction fails. inline void operator delete(void*, void*); # endif // GC_PLACEMENT_DELETE # ifdef GC_OPERATOR_NEW_ARRAY inline void* operator new[](size_t size); inline void* operator new[](size_t size, GCPlacement gcp); inline void* operator new[](size_t size, void* p); inline void operator delete[](void* obj); # ifdef GC_PLACEMENT_DELETE inline void operator delete[](void*, GCPlacement); inline void operator delete[](void*, void*); # endif # endif // GC_OPERATOR_NEW_ARRAY }; /** * Instances of classes derived from "gc_cleanup" will be allocated * in the collected heap by default. When the collector discovers * an inaccessible object derived from "gc_cleanup" or containing * a member derived from "gc_cleanup", its destructors will be invoked. */ class gc_cleanup: virtual public gc { public: inline gc_cleanup(); inline virtual ~gc_cleanup(); private: inline static void GC_cdecl cleanup(void* obj, void* clientData); }; extern "C" { typedef void (GC_CALLBACK * GCCleanUpFunc)(void* obj, void* clientData); } #ifdef GC_NAMESPACE } #endif #ifdef _MSC_VER // Disable warning that "no matching operator delete found; memory will // not be freed if initialization throws an exception" # pragma warning(disable:4291) #endif inline void* operator new(size_t size, GC_NS_QUALIFY(GCPlacement) gcp, GC_NS_QUALIFY(GCCleanUpFunc) /* cleanup */ = 0, void* /* clientData */ = 0); // Allocates a collectible or uncollectible object, according to the // value of "gcp". // // For collectible objects, if "cleanup" is non-null, then when the // allocated object "obj" becomes inaccessible, the collector will // invoke the function "cleanup(obj, clientData)" but will not // invoke the object's destructors. It is an error to explicitly // delete an object allocated with a non-null "cleanup". // // It is an error to specify a non-null "cleanup" with NoGC or for // classes derived from "gc_cleanup" or containing members derived // from "gc_cleanup". #ifdef GC_PLACEMENT_DELETE inline void operator delete(void*, GC_NS_QUALIFY(GCPlacement), GC_NS_QUALIFY(GCCleanUpFunc), void*); #endif #ifdef _MSC_VER // The following ensures that the system default operator new[] does not // get undefined, which is what seems to happen on VC++ 6 for some reason // if we define a multi-argument operator new[]. // There seems to be no way to redirect new in this environment without // including this everywhere. // Inlining done to avoid mix up of new and delete operators by VC++ 9 (due // to arbitrary ordering during linking). # if _MSC_VER > 1020 inline void* operator new[](size_t size) { return GC_MALLOC_UNCOLLECTABLE(size); } inline void operator delete[](void* obj) { GC_FREE(obj); } # endif inline void* operator new(size_t size) { return GC_MALLOC_UNCOLLECTABLE(size); } inline void operator delete(void* obj) { GC_FREE(obj); } // This new operator is used by VC++ in case of Debug builds: # ifdef GC_DEBUG inline void* operator new(size_t size, int /* nBlockUse */, const char* szFileName, int nLine) { return GC_debug_malloc_uncollectable(size, szFileName, nLine); } # else inline void* operator new(size_t size, int /* nBlockUse */, const char* /* szFileName */, int /* nLine */) { return GC_malloc_uncollectable(size); } # endif /* !GC_DEBUG */ # if _MSC_VER > 1020 // This new operator is used by VC++ 7+ in Debug builds: inline void* operator new[](size_t size, int nBlockUse, const char* szFileName, int nLine) { return operator new(size, nBlockUse, szFileName, nLine); } # endif #endif // _MSC_VER #ifdef GC_OPERATOR_NEW_ARRAY // The operator new for arrays, identical to the above. inline void* operator new[](size_t size, GC_NS_QUALIFY(GCPlacement) gcp, GC_NS_QUALIFY(GCCleanUpFunc) /* cleanup */ = 0, void* /* clientData */ = 0); #endif // GC_OPERATOR_NEW_ARRAY /* Inline implementation */ #ifdef GC_NAMESPACE namespace boehmgc { #endif inline void* gc::operator new(size_t size) { return GC_MALLOC(size); } inline void* gc::operator new(size_t size, GCPlacement gcp) { switch (gcp) { case UseGC: return GC_MALLOC(size); case PointerFreeGC: return GC_MALLOC_ATOMIC(size); # ifdef GC_ATOMIC_UNCOLLECTABLE case PointerFreeNoGC: return GC_MALLOC_ATOMIC_UNCOLLECTABLE(size); # endif case NoGC: default: return GC_MALLOC_UNCOLLECTABLE(size); } } inline void* gc::operator new(size_t /* size */, void* p) { return p; } inline void gc::operator delete(void* obj) { GC_FREE(obj); } #ifdef GC_PLACEMENT_DELETE inline void gc::operator delete(void*, void*) {} inline void gc::operator delete(void* p, GCPlacement /* gcp */) { GC_FREE(p); } #endif // GC_PLACEMENT_DELETE #ifdef GC_OPERATOR_NEW_ARRAY inline void* gc::operator new[](size_t size) { return gc::operator new(size); } inline void* gc::operator new[](size_t size, GCPlacement gcp) { return gc::operator new(size, gcp); } inline void* gc::operator new[](size_t /* size */, void* p) { return p; } inline void gc::operator delete[](void* obj) { gc::operator delete(obj); } # ifdef GC_PLACEMENT_DELETE inline void gc::operator delete[](void*, void*) {} inline void gc::operator delete[](void* p, GCPlacement /* gcp */) { gc::operator delete(p); } # endif #endif // GC_OPERATOR_NEW_ARRAY inline gc_cleanup::~gc_cleanup() { void* base = GC_base(this); if (0 == base) return; // Non-heap object. GC_register_finalizer_ignore_self(base, 0, 0, 0, 0); } inline void GC_CALLBACK gc_cleanup::cleanup(void* obj, void* displ) { ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup(); } inline gc_cleanup::gc_cleanup() { GC_finalization_proc oldProc; void* oldData; void* this_ptr = (void*)this; void* base = GC_base(this_ptr); if (base != 0) { // Don't call the debug version, since this is a real base address. GC_register_finalizer_ignore_self(base, (GC_finalization_proc) cleanup, (void*)((char*)this_ptr - (char*)base), &oldProc, &oldData); if (oldProc != 0) { GC_register_finalizer_ignore_self(base, oldProc, oldData, 0, 0); } } } #ifdef GC_NAMESPACE } #endif inline void* operator new(size_t size, GC_NS_QUALIFY(GCPlacement) gcp, GC_NS_QUALIFY(GCCleanUpFunc) cleanup, void* clientData) { void* obj; switch (gcp) { case GC_NS_QUALIFY(UseGC): obj = GC_MALLOC(size); if (cleanup != 0) { GC_REGISTER_FINALIZER_IGNORE_SELF(obj, cleanup, clientData, 0, 0); } return obj; case GC_NS_QUALIFY(PointerFreeGC): return GC_MALLOC_ATOMIC(size); # ifdef GC_ATOMIC_UNCOLLECTABLE case GC_NS_QUALIFY(PointerFreeNoGC): return GC_MALLOC_ATOMIC_UNCOLLECTABLE(size); # endif case GC_NS_QUALIFY(NoGC): default: return GC_MALLOC_UNCOLLECTABLE(size); } } #ifdef GC_PLACEMENT_DELETE inline void operator delete(void* p, GC_NS_QUALIFY(GCPlacement) /* gcp */, GC_NS_QUALIFY(GCCleanUpFunc) /* cleanup */, void* /* clientData */) { GC_FREE(p); } #endif // GC_PLACEMENT_DELETE #ifdef GC_OPERATOR_NEW_ARRAY inline void* operator new[](size_t size, GC_NS_QUALIFY(GCPlacement) gcp, GC_NS_QUALIFY(GCCleanUpFunc) cleanup, void* clientData) { return ::operator new(size, gcp, cleanup, clientData); } #endif // GC_OPERATOR_NEW_ARRAY #endif /* GC_CPP_H */