/* * Copyright (c) 1993-1994 by Xerox Corporation. All rights reserved. * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifndef CORD_BUILD # define CORD_BUILD #endif # include "gc.h" # include "cord.h" # include # include # include /* An implementation of the cord primitives. These are the only */ /* Functions that understand the representation. We perform only */ /* minimal checks on arguments to these functions. Out of bounds */ /* arguments to the iteration functions may result in client functions */ /* invoked on garbage data. In most cases, client functions should be */ /* programmed defensively enough that this does not result in memory */ /* smashes. */ typedef void (* oom_fn)(void); oom_fn CORD_oom_fn = (oom_fn) 0; # define OUT_OF_MEMORY { if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \ ABORT("Out of memory"); } # define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); } typedef unsigned long word; struct Concatenation { char null; char header; char depth; /* concatenation nesting depth. */ unsigned char left_len; /* Length of left child if it is sufficiently */ /* short; 0 otherwise. */ # define MAX_LEFT_LEN 255 word len; CORD left; /* length(left) > 0 */ CORD right; /* length(right) > 0 */ }; struct Function { char null; char header; char depth; /* always 0 */ char left_len; /* always 0 */ word len; CORD_fn fn; void * client_data; }; struct Generic { char null; char header; char depth; char left_len; word len; }; typedef union { struct Concatenation concatenation; struct Function function; struct Generic generic; char string[1]; } CordRep; # define CONCAT_HDR 1 # define FN_HDR 4 # define SUBSTR_HDR 6 /* Substring nodes are a special case of function nodes. */ /* The client_data field is known to point to a substr_args */ /* structure, and the function is either CORD_apply_access_fn */ /* or CORD_index_access_fn. */ /* The following may be applied only to function and concatenation nodes: */ #define IS_CONCATENATION(s) (((CordRep *)s)->generic.header == CONCAT_HDR) #define IS_FUNCTION(s) ((((CordRep *)s)->generic.header & FN_HDR) != 0) #define IS_SUBSTR(s) (((CordRep *)s)->generic.header == SUBSTR_HDR) #define LEN(s) (((CordRep *)s) -> generic.len) #define DEPTH(s) (((CordRep *)s) -> generic.depth) #define GEN_LEN(s) (CORD_IS_STRING(s) ? strlen(s) : LEN(s)) #define LEFT_LEN(c) ((c) -> left_len != 0? \ (c) -> left_len \ : (CORD_IS_STRING((c) -> left) ? \ (c) -> len - GEN_LEN((c) -> right) \ : LEN((c) -> left))) #define SHORT_LIMIT (sizeof(CordRep) - 1) /* Cords shorter than this are C strings */ /* Dump the internal representation of x to stdout, with initial */ /* indentation level n. */ void CORD_dump_inner(CORD x, unsigned n) { size_t i; for (i = 0; i < (size_t)n; i++) { fputs(" ", stdout); } if (x == 0) { fputs("NIL\n", stdout); } else if (CORD_IS_STRING(x)) { for (i = 0; i <= SHORT_LIMIT; i++) { if (x[i] == '\0') break; putchar(x[i]); } if (x[i] != '\0') fputs("...", stdout); putchar('\n'); } else if (IS_CONCATENATION(x)) { struct Concatenation * conc = &(((CordRep *)x) -> concatenation); printf("Concatenation: %p (len: %d, depth: %d)\n", (void *)x, (int)(conc -> len), (int)(conc -> depth)); CORD_dump_inner(conc -> left, n+1); CORD_dump_inner(conc -> right, n+1); } else /* function */ { struct Function * func = &(((CordRep *)x) -> function); if (IS_SUBSTR(x)) printf("(Substring) "); printf("Function: %p (len: %d): ", (void *)x, (int)(func -> len)); for (i = 0; i < 20 && i < func -> len; i++) { putchar((*(func -> fn))(i, func -> client_data)); } if (i < func -> len) fputs("...", stdout); putchar('\n'); } } /* Dump the internal representation of x to stdout */ void CORD_dump(CORD x) { CORD_dump_inner(x, 0); fflush(stdout); } CORD CORD_cat_char_star(CORD x, const char * y, size_t leny) { size_t result_len; size_t lenx; int depth; if (x == CORD_EMPTY) return(y); if (leny == 0) return(x); if (CORD_IS_STRING(x)) { lenx = strlen(x); result_len = lenx + leny; if (result_len <= SHORT_LIMIT) { char * result = (char *)GC_MALLOC_ATOMIC(result_len + 1); if (result == 0) OUT_OF_MEMORY; memcpy(result, x, lenx); memcpy(result + lenx, y, leny); result[result_len] = '\0'; return((CORD) result); } else { depth = 1; } } else { CORD right; CORD left; char * new_right; lenx = LEN(x); if (leny <= SHORT_LIMIT/2 && IS_CONCATENATION(x) && CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) { size_t right_len; /* Merge y into right part of x. */ if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) { right_len = lenx - LEN(left); } else if (((CordRep *)x) -> concatenation.left_len != 0) { right_len = lenx - ((CordRep *)x) -> concatenation.left_len; } else { right_len = strlen(right); } result_len = right_len + leny; /* length of new_right */ if (result_len <= SHORT_LIMIT) { new_right = (char *)GC_MALLOC_ATOMIC(result_len + 1); if (new_right == 0) OUT_OF_MEMORY; memcpy(new_right, right, right_len); memcpy(new_right + right_len, y, leny); new_right[result_len] = '\0'; y = new_right; leny = result_len; x = left; lenx -= right_len; /* Now fall through to concatenate the two pieces: */ } if (CORD_IS_STRING(x)) { depth = 1; } else { depth = DEPTH(x) + 1; } } else { depth = DEPTH(x) + 1; } result_len = lenx + leny; } { /* The general case; lenx, result_len is known: */ struct Concatenation * result = GC_NEW(struct Concatenation); if (NULL == result) OUT_OF_MEMORY; result->header = CONCAT_HDR; result->depth = (char)depth; if (lenx <= MAX_LEFT_LEN) result->left_len = (unsigned char)lenx; result->len = (word)result_len; result->left = x; result->right = y; if (depth >= MAX_DEPTH) { return(CORD_balance((CORD)result)); } else { return((CORD) result); } } } CORD CORD_cat(CORD x, CORD y) { size_t result_len; int depth; size_t lenx; if (x == CORD_EMPTY) return(y); if (y == CORD_EMPTY) return(x); if (CORD_IS_STRING(y)) { return(CORD_cat_char_star(x, y, strlen(y))); } else if (CORD_IS_STRING(x)) { lenx = strlen(x); depth = DEPTH(y) + 1; } else { int depthy = DEPTH(y); lenx = LEN(x); depth = DEPTH(x) + 1; if (depthy >= depth) depth = depthy + 1; } result_len = lenx + LEN(y); { struct Concatenation * result = GC_NEW(struct Concatenation); if (NULL == result) OUT_OF_MEMORY; result->header = CONCAT_HDR; result->depth = (char)depth; if (lenx <= MAX_LEFT_LEN) result->left_len = (unsigned char)lenx; result->len = (word)result_len; result->left = x; result->right = y; if (depth >= MAX_DEPTH) { return(CORD_balance((CORD)result)); } else { return((CORD) result); } } } static CordRep *CORD_from_fn_inner(CORD_fn fn, void * client_data, size_t len) { if (len == 0) return(0); if (len <= SHORT_LIMIT) { char * result; size_t i; char buf[SHORT_LIMIT+1]; for (i = 0; i < len; i++) { char c = (*fn)(i, client_data); if (c == '\0') goto gen_case; buf[i] = c; } result = (char *)GC_MALLOC_ATOMIC(len + 1); if (result == 0) OUT_OF_MEMORY; memcpy(result, buf, len); result[len] = '\0'; return (CordRep *)result; } gen_case: { struct Function * result = GC_NEW(struct Function); if (NULL == result) OUT_OF_MEMORY; result->header = FN_HDR; /* depth is already 0 */ result->len = (word)len; result->fn = fn; result->client_data = client_data; return (CordRep *)result; } } CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len) { return (/* const */ CORD) CORD_from_fn_inner(fn, client_data, len); } size_t CORD_len(CORD x) { if (x == 0) { return(0); } else { return(GEN_LEN(x)); } } struct substr_args { CordRep * sa_cord; size_t sa_index; }; char CORD_index_access_fn(size_t i, void * client_data) { struct substr_args *descr = (struct substr_args *)client_data; return(((char *)(descr->sa_cord))[i + descr->sa_index]); } char CORD_apply_access_fn(size_t i, void * client_data) { struct substr_args *descr = (struct substr_args *)client_data; struct Function * fn_cord = &(descr->sa_cord->function); return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data)); } /* A version of CORD_substr that simply returns a function node, thus */ /* postponing its work. The fourth argument is a function that may */ /* be used for efficient access to the ith character. */ /* Assumes i >= 0 and i + n < length(x). */ CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f) { struct substr_args * sa = GC_NEW(struct substr_args); CordRep * result; if (sa == 0) OUT_OF_MEMORY; sa->sa_cord = (CordRep *)x; sa->sa_index = i; result = CORD_from_fn_inner(f, (void *)sa, n); if ((CORD)result != CORD_EMPTY && 0 == result -> function.null) result -> function.header = SUBSTR_HDR; return (CORD)result; } # define SUBSTR_LIMIT (10 * SHORT_LIMIT) /* Substrings of function nodes and flat strings shorter than */ /* this are flat strings. Othewise we use a functional */ /* representation, which is significantly slower to access. */ /* A version of CORD_substr that assumes i >= 0, n > 0, and i + n < length(x).*/ CORD CORD_substr_checked(CORD x, size_t i, size_t n) { if (CORD_IS_STRING(x)) { if (n > SUBSTR_LIMIT) { return(CORD_substr_closure(x, i, n, CORD_index_access_fn)); } else { char * result = (char *)GC_MALLOC_ATOMIC(n + 1); if (result == 0) OUT_OF_MEMORY; strncpy(result, x+i, n); result[n] = '\0'; return(result); } } else if (IS_CONCATENATION(x)) { struct Concatenation * conc = &(((CordRep *)x) -> concatenation); size_t left_len = LEFT_LEN(conc); size_t right_len = conc -> len - left_len; if (i >= left_len) { if (n == right_len) return(conc -> right); return(CORD_substr_checked(conc -> right, i - left_len, n)); } else if (i+n <= left_len) { if (n == left_len) return(conc -> left); return(CORD_substr_checked(conc -> left, i, n)); } else { /* Need at least one character from each side. */ CORD left_part; CORD right_part; size_t left_part_len = left_len - i; if (i == 0) { left_part = conc -> left; } else { left_part = CORD_substr_checked(conc -> left, i, left_part_len); } if (i + n == right_len + left_len) { right_part = conc -> right; } else { right_part = CORD_substr_checked(conc -> right, 0, n - left_part_len); } return(CORD_cat(left_part, right_part)); } } else /* function */ { if (n > SUBSTR_LIMIT) { if (IS_SUBSTR(x)) { /* Avoid nesting substring nodes. */ struct Function * f = &(((CordRep *)x) -> function); struct substr_args *descr = (struct substr_args *)(f -> client_data); return(CORD_substr_closure((CORD)descr->sa_cord, i + descr->sa_index, n, f -> fn)); } else { return(CORD_substr_closure(x, i, n, CORD_apply_access_fn)); } } else { char * result; struct Function * f = &(((CordRep *)x) -> function); char buf[SUBSTR_LIMIT+1]; char * p = buf; size_t j; size_t lim = i + n; for (j = i; j < lim; j++) { char c = (*(f -> fn))(j, f -> client_data); if (c == '\0') { return(CORD_substr_closure(x, i, n, CORD_apply_access_fn)); } *p++ = c; } result = (char *)GC_MALLOC_ATOMIC(n + 1); if (result == 0) OUT_OF_MEMORY; memcpy(result, buf, n); result[n] = '\0'; return(result); } } } CORD CORD_substr(CORD x, size_t i, size_t n) { size_t len = CORD_len(x); if (i >= len || n == 0) return(0); if (i + n > len) n = len - i; return(CORD_substr_checked(x, i, n)); } /* See cord.h for definition. We assume i is in range. */ int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1, CORD_batched_iter_fn f2, void * client_data) { if (x == 0) return(0); if (CORD_IS_STRING(x)) { const char *p = x+i; if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big"); if (f2 != CORD_NO_FN) { return((*f2)(p, client_data)); } else { while (*p) { if ((*f1)(*p, client_data)) return(1); p++; } return(0); } } else if (IS_CONCATENATION(x)) { struct Concatenation * conc = &(((CordRep *)x) -> concatenation); if (i > 0) { size_t left_len = LEFT_LEN(conc); if (i >= left_len) { return(CORD_iter5(conc -> right, i - left_len, f1, f2, client_data)); } } if (CORD_iter5(conc -> left, i, f1, f2, client_data)) { return(1); } return(CORD_iter5(conc -> right, 0, f1, f2, client_data)); } else /* function */ { struct Function * f = &(((CordRep *)x) -> function); size_t j; size_t lim = f -> len; for (j = i; j < lim; j++) { if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { return(1); } } return(0); } } #undef CORD_iter int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data) { return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data)); } int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data) { if (x == 0) return(0); if (CORD_IS_STRING(x)) { const char *p = x + i; for(;;) { char c = *p; if (c == '\0') ABORT("2nd arg to CORD_riter4 too big"); if ((*f1)(c, client_data)) return(1); if (p == x) break; p--; } return(0); } else if (IS_CONCATENATION(x)) { struct Concatenation * conc = &(((CordRep *)x) -> concatenation); CORD left_part = conc -> left; size_t left_len = LEFT_LEN(conc); if (i >= left_len) { if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) { return(1); } return(CORD_riter4(left_part, left_len - 1, f1, client_data)); } else { return(CORD_riter4(left_part, i, f1, client_data)); } } else /* function */ { struct Function * f = &(((CordRep *)x) -> function); size_t j; for (j = i; ; j--) { if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { return(1); } if (j == 0) return(0); } } } int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data) { size_t len = CORD_len(x); if (len == 0) return(0); return(CORD_riter4(x, len - 1, f1, client_data)); } /* * The following functions are concerned with balancing cords. * Strategy: * Scan the cord from left to right, keeping the cord scanned so far * as a forest of balanced trees of exponentially decreasing length. * When a new subtree needs to be added to the forest, we concatenate all * shorter ones to the new tree in the appropriate order, and then insert * the result into the forest. * Crucial invariants: * 1. The concatenation of the forest (in decreasing order) with the * unscanned part of the rope is equal to the rope being balanced. * 2. All trees in the forest are balanced. * 3. forest[i] has depth at most i. */ typedef struct { CORD c; size_t len; /* Actual length of c */ } ForestElement; static size_t min_len [ MAX_DEPTH ]; static int min_len_init = 0; int CORD_max_len; typedef ForestElement Forest [ MAX_DEPTH ]; /* forest[i].len >= fib(i+1) */ /* The string is the concatenation */ /* of the forest in order of DECREASING */ /* indices. */ void CORD_init_min_len(void) { int i; size_t last, previous; min_len[0] = previous = 1; min_len[1] = last = 2; for (i = 2; i < MAX_DEPTH; i++) { size_t current = last + previous; if (current < last) /* overflow */ current = last; min_len[i] = current; previous = last; last = current; } CORD_max_len = (int)last - 1; min_len_init = 1; } void CORD_init_forest(ForestElement * forest, size_t max_len) { int i; for (i = 0; i < MAX_DEPTH; i++) { forest[i].c = 0; if (min_len[i] > max_len) return; } ABORT("Cord too long"); } /* Add a leaf to the appropriate level in the forest, cleaning */ /* out lower levels as necessary. */ /* Also works if x is a balanced tree of concatenations; however */ /* in this case an extra concatenation node may be inserted above x; */ /* This node should not be counted in the statement of the invariants. */ void CORD_add_forest(ForestElement * forest, CORD x, size_t len) { int i = 0; CORD sum = CORD_EMPTY; size_t sum_len = 0; while (len > min_len[i + 1]) { if (forest[i].c != 0) { sum = CORD_cat(forest[i].c, sum); sum_len += forest[i].len; forest[i].c = 0; } i++; } /* Sum has depth at most 1 greter than what would be required */ /* for balance. */ sum = CORD_cat(sum, x); sum_len += len; /* If x was a leaf, then sum is now balanced. To see this */ /* consider the two cases in which forest[i-1] either is or is */ /* not empty. */ while (sum_len >= min_len[i]) { if (forest[i].c != 0) { sum = CORD_cat(forest[i].c, sum); sum_len += forest[i].len; /* This is again balanced, since sum was balanced, and has */ /* allowable depth that differs from i by at most 1. */ forest[i].c = 0; } i++; } i--; forest[i].c = sum; forest[i].len = sum_len; } CORD CORD_concat_forest(ForestElement * forest, size_t expected_len) { int i = 0; CORD sum = 0; size_t sum_len = 0; while (sum_len != expected_len) { if (forest[i].c != 0) { sum = CORD_cat(forest[i].c, sum); sum_len += forest[i].len; } i++; } return(sum); } /* Insert the frontier of x into forest. Balanced subtrees are */ /* treated as leaves. This potentially adds one to the depth */ /* of the final tree. */ void CORD_balance_insert(CORD x, size_t len, ForestElement * forest) { int depth; if (CORD_IS_STRING(x)) { CORD_add_forest(forest, x, len); } else if (IS_CONCATENATION(x) && ((depth = DEPTH(x)) >= MAX_DEPTH || len < min_len[depth])) { struct Concatenation * conc = &(((CordRep *)x) -> concatenation); size_t left_len = LEFT_LEN(conc); CORD_balance_insert(conc -> left, left_len, forest); CORD_balance_insert(conc -> right, len - left_len, forest); } else /* function or balanced */ { CORD_add_forest(forest, x, len); } } CORD CORD_balance(CORD x) { Forest forest; size_t len; if (x == 0) return(0); if (CORD_IS_STRING(x)) return(x); if (!min_len_init) CORD_init_min_len(); len = LEN(x); CORD_init_forest(forest, len); CORD_balance_insert(x, len, forest); return(CORD_concat_forest(forest, len)); } /* Position primitives */ /* Private routines to deal with the hard cases only: */ /* P contains a prefix of the path to cur_pos. Extend it to a full */ /* path and set up leaf info. */ /* Return 0 if past the end of cord, 1 o.w. */ void CORD__extend_path(CORD_pos p) { struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]); CORD top = current_pe -> pe_cord; size_t pos = p[0].cur_pos; size_t top_pos = current_pe -> pe_start_pos; size_t top_len = GEN_LEN(top); /* Fill in the rest of the path. */ while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) { struct Concatenation * conc = &(((CordRep *)top) -> concatenation); size_t left_len; left_len = LEFT_LEN(conc); current_pe++; if (pos >= top_pos + left_len) { current_pe -> pe_cord = top = conc -> right; current_pe -> pe_start_pos = top_pos = top_pos + left_len; top_len -= left_len; } else { current_pe -> pe_cord = top = conc -> left; current_pe -> pe_start_pos = top_pos; top_len = left_len; } p[0].path_len++; } /* Fill in leaf description for fast access. */ if (CORD_IS_STRING(top)) { p[0].cur_leaf = top; p[0].cur_start = top_pos; p[0].cur_end = top_pos + top_len; } else { p[0].cur_end = 0; } if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID; } char CORD__pos_fetch(CORD_pos p) { /* Leaf is a function node */ struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]); CORD leaf = pe -> pe_cord; struct Function * f = &(((CordRep *)leaf) -> function); if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf"); return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data)); } void CORD__next(CORD_pos p) { size_t cur_pos = p[0].cur_pos + 1; struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); CORD leaf = current_pe -> pe_cord; /* Leaf is not a string or we're at end of leaf */ p[0].cur_pos = cur_pos; if (!CORD_IS_STRING(leaf)) { /* Function leaf */ struct Function * f = &(((CordRep *)leaf) -> function); size_t start_pos = current_pe -> pe_start_pos; size_t end_pos = start_pos + f -> len; if (cur_pos < end_pos) { /* Fill cache and return. */ size_t i; size_t limit = cur_pos + FUNCTION_BUF_SZ; CORD_fn fn = f -> fn; void * client_data = f -> client_data; if (limit > end_pos) { limit = end_pos; } for (i = cur_pos; i < limit; i++) { p[0].function_buf[i - cur_pos] = (*fn)(i - start_pos, client_data); } p[0].cur_start = cur_pos; p[0].cur_leaf = p[0].function_buf; p[0].cur_end = limit; return; } } /* End of leaf */ /* Pop the stack until we find two concatenation nodes with the */ /* same start position: this implies we were in left part. */ { while (p[0].path_len > 0 && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) { p[0].path_len--; current_pe--; } if (p[0].path_len == 0) { p[0].path_len = CORD_POS_INVALID; return; } } p[0].path_len--; CORD__extend_path(p); } void CORD__prev(CORD_pos p) { struct CORD_pe * pe = &(p[0].path[p[0].path_len]); if (p[0].cur_pos == 0) { p[0].path_len = CORD_POS_INVALID; return; } p[0].cur_pos--; if (p[0].cur_pos >= pe -> pe_start_pos) return; /* Beginning of leaf */ /* Pop the stack until we find two concatenation nodes with the */ /* different start position: this implies we were in right part. */ { struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); while (p[0].path_len > 0 && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) { p[0].path_len--; current_pe--; } } p[0].path_len--; CORD__extend_path(p); } #undef CORD_pos_fetch #undef CORD_next #undef CORD_prev #undef CORD_pos_to_index #undef CORD_pos_to_cord #undef CORD_pos_valid char CORD_pos_fetch(CORD_pos p) { if (p[0].cur_end != 0) { return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]); } else { return(CORD__pos_fetch(p)); } } void CORD_next(CORD_pos p) { if (p[0].cur_pos + 1 < p[0].cur_end) { p[0].cur_pos++; } else { CORD__next(p); } } void CORD_prev(CORD_pos p) { if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) { p[0].cur_pos--; } else { CORD__prev(p); } } size_t CORD_pos_to_index(CORD_pos p) { return(p[0].cur_pos); } CORD CORD_pos_to_cord(CORD_pos p) { return(p[0].path[0].pe_cord); } int CORD_pos_valid(CORD_pos p) { return(p[0].path_len != CORD_POS_INVALID); } void CORD_set_pos(CORD_pos p, CORD x, size_t i) { if (x == CORD_EMPTY) { p[0].path_len = CORD_POS_INVALID; return; } p[0].path[0].pe_cord = x; p[0].path[0].pe_start_pos = 0; p[0].path_len = 0; p[0].cur_pos = i; CORD__extend_path(p); }