//===- RandomIRBuilderTest.cpp - Tests for injector strategy --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/FuzzMutate/RandomIRBuilder.h" #include "llvm/ADT/StringRef.h" #include "llvm/AsmParser/Parser.h" #include "llvm/AsmParser/SlotMapping.h" #include "llvm/FuzzMutate/IRMutator.h" #include "llvm/FuzzMutate/OpDescriptor.h" #include "llvm/FuzzMutate/Operations.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" using namespace llvm; static constexpr int Seed = 5; namespace { std::unique_ptr parseAssembly( const char *Assembly, LLVMContext &Context) { SMDiagnostic Error; std::unique_ptr M = parseAssemblyString(Assembly, Error, Context); std::string ErrMsg; raw_string_ostream OS(ErrMsg); Error.print("", OS); assert(M && !verifyModule(*M, &errs())); return M; } TEST(RandomIRBuilderTest, ShuffleVectorIncorrectOperands) { // Test that we don't create load instruction as a source for the shuffle // vector operation. LLVMContext Ctx; const char *Source = "define <2 x i32> @test(<2 x i1> %cond, <2 x i32> %a) {\n" " %A = alloca <2 x i32>\n" " %I = insertelement <2 x i32> %a, i32 1, i32 1\n" " ret <2 x i32> undef\n" "}"; auto M = parseAssembly(Source, Ctx); fuzzerop::OpDescriptor Descr = fuzzerop::shuffleVectorDescriptor(1); // Empty known types since we ShuffleVector descriptor doesn't care about them RandomIRBuilder IB(Seed, {}); // Get first basic block of the first function Function &F = *M->begin(); BasicBlock &BB = *F.begin(); SmallVector Insts; for (auto I = BB.getFirstInsertionPt(), E = BB.end(); I != E; ++I) Insts.push_back(&*I); // Pick first and second sources SmallVector Srcs; ASSERT_TRUE(Descr.SourcePreds[0].matches(Srcs, Insts[1])); Srcs.push_back(Insts[1]); ASSERT_TRUE(Descr.SourcePreds[1].matches(Srcs, Insts[1])); Srcs.push_back(Insts[1]); // Create new source. Check that it always matches with the descriptor. // Run some iterations to account for random decisions. for (int i = 0; i < 10; ++i) { Value *LastSrc = IB.newSource(BB, Insts, Srcs, Descr.SourcePreds[2]); ASSERT_TRUE(Descr.SourcePreds[2].matches(Srcs, LastSrc)); } } TEST(RandomIRBuilderTest, InsertValueIndexes) { // Check that we will generate correct indexes for the insertvalue operation LLVMContext Ctx; const char *Source = "%T = type {i8, i32, i64}\n" "define void @test() {\n" " %A = alloca %T\n" " %L = load %T, %T* %A" " ret void\n" "}"; auto M = parseAssembly(Source, Ctx); fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1); std::vector Types = {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx), Type::getInt64Ty(Ctx)}; RandomIRBuilder IB(Seed, Types); // Get first basic block of the first function Function &F = *M->begin(); BasicBlock &BB = *F.begin(); // Pick first source Instruction *Src = &*std::next(BB.begin()); SmallVector Srcs(2); ASSERT_TRUE(IVDescr.SourcePreds[0].matches({}, Src)); Srcs[0] = Src; // Generate constants for each of the types and check that we pick correct // index for the given type for (auto *T: Types) { // Loop to account for possible random decisions for (int i = 0; i < 10; ++i) { // Create value we want to insert. Only it's type matters. Srcs[1] = ConstantInt::get(T, 5); // Try to pick correct index Value *Src = IB.findOrCreateSource( BB, &*BB.begin(), Srcs, IVDescr.SourcePreds[2]); ASSERT_TRUE(IVDescr.SourcePreds[2].matches(Srcs, Src)); } } } TEST(RandomIRBuilderTest, ShuffleVectorSink) { // Check that we will never use shuffle vector mask as a sink form the // unrelated operation. LLVMContext Ctx; const char *SourceCode = "define void @test(<4 x i32> %a) {\n" " %S1 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n" " %S2 = shufflevector <4 x i32> %a, <4 x i32> %a, <4 x i32> undef\n" " ret void\n" "}"; auto M = parseAssembly(SourceCode, Ctx); fuzzerop::OpDescriptor IVDescr = fuzzerop::insertValueDescriptor(1); RandomIRBuilder IB(Seed, {}); // Get first basic block of the first function Function &F = *M->begin(); BasicBlock &BB = *F.begin(); // Source is %S1 Instruction *Source = &*BB.begin(); // Sink is %S2 SmallVector Sinks = {&*std::next(BB.begin())}; // Loop to account for random decisions for (int i = 0; i < 10; ++i) { // Try to connect S1 to S2. We should always create new sink. IB.connectToSink(BB, Sinks, Source); ASSERT_TRUE(!verifyModule(*M, &errs())); } } TEST(RandomIRBuilderTest, InsertValueArray) { // Check that we can generate insertvalue for the vector operations LLVMContext Ctx; const char *SourceCode = "define void @test() {\n" " %A = alloca [8 x i32]\n" " %L = load [8 x i32], [8 x i32]* %A" " ret void\n" "}"; auto M = parseAssembly(SourceCode, Ctx); fuzzerop::OpDescriptor Descr = fuzzerop::insertValueDescriptor(1); std::vector Types = {Type::getInt8Ty(Ctx), Type::getInt32Ty(Ctx), Type::getInt64Ty(Ctx)}; RandomIRBuilder IB(Seed, Types); // Get first basic block of the first function Function &F = *M->begin(); BasicBlock &BB = *F.begin(); // Pick first source Instruction *Source = &*std::next(BB.begin()); ASSERT_TRUE(Descr.SourcePreds[0].matches({}, Source)); SmallVector Srcs(2); // Check that we can always pick the last two operands. for (int i = 0; i < 10; ++i) { Srcs[0] = Source; Srcs[1] = IB.findOrCreateSource(BB, {Source}, Srcs, Descr.SourcePreds[1]); IB.findOrCreateSource(BB, {}, Srcs, Descr.SourcePreds[2]); } } TEST(RandomIRBuilderTest, Invokes) { // Check that we never generate load or store after invoke instruction LLVMContext Ctx; const char *SourceCode = "declare i32* @f()" "declare i32 @personality_function()" "define i32* @test() personality i32 ()* @personality_function {\n" "entry:\n" " %val = invoke i32* @f()\n" " to label %normal unwind label %exceptional\n" "normal:\n" " ret i32* %val\n" "exceptional:\n" " %landing_pad4 = landingpad token cleanup\n" " ret i32* undef\n" "}"; auto M = parseAssembly(SourceCode, Ctx); std::vector Types = {Type::getInt8Ty(Ctx)}; RandomIRBuilder IB(Seed, Types); // Get first basic block of the test function Function &F = *M->getFunction("test"); BasicBlock &BB = *F.begin(); Instruction *Invoke = &*BB.begin(); // Find source but never insert new load after invoke for (int i = 0; i < 10; ++i) { (void)IB.findOrCreateSource(BB, {Invoke}, {}, fuzzerop::anyIntType()); ASSERT_TRUE(!verifyModule(*M, &errs())); } } TEST(RandomIRBuilderTest, FirstClassTypes) { // Check that we never insert new source as a load from non first class // or unsized type. LLVMContext Ctx; const char *SourceCode = "%Opaque = type opaque\n" "define void @test(i8* %ptr) {\n" "entry:\n" " %tmp = bitcast i8* %ptr to i32* (i32*)*\n" " %tmp1 = bitcast i8* %ptr to %Opaque*\n" " ret void\n" "}"; auto M = parseAssembly(SourceCode, Ctx); std::vector Types = {Type::getInt8Ty(Ctx)}; RandomIRBuilder IB(Seed, Types); Function &F = *M->getFunction("test"); BasicBlock &BB = *F.begin(); // Non first class type Instruction *FuncPtr = &*BB.begin(); // Unsized type Instruction *OpaquePtr = &*std::next(BB.begin()); for (int i = 0; i < 10; ++i) { Value *V = IB.findOrCreateSource(BB, {FuncPtr, OpaquePtr}); ASSERT_FALSE(isa(V)); } } }