//===-- MachThread.cpp ------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Created by Greg Clayton on 6/19/07. // //===----------------------------------------------------------------------===// #include "MachThread.h" #include "DNB.h" #include "DNBLog.h" #include "MachProcess.h" #include "ThreadInfo.h" #include #include #include static uint32_t GetSequenceID() { static uint32_t g_nextID = 0; return ++g_nextID; } MachThread::MachThread(MachProcess *process, bool is_64_bit, uint64_t unique_thread_id, thread_t mach_port_num) : m_process(process), m_unique_id(unique_thread_id), m_mach_port_number(mach_port_num), m_seq_id(GetSequenceID()), m_state(eStateUnloaded), m_state_mutex(PTHREAD_MUTEX_RECURSIVE), m_suspend_count(0), m_stop_exception(), m_arch_ap(DNBArchProtocol::Create(this)), m_reg_sets(NULL), m_num_reg_sets(0), m_ident_info(), m_proc_threadinfo(), m_dispatch_queue_name(), m_is_64_bit(is_64_bit), m_pthread_qos_class_decode(nullptr) { nub_size_t num_reg_sets = 0; m_reg_sets = m_arch_ap->GetRegisterSetInfo(&num_reg_sets); m_num_reg_sets = num_reg_sets; m_pthread_qos_class_decode = (unsigned int (*)(unsigned long, int *, unsigned long *))dlsym( RTLD_DEFAULT, "_pthread_qos_class_decode"); // Get the thread state so we know if a thread is in a state where we can't // muck with it and also so we get the suspend count correct in case it was // already suspended GetBasicInfo(); DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::MachThread ( process = %p, tid = 0x%8.8" PRIx64 ", seq_id = %u )", reinterpret_cast(&m_process), m_unique_id, m_seq_id); } MachThread::~MachThread() { DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::~MachThread() for tid = 0x%8.8" PRIx64 " (%u)", m_unique_id, m_seq_id); } void MachThread::Suspend() { DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__); if (MachPortNumberIsValid(m_mach_port_number)) { DNBError err(::thread_suspend(m_mach_port_number), DNBError::MachKernel); if (err.Success()) m_suspend_count++; if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail()) err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")", m_mach_port_number); } } void MachThread::Resume(bool others_stopped) { DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__); if (MachPortNumberIsValid(m_mach_port_number)) { SetSuspendCountBeforeResume(others_stopped); } } bool MachThread::SetSuspendCountBeforeResume(bool others_stopped) { DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__); DNBError err; if (MachPortNumberIsValid(m_mach_port_number) == false) return false; integer_t times_to_resume; if (others_stopped) { if (GetBasicInfo()) { times_to_resume = m_basic_info.suspend_count; m_suspend_count = -(times_to_resume - m_suspend_count); } else times_to_resume = 0; } else { times_to_resume = m_suspend_count; m_suspend_count = 0; } if (times_to_resume > 0) { while (times_to_resume > 0) { err = ::thread_resume(m_mach_port_number); if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail()) err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number); if (err.Success()) --times_to_resume; else { if (GetBasicInfo()) times_to_resume = m_basic_info.suspend_count; else times_to_resume = 0; } } } return true; } bool MachThread::RestoreSuspendCountAfterStop() { DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__); DNBError err; if (MachPortNumberIsValid(m_mach_port_number) == false) return false; if (m_suspend_count > 0) { while (m_suspend_count > 0) { err = ::thread_resume(m_mach_port_number); if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail()) err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number); if (err.Success()) --m_suspend_count; else { if (GetBasicInfo()) m_suspend_count = m_basic_info.suspend_count; else m_suspend_count = 0; return false; // ??? } } } else if (m_suspend_count < 0) { while (m_suspend_count < 0) { err = ::thread_suspend(m_mach_port_number); if (err.Success()) ++m_suspend_count; if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail()) { err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")", m_mach_port_number); return false; } } } return true; } const char *MachThread::GetBasicInfoAsString() const { static char g_basic_info_string[1024]; struct thread_basic_info basicInfo; if (GetBasicInfo(m_mach_port_number, &basicInfo)) { // char run_state_str[32]; // size_t run_state_str_size = sizeof(run_state_str); // switch (basicInfo.run_state) // { // case TH_STATE_RUNNING: strlcpy(run_state_str, "running", // run_state_str_size); break; // case TH_STATE_STOPPED: strlcpy(run_state_str, "stopped", // run_state_str_size); break; // case TH_STATE_WAITING: strlcpy(run_state_str, "waiting", // run_state_str_size); break; // case TH_STATE_UNINTERRUPTIBLE: strlcpy(run_state_str, // "uninterruptible", run_state_str_size); break; // case TH_STATE_HALTED: strlcpy(run_state_str, "halted", // run_state_str_size); break; // default: snprintf(run_state_str, // run_state_str_size, "%d", basicInfo.run_state); break; // ??? // } float user = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f; float system = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f; snprintf(g_basic_info_string, sizeof(g_basic_info_string), "Thread 0x%8.8" PRIx64 ": user=%f system=%f cpu=%d sleep_time=%d", m_unique_id, user, system, basicInfo.cpu_usage, basicInfo.sleep_time); return g_basic_info_string; } return NULL; } // Finds the Mach port number for a given thread in the inferior process' port // namespace. thread_t MachThread::InferiorThreadID() const { mach_msg_type_number_t i; mach_port_name_array_t names; mach_port_type_array_t types; mach_msg_type_number_t ncount, tcount; thread_t inferior_tid = INVALID_NUB_THREAD; task_t my_task = ::mach_task_self(); task_t task = m_process->Task().TaskPort(); kern_return_t kret = ::mach_port_names(task, &names, &ncount, &types, &tcount); if (kret == KERN_SUCCESS) { for (i = 0; i < ncount; i++) { mach_port_t my_name; mach_msg_type_name_t my_type; kret = ::mach_port_extract_right(task, names[i], MACH_MSG_TYPE_COPY_SEND, &my_name, &my_type); if (kret == KERN_SUCCESS) { ::mach_port_deallocate(my_task, my_name); if (my_name == m_mach_port_number) { inferior_tid = names[i]; break; } } } // Free up the names and types ::vm_deallocate(my_task, (vm_address_t)names, ncount * sizeof(mach_port_name_t)); ::vm_deallocate(my_task, (vm_address_t)types, tcount * sizeof(mach_port_type_t)); } return inferior_tid; } bool MachThread::IsUserReady() { if (m_basic_info.run_state == 0) GetBasicInfo(); switch (m_basic_info.run_state) { default: case TH_STATE_UNINTERRUPTIBLE: break; case TH_STATE_RUNNING: case TH_STATE_STOPPED: case TH_STATE_WAITING: case TH_STATE_HALTED: return true; } return false; } struct thread_basic_info *MachThread::GetBasicInfo() { if (MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info)) return &m_basic_info; return NULL; } bool MachThread::GetBasicInfo(thread_t thread, struct thread_basic_info *basicInfoPtr) { if (MachPortNumberIsValid(thread)) { unsigned int info_count = THREAD_BASIC_INFO_COUNT; kern_return_t err = ::thread_info(thread, THREAD_BASIC_INFO, (thread_info_t)basicInfoPtr, &info_count); if (err == KERN_SUCCESS) return true; } ::memset(basicInfoPtr, 0, sizeof(struct thread_basic_info)); return false; } bool MachThread::ThreadIDIsValid(uint64_t thread) { return thread != 0; } bool MachThread::MachPortNumberIsValid(thread_t thread) { return thread != THREAD_NULL; } bool MachThread::GetRegisterState(int flavor, bool force) { return m_arch_ap->GetRegisterState(flavor, force) == KERN_SUCCESS; } bool MachThread::SetRegisterState(int flavor) { return m_arch_ap->SetRegisterState(flavor) == KERN_SUCCESS; } uint64_t MachThread::GetPC(uint64_t failValue) { // Get program counter return m_arch_ap->GetPC(failValue); } bool MachThread::SetPC(uint64_t value) { // Set program counter return m_arch_ap->SetPC(value); } uint64_t MachThread::GetSP(uint64_t failValue) { // Get stack pointer return m_arch_ap->GetSP(failValue); } nub_process_t MachThread::ProcessID() const { if (m_process) return m_process->ProcessID(); return INVALID_NUB_PROCESS; } void MachThread::Dump(uint32_t index) { const char *thread_run_state = NULL; switch (m_basic_info.run_state) { case TH_STATE_RUNNING: thread_run_state = "running"; break; // 1 thread is running normally case TH_STATE_STOPPED: thread_run_state = "stopped"; break; // 2 thread is stopped case TH_STATE_WAITING: thread_run_state = "waiting"; break; // 3 thread is waiting normally case TH_STATE_UNINTERRUPTIBLE: thread_run_state = "uninter"; break; // 4 thread is in an uninterruptible wait case TH_STATE_HALTED: thread_run_state = "halted "; break; // 5 thread is halted at a default: thread_run_state = "???"; break; } DNBLogThreaded( "[%3u] #%3u tid: 0x%8.8" PRIx64 ", pc: 0x%16.16" PRIx64 ", sp: 0x%16.16" PRIx64 ", user: %d.%6.6d, system: %d.%6.6d, cpu: %2d, policy: %2d, run_state: " "%2d (%s), flags: %2d, suspend_count: %2d (current %2d), sleep_time: %d", index, m_seq_id, m_unique_id, GetPC(INVALID_NUB_ADDRESS), GetSP(INVALID_NUB_ADDRESS), m_basic_info.user_time.seconds, m_basic_info.user_time.microseconds, m_basic_info.system_time.seconds, m_basic_info.system_time.microseconds, m_basic_info.cpu_usage, m_basic_info.policy, m_basic_info.run_state, thread_run_state, m_basic_info.flags, m_basic_info.suspend_count, m_suspend_count, m_basic_info.sleep_time); // DumpRegisterState(0); } void MachThread::ThreadWillResume(const DNBThreadResumeAction *thread_action, bool others_stopped) { if (thread_action->addr != INVALID_NUB_ADDRESS) SetPC(thread_action->addr); SetState(thread_action->state); switch (thread_action->state) { case eStateStopped: case eStateSuspended: assert(others_stopped == false); Suspend(); break; case eStateRunning: case eStateStepping: Resume(others_stopped); break; default: break; } m_arch_ap->ThreadWillResume(); m_stop_exception.Clear(); } DNBBreakpoint *MachThread::CurrentBreakpoint() { return m_process->Breakpoints().FindByAddress(GetPC()); } bool MachThread::ShouldStop(bool &step_more) { // See if this thread is at a breakpoint? DNBBreakpoint *bp = CurrentBreakpoint(); if (bp) { // This thread is sitting at a breakpoint, ask the breakpoint // if we should be stopping here. return true; } else { if (m_arch_ap->StepNotComplete()) { step_more = true; return false; } // The thread state is used to let us know what the thread was // trying to do. MachThread::ThreadWillResume() will set the // thread state to various values depending if the thread was // the current thread and if it was to be single stepped, or // resumed. if (GetState() == eStateRunning) { // If our state is running, then we should continue as we are in // the process of stepping over a breakpoint. return false; } else { // Stop if we have any kind of valid exception for this // thread. if (GetStopException().IsValid()) return true; } } return false; } bool MachThread::IsStepping() { return GetState() == eStateStepping; } bool MachThread::ThreadDidStop() { // This thread has existed prior to resuming under debug nub control, // and has just been stopped. Do any cleanup that needs to be done // after running. // The thread state and breakpoint will still have the same values // as they had prior to resuming the thread, so it makes it easy to check // if we were trying to step a thread, or we tried to resume while being // at a breakpoint. // When this method gets called, the process state is still in the // state it was in while running so we can act accordingly. m_arch_ap->ThreadDidStop(); // We may have suspended this thread so the primary thread could step // without worrying about race conditions, so lets restore our suspend // count. RestoreSuspendCountAfterStop(); // Update the basic information for a thread MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info); if (m_basic_info.suspend_count > 0) SetState(eStateSuspended); else SetState(eStateStopped); return true; } bool MachThread::NotifyException(MachException::Data &exc) { // Allow the arch specific protocol to process (MachException::Data &)exc // first before possible reassignment of m_stop_exception with exc. // See also MachThread::GetStopException(). bool handled = m_arch_ap->NotifyException(exc); if (m_stop_exception.IsValid()) { // We may have more than one exception for a thread, but we need to // only remember the one that we will say is the reason we stopped. // We may have been single stepping and also gotten a signal exception, // so just remember the most pertinent one. if (m_stop_exception.IsBreakpoint()) m_stop_exception = exc; } else { m_stop_exception = exc; } return handled; } nub_state_t MachThread::GetState() { // If any other threads access this we will need a mutex for it PTHREAD_MUTEX_LOCKER(locker, m_state_mutex); return m_state; } void MachThread::SetState(nub_state_t state) { PTHREAD_MUTEX_LOCKER(locker, m_state_mutex); m_state = state; DNBLogThreadedIf(LOG_THREAD, "MachThread::SetState ( %s ) for tid = 0x%8.8" PRIx64 "", DNBStateAsString(state), m_unique_id); } nub_size_t MachThread::GetNumRegistersInSet(nub_size_t regSet) const { if (regSet < m_num_reg_sets) return m_reg_sets[regSet].num_registers; return 0; } const char *MachThread::GetRegisterSetName(nub_size_t regSet) const { if (regSet < m_num_reg_sets) return m_reg_sets[regSet].name; return NULL; } const DNBRegisterInfo *MachThread::GetRegisterInfo(nub_size_t regSet, nub_size_t regIndex) const { if (regSet < m_num_reg_sets) if (regIndex < m_reg_sets[regSet].num_registers) return &m_reg_sets[regSet].registers[regIndex]; return NULL; } void MachThread::DumpRegisterState(nub_size_t regSet) { if (regSet == REGISTER_SET_ALL) { for (regSet = 1; regSet < m_num_reg_sets; regSet++) DumpRegisterState(regSet); } else { if (m_arch_ap->RegisterSetStateIsValid((int)regSet)) { const size_t numRegisters = GetNumRegistersInSet(regSet); uint32_t regIndex = 0; DNBRegisterValueClass reg; for (regIndex = 0; regIndex < numRegisters; ++regIndex) { if (m_arch_ap->GetRegisterValue((uint32_t)regSet, regIndex, ®)) { reg.Dump(NULL, NULL); } } } else { DNBLog("%s: registers are not currently valid.", GetRegisterSetName(regSet)); } } } const DNBRegisterSetInfo * MachThread::GetRegisterSetInfo(nub_size_t *num_reg_sets) const { *num_reg_sets = m_num_reg_sets; return &m_reg_sets[0]; } bool MachThread::GetRegisterValue(uint32_t set, uint32_t reg, DNBRegisterValue *value) { return m_arch_ap->GetRegisterValue(set, reg, value); } bool MachThread::SetRegisterValue(uint32_t set, uint32_t reg, const DNBRegisterValue *value) { return m_arch_ap->SetRegisterValue(set, reg, value); } nub_size_t MachThread::GetRegisterContext(void *buf, nub_size_t buf_len) { return m_arch_ap->GetRegisterContext(buf, buf_len); } nub_size_t MachThread::SetRegisterContext(const void *buf, nub_size_t buf_len) { return m_arch_ap->SetRegisterContext(buf, buf_len); } uint32_t MachThread::SaveRegisterState() { return m_arch_ap->SaveRegisterState(); } bool MachThread::RestoreRegisterState(uint32_t save_id) { return m_arch_ap->RestoreRegisterState(save_id); } uint32_t MachThread::EnableHardwareBreakpoint(const DNBBreakpoint *bp) { if (bp != NULL && bp->IsBreakpoint()) return m_arch_ap->EnableHardwareBreakpoint(bp->Address(), bp->ByteSize()); return INVALID_NUB_HW_INDEX; } uint32_t MachThread::EnableHardwareWatchpoint(const DNBBreakpoint *wp, bool also_set_on_task) { if (wp != NULL && wp->IsWatchpoint()) return m_arch_ap->EnableHardwareWatchpoint( wp->Address(), wp->ByteSize(), wp->WatchpointRead(), wp->WatchpointWrite(), also_set_on_task); return INVALID_NUB_HW_INDEX; } bool MachThread::RollbackTransForHWP() { return m_arch_ap->RollbackTransForHWP(); } bool MachThread::FinishTransForHWP() { return m_arch_ap->FinishTransForHWP(); } bool MachThread::DisableHardwareBreakpoint(const DNBBreakpoint *bp) { if (bp != NULL && bp->IsHardware()) return m_arch_ap->DisableHardwareBreakpoint(bp->GetHardwareIndex()); return false; } bool MachThread::DisableHardwareWatchpoint(const DNBBreakpoint *wp, bool also_set_on_task) { if (wp != NULL && wp->IsHardware()) return m_arch_ap->DisableHardwareWatchpoint(wp->GetHardwareIndex(), also_set_on_task); return false; } uint32_t MachThread::NumSupportedHardwareWatchpoints() const { return m_arch_ap->NumSupportedHardwareWatchpoints(); } bool MachThread::GetIdentifierInfo() { // Don't try to get the thread info once and cache it for the life of the // thread. It changes over time, for instance // if the thread name changes, then the thread_handle also changes... So you // have to refetch it every time. mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT; kern_return_t kret = ::thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO, (thread_info_t)&m_ident_info, &count); return kret == KERN_SUCCESS; return false; } const char *MachThread::GetName() { if (GetIdentifierInfo()) { int len = ::proc_pidinfo(m_process->ProcessID(), PROC_PIDTHREADINFO, m_ident_info.thread_handle, &m_proc_threadinfo, sizeof(m_proc_threadinfo)); if (len && m_proc_threadinfo.pth_name[0]) return m_proc_threadinfo.pth_name; } return NULL; } uint64_t MachThread::GetGloballyUniqueThreadIDForMachPortID(thread_t mach_port_id) { kern_return_t kr; thread_identifier_info_data_t tident; mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT; kr = thread_info(mach_port_id, THREAD_IDENTIFIER_INFO, (thread_info_t)&tident, &tident_count); if (kr != KERN_SUCCESS) { return mach_port_id; } return tident.thread_id; } nub_addr_t MachThread::GetPThreadT() { nub_addr_t pthread_t_value = INVALID_NUB_ADDRESS; if (MachPortNumberIsValid(m_mach_port_number)) { kern_return_t kr; thread_identifier_info_data_t tident; mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT; kr = thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO, (thread_info_t)&tident, &tident_count); if (kr == KERN_SUCCESS) { // Dereference thread_handle to get the pthread_t value for this thread. if (m_is_64_bit) { uint64_t addr; if (m_process->ReadMemory(tident.thread_handle, 8, &addr) == 8) { if (addr != 0) { pthread_t_value = addr; } } } else { uint32_t addr; if (m_process->ReadMemory(tident.thread_handle, 4, &addr) == 4) { if (addr != 0) { pthread_t_value = addr; } } } } } return pthread_t_value; } // Return this thread's TSD (Thread Specific Data) address. // This is computed based on this thread's pthread_t value. // // We compute the TSD from the pthread_t by one of two methods. // // If plo_pthread_tsd_base_offset is non-zero, this is a simple offset that we // add to // the pthread_t to get the TSD base address. // // Else we read a pointer from memory at pthread_t + // plo_pthread_tsd_base_address_offset and // that gives us the TSD address. // // These plo_pthread_tsd_base values must be read out of libpthread by lldb & // provided to debugserver. nub_addr_t MachThread::GetTSDAddressForThread(uint64_t plo_pthread_tsd_base_address_offset, uint64_t plo_pthread_tsd_base_offset, uint64_t plo_pthread_tsd_entry_size) { nub_addr_t tsd_addr = INVALID_NUB_ADDRESS; nub_addr_t pthread_t_value = GetPThreadT(); if (plo_pthread_tsd_base_offset != 0 && plo_pthread_tsd_base_offset != INVALID_NUB_ADDRESS) { tsd_addr = pthread_t_value + plo_pthread_tsd_base_offset; } else { if (plo_pthread_tsd_entry_size == 4) { uint32_t addr = 0; if (m_process->ReadMemory(pthread_t_value + plo_pthread_tsd_base_address_offset, 4, &addr) == 4) { if (addr != 0) { tsd_addr = addr; } } } if (plo_pthread_tsd_entry_size == 4) { uint64_t addr = 0; if (m_process->ReadMemory(pthread_t_value + plo_pthread_tsd_base_address_offset, 8, &addr) == 8) { if (addr != 0) { tsd_addr = addr; } } } } return tsd_addr; } nub_addr_t MachThread::GetDispatchQueueT() { nub_addr_t dispatch_queue_t_value = INVALID_NUB_ADDRESS; if (MachPortNumberIsValid(m_mach_port_number)) { kern_return_t kr; thread_identifier_info_data_t tident; mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT; kr = thread_info(m_mach_port_number, THREAD_IDENTIFIER_INFO, (thread_info_t)&tident, &tident_count); if (kr == KERN_SUCCESS && tident.dispatch_qaddr != 0 && tident.dispatch_qaddr != INVALID_NUB_ADDRESS) { // Dereference dispatch_qaddr to get the dispatch_queue_t value for this // thread's queue, if any. if (m_is_64_bit) { uint64_t addr; if (m_process->ReadMemory(tident.dispatch_qaddr, 8, &addr) == 8) { if (addr != 0) dispatch_queue_t_value = addr; } } else { uint32_t addr; if (m_process->ReadMemory(tident.dispatch_qaddr, 4, &addr) == 4) { if (addr != 0) dispatch_queue_t_value = addr; } } } } return dispatch_queue_t_value; } ThreadInfo::QoS MachThread::GetRequestedQoS(nub_addr_t tsd, uint64_t dti_qos_class_index) { ThreadInfo::QoS qos_value; if (MachPortNumberIsValid(m_mach_port_number) && m_pthread_qos_class_decode != nullptr) { uint64_t pthread_priority_value = 0; if (m_is_64_bit) { uint64_t pri; if (m_process->ReadMemory(tsd + (dti_qos_class_index * 8), 8, &pri) == 8) { pthread_priority_value = pri; } } else { uint32_t pri; if (m_process->ReadMemory(tsd + (dti_qos_class_index * 4), 4, &pri) == 4) { pthread_priority_value = pri; } } uint32_t requested_qos = m_pthread_qos_class_decode(pthread_priority_value, NULL, NULL); switch (requested_qos) { // These constants from case 0x21: qos_value.enum_value = requested_qos; qos_value.constant_name = "QOS_CLASS_USER_INTERACTIVE"; qos_value.printable_name = "User Interactive"; break; case 0x19: qos_value.enum_value = requested_qos; qos_value.constant_name = "QOS_CLASS_USER_INITIATED"; qos_value.printable_name = "User Initiated"; break; case 0x15: qos_value.enum_value = requested_qos; qos_value.constant_name = "QOS_CLASS_DEFAULT"; qos_value.printable_name = "Default"; break; case 0x11: qos_value.enum_value = requested_qos; qos_value.constant_name = "QOS_CLASS_UTILITY"; qos_value.printable_name = "Utility"; break; case 0x09: qos_value.enum_value = requested_qos; qos_value.constant_name = "QOS_CLASS_BACKGROUND"; qos_value.printable_name = "Background"; break; case 0x00: qos_value.enum_value = requested_qos; qos_value.constant_name = "QOS_CLASS_UNSPECIFIED"; qos_value.printable_name = "Unspecified"; break; } } return qos_value; }